Validation of a 3D numerical model of shape memory alloys pseudoelasticity through tensile and bulging tests on CuAlBe sheets - Normandie Université Access content directly
Journal Articles International Journal of Mechanical Sciences Year : 2007

Validation of a 3D numerical model of shape memory alloys pseudoelasticity through tensile and bulging tests on CuAlBe sheets

Abstract

In order to validate a 3D numerical model of the pseudoelastic behaviour of shape memory alloys (SMA) allowing a finite-strain analysis, a set of experimental tests is proposed. First consisting in determining the representative elementary volume (REV) model parameters, tensile tests are performed within a small perturbations context. Therefore, two kinds of structure tests representing different stress states are performed: tensile tests on CuAlBe perforated strips on the one hand and bulging tests on CuAlBe sheets on the other hand. With the update of the material parameters for a finite-strain analysis, it is then possible to compare the experimental and the numerical results obtained from tests on structures submitted to general states of stresses. Besides, pictures correlation and infrared thermography analysis have been used and combined to pinpoint the thermomechanical couplings of SMA behaviour.

Dates and versions

hal-02133233 , version 1 (17-05-2019)

Identifiers

Cite

B. Vieille, J.F. Michel, Lamine Boubakar, Christian Lexcellent. Validation of a 3D numerical model of shape memory alloys pseudoelasticity through tensile and bulging tests on CuAlBe sheets. International Journal of Mechanical Sciences, 2007, 49 (3), pp.280-297. ⟨10.1016/j.ijmecsci.2006.09.007⟩. ⟨hal-02133233⟩
18 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More