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In this thesis, we study the spatial propagation for some non-autonomous reactiondiusion equations and systems. Here we mainly consider that coecients depend on time in a general way. To obtain some sharp results, we assume that the time variations exhibit somehow good averaging properties, including periodicity and almost periodicity as special cases. In the rst work, we investigate the so-called generalized travelling wave solutions for a Fisher-KPP equation with nonlocal diusion. Both the nonlocal kernel and the reaction term depend on time. The existence and nonexistence of such solutions are proved. The second work is concerned with the spreading properties of solutions to nonautonomous Fisher-KPP equations with nonlocal diusion. Under certain assumptions on the coecients, a denite spreading speed is obtained. Then, we focus on a twocomponents non-autonomous prey-predator system with diusion. We are interested in the case where both the prey and the predator can co-invade the empty environment. Based on the derivation of local pointwise estimates between the densities of the two species, we obtain the spreading speeds for such a system. Lastly, for a class preypredator systems posed on a lattice with a discrete convolution dispersion, we can also derive similar estimates. By combining the method developed for nonlocal equation in our second work, the large time behaviour of some solutions to such a problem is described.

Résumé étendu

L'objet de cette thèse est l'étude des phénomènes de propagation pour des équations de réaction-diusion non autonomes de la forme générale suivante :

∂ t u = A(t)[u] + F(t, u),
où u = u(t, x) est une fonction scalaire ou vectorielle dépendant d'une variable temporelle t ∈ I et d'une variable spatiale x ∈ H. Ici, on considère I = R ou I = (0, ∞) et l'environnement H est l'espace entier R ou l'espace discret Z. Cette équation décrit la variation instantanée en temps ∂ t u de la fonction u = u(t, x) qui est causé par le terme de dispersion linéaire A(t)[u] et le terme non linéaire terme de réaction F(t, u). Les équations et systèmes de réaction-diusion modélisent de nombreux phénomènes en biologie et écologie, en particulier en dynamique des populations. Dans ce travail de thèse, on s'intéresse tout particulièrement à des questions liées à l'invasion spatiale d'espèces.

Une première étude de ce type de question remonte aux années 30, où l'équation dite de Fisher-KPP ou simplement KPP a été étudié. Un exemple typique est donné par l'équation suivante :

∂ t u = ∂ xx u + u(1 -u), t > 0, x ∈ R.
En 1937, Fisher a proposé et utilisé cette équation pour étudier la propagation de traits génétiques dans une population donnée. La même année, une analyse mathématique a été donnée par Kolmogorov, Petrovsky et Piskunov. En 1951, Skellam a utilisé cette équation pour étudier l'invasion spatiale d'une espèce biologique, qui est une tentative pour comprendre le rôle de la diusion en biologie des populations. Il a notamment utilisé l'équation KPP pour étudier l'invasion du rat musqué en Europe de l'Est et a montré que ce modèle donne une description cohérente avec les observations et données précises de terrain. Depuis ces travaux pionniers, les équations et systèmes de réactiondiusion ont suscité beaucoup d'attention de la part des mathématiciens, biologistes et écologues.

Dans le premier chapitre de ce manuscrit, nous rappelons deux notions importantes: ondes progressives et vitesse de d'expansion, qui permettent de décrire quantitativement les phénomènes de propagation. Il existe une littérature très vaste consacrée à l'étude des ondes progressives et à la vitesse d'expansion pour des équations de réaction-diusion. Dans ce chapitre, on se concentre principalement sur les points suivants: terme de réaction de type KPP, diusion locale, diusion non locale, hétérogénéité temporelle (coecients homogènes, périodiques, quasi périodiques...), système de type proie-prédateur et équations posées sur des réseaux. On passe en revue quelques résultats classiques et des développements récents.

On présente également quelques motivations de ce travail, avant de proposer un résumé des résultats principaux obtenus et présenté dans ce manuscrit. Par ailleurs, nous donnons quelques idées de démonstration de ces théorèmes. Finalement, nous discutons quelques problèmes ouverts et perspectives de ce travail. On s'attend en eet à ce que certaines iii méthodes développées dans ce manuscrit puissent être étendues et utilisée pour étudier d'autres problèmes.

Le Chapitre 2 présente un travail en collaboration avec Arnaud Ducrot. Les résultats présentés font l'objet d'un article publié dans Annali di Matematica Pura ed Applicata.

On étudie l'existence et la non-existence de solutions particulières sous forme d'ondes progressives généralisées pour l'équation de diusion non locale non autonome suivante: ∂ t u(t, x) = R K(t, y) [u(t, x -y) -u(t, x)] dy + F t, u(t, x) , (t, x) ∈ R × R.

La noyau de dispersion K = K(t, y) est une fonction positive ou nulle, dépendante du temps et bornée exponentiellement uniformément pour t ∈ R tandis que le terme non linéaire F = F (t, u) est de type Fisher-KPP avec F (t, 0) = F (t, 1) = 0, ∀t ∈ R.

Cette équation modélise l'évolution spatio-temporelle d'une population dans un environnement. Ici l'individu présente une dispersion à longue distance selon le noyau K. C'està-dire, la quantité K(t, x -y) correspond à la probabilité de sauter de y à x au temps t. Et la dynamique de la population locale (processus de naissance et de mort) est décrite par le terme de réaction de type Fisher-KPP qui varie avec le temps. On donne quelques résultats d'existence et non existence de telles solutions. On prouve également quelques estimations pour l'ensemble de vitesse admissible. De plus, sous certaines hypothèses appropriées portant sur les coecients, on obtient certaines estimations optimales pour l'ensemble des vitesses admissibles.

Le chapitre 3 est un travail en collaboration avec Arnaud Ducrot, qui fait l'objet d'un article actuellement soumis. Il porte sur l'étude d'une équation de Fisher-KPP non autonome avec diusion non locale, qui s'écrit comme suit: ∂ t u(t, x) = R K(y) [u(t, x -y) -u(t, x)] dy + F (t, u), ∀t ≥ 0, x ∈ R, et est munie d'une donnée initiale u(0, •) = u 0 (•). On suppose que le noyau de dispersion K est à queue ne, c'est-à-dire intégrale contre certaines exponentielles. Ce chapitre étudie les propriétés d'expansion des solutions de cette équation avec des données initiales qui sont respectivement avec une décroissance exponentielle rapide et à décroissance exponentielle plus lente.

De façon générale, on donne des estimations supérieures et inférieures de la vitesse d'expansion. A l'aide de d'hypothèses supplémentaires portant notamment sur des propriétés d'existence de moyenne pour les coecients dépendant du temps, on prouve que la vitesse d'expansion est bien dénie.

Pour l'estimation inférieure de la vitesse d'expansion, on propose une nouvelle approche, basée sur un lemme de persistance pour des solutions uniformément continues. Ce lemme clé assure grosso modo que si une solution uniformément continue u = u(t, x) admet un chemin t → X(t) le long duquel elle se propage et si elle persiste en x = 0, alors la solution persiste sur l'intervalle [0, kX(t)] avec tout k dans (0, 1). Autrement dit, u reste uniformément éloigné de 0 sur cet intervalle, quand le temps est grand. En appliquant ce lemme clé, on obtient notre estimation inférieure de la vitesse d'expansion. L'estimation supérieure est quand à elle obtenue comme la vitesse linéaire.

Le Chapitre 4 présente des résultats obtenus dans un travail en collaboration avec Arnaud Ducrot, qui est actuellement soumis pour publication. v Dans ce travail, on étudie la vitesse de propagation pour des systèmes de réactiondiusion de type proie-prédateur qui s'écrivent sous la forme suivante:

∂ t u = d(t)∂ xx u + uf (t, u, v) , ∂ t v = ∂ xx v + vg (t, u, v) ,
où t > 0 et x ∈ R. Ce problème est associé à des données initiales convenables avec un support compact pour les deux composantes, u(0, x) = u 0 (x) et v(0, x) = v 0 (x) pour x ∈ R.

Les fonctions u = u(t, x) et v = v(t, x) représente respectivement la densité de la proie et celle du prédateur. Un exemple typique de système est donné comme suit:

∂ t u = d(t)∂ xx u + r(t)u (1 -u) -p(t)uv, ∂ t v = ∂ xx v + q(t)uv -ν(t)v, où t > 0 et x ∈ R.
Dans ce travail, on considère que la proie et le prédateur sont tous les deux introduits dans un environnement où ces deux espèces sont absentes. On s'intéresse à l'invasion et la co-invasion de ces deux espèces. Pour ce système non autonome, en supposant des propriétés de moyenne temporelle, on a prouvé l'existence de vitesse d'expansion dans deux cas diérents. Dans le premier cas, le prédateur envahit le milieu plus lentement que la proie. Dans ce cas, la propagation se produit en deux étapes distinctes impliquant un équilibre intermédiaire (à savoir u = 1, v = 0) dans la zone intermédiaire. Pour le deuxième cas, le prédateur envahit l'environnement plus rapidement que la proie. Dans cette situation, on prouve que la proie et le prédateur envahissent l'espace vide simultanément, à o(t) près quand t → ∞.

On fournit ici une nouvelle méthode pour étudier la vitesse de propagation dans le type de système proie-prédateur. En utilisant le principe du maximum fort pour une équation parabolique scalaire, on prouve des estimations ponctuelles entre les densités de proie et de prédateur. Avec ces estimations, on peut comparer les solutions du système proieprédateur à celles d'équations scalaires de type Fisher-KPP dans un domaine approprié (l'espace entier et des domaines mobiles).

Le dernier chapitre de ce manuscrit expose un travail en collaboration avec Arnaud Ducrot, en cours de nalisation.

Il considère un problème de Cauchy de type proie-prédateur posé sur le réseau inni discret Z:

         d dt u(t, i) = j∈Z J 1 (t, j) [u(t, i -j) -u(t, i)] + u(t, i)f (t, u(t, i), v(t, i)) , d dt v(t, i) = j∈Z J 2 (t, j) [v(t, i -j) -v(t, i)] + v(t, i)g (t, u(t, i), v(t, i)) ,
où t > 0 and i ∈ Z. Ce système est associé à des données initiales positives (ou nulle) et bornées u(0, i) = u 0 (i) and v(0, i) = v 0 (i).

On suppose que les deux ensembles

{i ∈ Z; u 0 (i) ̸ = 0} ̸ = ∅ et {i ∈ Z; v 0 (i) ̸ = 0} ̸ = ∅
vi ont tous deux un nombre ni d'éléments. Les noyaux de dispersion J 1 et J 2 sont supposés être des fonctions exponentiellement bornées. Comme pour le Chapitre 4, un exemple typique de non linéarité (f, g) est la suivante: f (t, u, v) = u (1 -u) -p(t)uv, g(t, u, v) = q(t)uv -ν(t)v.

Pour étudier ce système, on adapte des idées similaires à celles développées au Chapitre 4 an de pouvoir comparer les solutions du système avec celles d'équations scalaires de type Fisher-KPP dans des domaines spatio-temporels appropriés. Un résultat principal de ce chapitre décrit la vitesse d'expansion exacte des solutions du système, en supportant là encore l'existence de moyennes temporelles pour les coecients du problème. Nos résultats sont proches de ceux obtenus au Chapitre 4, avec une diusion locale. C'est-à-dire, si le prédateur envahit le milieu vide plus lentement que la proie, la proie envahit d'abord l'espace, puis le prédateur suit donnant lieux à la co-exsistence des deux populations. D'autre part, si la proie envahit l'espace vide plus lentement que le prédateur, alors la proie et le prédateur envahissent simultanément l'environnement. Professor Arnaud Ducrot. Without him, this thesis would not have been possible. I do not know how to express thanks in here. Please permit me to come back to the beginning of story. A sudden opportunity, I became a PhD student work with Arnaud. Everything is like a dream. He provides a lot of help in every step, from choosing each problem to solving them to organizing my thesis defense. Thanks for introducing me into this interesting topic spatial propagation in population dynamic models. During the past time working for this thesis, he showed me the charms of mathematics and the values of our problems in each discussion. His passion aected me a lot. He often asked me "Is it interesting?", especially, when we nd some diculties but we do not know how to solve them. Then, we spend a lot of time to understand them. Sometimes we can be lucky enough. Of course, sometimes we have to choose "plan B". I often lost in the "uniformity" for some proofs. Then, after his careful reading, he pointed my mistakes and explained many times to me when I trapped. Sometimes I cannot get his ideas instantly, he explained those with utmost patience. He guided me step by step to become a good researcher in mathematics. Perhaps I should stop too much detailed and private expositions. Some memories are my treasures. As someone said, "scientic research is an adventure". It is great fortunate for me that I can adventure with Arnaud. I really appreciate him, my mentor and friend. I am extremely grateful to the professors who agreed to be the jury members out of their busy schedules for participating my defense: Danielle Hilhorst, François Hamel, Xing Liang, Pierre Magal, and Quentin Griette. Many thanks to them.

Particularly, I would like to express my gratitude to Professor François Hamel and Professor Xing Liang for agreeing to review my thesis during their busy schedules. It is my honor to have my thesis reviewed by them.

I warmly thank to Professor Rong Yuan and Professor Zhihua Liu in Beijing Normal University. They suggested and recommended me to come to France to work with Arnaud. Thanks for their many help before I came to France.

I also want to express many thanks to the members of my "Individual Supervision Committee": Thomas Giletti and Benjamin Ambrosio. They gave me some suggestions about my works and reports during each meeting. Their advice improved my academic presentation skills. I would like to express a lot of thanks to some friends in the laboratory. I really thank to Ahmadou Sylla for helping me a lot for instance some procedures when I arrive in France. Since I cannot speak french, sometimes I have to bother Ahmadou Sylla when I meet some diculties in daily life. I am very grateful for his help. I want to say thanks to Alexandre Thorel, Irmand Mikiela and Kamal Khalil. Their hospitality allowed me to adapt quickly to the new environment. I also want to thank to my colleagues Fatima Zahra Lahbiri and Yaheng Cui. In particular, I am very happy to recognize Hao Kang and Liangliang Deng. Every Sunday afternoon, we walk together around this city. We went to the sea, to the forest, to Éterat and to some parks. During the walk, we discuss the mathematics or some other story. It is a nice memory.

I also want to thank the faculty and sta who have helped me in this laboratory for instance Aziz Alaoui, David Manceau and other people.

Chapter 1

General introduction

This thesis is devoted to the study of propagation phenomena emerging from various non-autonomous reaction-diusion equations of the following general form:

∂ t u = A(t)[u] + F(t, u), (1.0.1)
where u is a scalar or vector-valued function depending on time t ∈ I and location x ∈ H. Herein we consider I = R or I = (0, ∞) and H = R or Z. This equation describes the instantaneous time change ∂ t u of u(t, x) at time t and location x caused by the linear dispersal term A(t)[u] and time heterogeneous nonlinear reaction term F(t, u).

The rst investigation of the above type equation can be dated back to 1930s. Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] independently introduced and studied the following equation,

∂ t u = ∂ xx u + u(1 -u), x ∈ R.
This equation is often referred as the Fisher-KPP equation or KPP equation. The original motivation of the Fisher-KPP equation is to model the spread of advantageous genetic traits in space in a given population. In 1951, Skellam [START_REF] Skellam | Random dispersal in theoretical populations[END_REF] used this KPP equation to study biological invasion, which is a systematic attempt to examine the role of diusion in population biology. He showed that the model yields a good description consistent with observations in precise data. Since these pioneering works, reaction-diusion equations and systems arise as a basic model in mathematical biology and ecology.

There is a large literature devoted to describing and understanding the propagation phenomena in (1.0.1) from many aspects including reaction term (KPP-type, bistable, ignition...), diusion mechanism (random diusion, nonlocal diusion...), media (homogeneous, periodic coecients, almost periodic coecients...), multi-species (predation, competition...) and so on. In order to study propagation phenomena in reaction-diusion equations, there are two important mathematical notions (which will be shown in the following section): travelling waves and spreading speeds.

In this chapter, we rst give a review of the state of the art as well show some motivations for our work. Then, we present the important mathematical results obtained in this thesis and explain key ideas of the proofs. Lastly, we discuss some open problems for future work.

Literature review

In this section, we will start from the classical Fisher-KPP equations to introduce two important notions in studying propagation phenomena: travelling waves and spreading speed. We expose some celebrated results in KPP equations and show the connection of two notions. Then, we review recent works in time heterogeneous KPP equations to understand more complex spatio-temporal behaviours caused by time heterogeneity. Next, we review some works in nonlocal diusion equations which aim to describe some long distance dispersal processes in population dynamics. Further, the developments of spreading behaviours in prey-predator systems are exposed. The results about the existence of travelling waves and spreading speed in prey-predator systems are elaborated. Lastly, we give an overview of lattice equations which can model species living in patch environments.

Classical Fisher-KPP equations

Let us rst recall some well known results for the following classical Fisher-KPP equation

∂ t u = ∂ xx u + f (u), for x ∈ R, (1.1.2) 
where f ∈ C 1 ([0, 1]) satises f (0) = f (1) = 0, 0 < f (u) ≤ f ′ (0)u, ∀u ∈ (0, 1), (KPP conditions).

(1. 1.3) Note that f (u) = u(1 -u) is a typical example of above assumption, see Figure 1.1. A particular case of (1.1.2) was introduced by Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] to investigate the propagation of genetic traits in a given population. A mathematical treatment was given in [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]. This equation plays an important role in population dynamics, we refer to some monographs [START_REF] Cantrell | Spatial ecology via reaction-diusion equations[END_REF][START_REF] Murray | Mathematical biology: I. An introduction[END_REF][START_REF] Murray | Mathematical biology II: spatial models and biomedical applications[END_REF][START_REF] Shigesada | Biological invasions: theory and practice[END_REF]. In the literature, there are also some strong KPP conditions such as f (u)/u is nonincreasing for u ∈ (0, 1) or f ′ (u) < f ′ (0) for u ∈ (0, 1). 

Travelling waves

The rst important notion to describe propagation phenomena in quantity and mathematically is travelling waves. Denition 1.1.1. A travelling wave solution with speed c ∈ R of (1.1.2) is a solution u(t, x) = φ(x -ct) with φ(-∞) = 1 and φ(∞) = 0.

The function φ : R → R is called wave prole and c is the wave speed. Note that φ satises the ODE -φ ′′ -cφ ′ = f (φ), with φ(-∞) = 1, φ(∞) = 0 and φ(z) ≥ 0, ∀z ∈ R.

By the phase plane analysis, [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] and [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF] obtained the following theorem.

Theorem 1.1.2 ([8, 97]). There exists a travelling wave solution with speed c of the KPP equation (1.1.2) if and only if c ≥ c * := 2 f ′ (0). Moreover, the travelling wave is unique up to translation and 0 < φ < 1 is a decreasing function. The quantity c * in the above theorem is called the minimal speed of wave propagation. Let us observe that the minimal speed of KPP equation is linearly determined. Indeed, linearizing the equation satised by φ at φ = 0, one has

-φ ′′ -cφ ′ = f ′ (0)φ.
Note that the characteristic polynomial is

λ 2 -cλ + f ′ (0) = 0.
Hence, there exists a positive solution for above linear equation if and only if c ≥ 2 f ′ (0).

Here the front (φ, c) with c ≥ c * = 2 f ′ (0) is also called pulled front which was rst introduced in [START_REF] Stokes | On two types of moving front in quasilinear diusion[END_REF]. This means that the speed of wave propagation is determined by the leading edge of the population distribution while the front is being pulled by the leading edge. For more information about pulled front and the corresponding notion pushed front, we refer the reader to [START_REF] Garnier | Inside dynamics of pulled and pushed fronts[END_REF][START_REF] Rothe | Convergence to pushed fronts[END_REF][START_REF] Stokes | On two types of moving front in quasilinear diusion[END_REF].

We also point out that for the high dimensional case x ∈ R N , the denition of (planar) travelling waves is given by u(t, x) = φ(x • e -ct) where e ∈ S N -1 is a given direction. We refer the reader to the monograph of Volpert et al. [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF] for more information about travelling waves. There are some other types front in high dimensional space such as curved fronts, see [START_REF] Hamel | Travelling fronts and entire solutions of the Fisher-KPP equation in R n[END_REF][START_REF] Ninomiya | Existence and global stability of traveling curved fronts in the AllenCahn equations[END_REF][START_REF] Taniguchi | Traveling fronts of pyramidal shapes in the AllenCahn equations[END_REF].

Spreading speed

Another important notion to understand the spatio-temporal dynamic in an unbounded domain is the asymptotic speed of spread (in short spreading speed).

Let us consider the Cauchy problem of (1.1.2) supplemented with initial data u(0, x) = u 0 (x) where u 0 ≥ 0 and u 0 ̸ ≡ 0, namely

∂ t u = ∂ xx u + f (u), t > 0, x ∈ R, u(0, x) = u 0 (x),
x ∈ R.

Aronson and Weinberger [START_REF] Aronson | Nonlinear diusion in population genetics, combustion, and nerve pulse propagation[END_REF][START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF] proved the following theorem.

Theorem 1.1.3. Let u = u(t, x) be a solution of (1.1.2) equipped with initial data u 0 .

If u 0 is compactly supported, then there exists a quantity w * = 2 f ′ (0) such that the solution u satises the following property: Here the quantity w * is called spreading speed. Remark 1.1.4. From the above theorem, one can note that there exists the hair trigger eect in the Cauchy problem of (1.1.2), namely, if u 0 ̸ ≡ 0, then the solution u = u(t, x)

to (1.1.2) supplemented with u 0 satises lim t→∞ u(t, x) = 1 locally uniformly for x ∈ R.

The above theorem means that for the compactly supported initial data, there are full of species u in the area (-w * t, w * t) after a long time t. This theorem provides a rigorously mathematically support for the empirical work by Skellam [START_REF] Skellam | Random dispersal in theoretical populations[END_REF] which used the KPP equation to study the invasion of the muskrat in Eastern Europe. With the precise available data, Skellam plotted the square root of the area occupied by the population of muskrats with respect to the observed years and illustrated the propagation of muskrats at a constant speed, see Figure 1 The invasion of muskrat in Eastern Europe. This gure is taken from [START_REF] Skellam | Random dispersal in theoretical populations[END_REF].

Convergence results

From the above two theorems, one can note that w * = c * = 2 f ′ (0). This means that the spreading speed of solutions with compactly supported initial data coincides with the minimal speed of travelling waves. In the following theorem, the connection between the two concepts for homogeneous KPP equations can be observed more accurately.

Theorem 1.1.5 ([97]). Let u = u(t, x) be the solution of (1.1.2) with initial data u 0 which is Heaviside function. Let φ c * be the travelling wave solutions of (1.1.2) with minimal speed c * . There exists a function m : R → R such that lim t→∞ m(t)/t = 0 and lim t→∞ |u(t, x) -φ c * (x -c * t -m(t))| = 0, uniformly for x ∈ R.

Then several authors have rened this property. For a large class of Heaviside-like initial data, Uchiyama [START_REF] Uchiyama | The behavior of solutions of some non-linear diusion equations for large time[END_REF] proved that m(t) might have a nontrivial behaviour as: m(t) = -3/(2λ * ) ln t + O(ln ln t), where λ * is the root of λ 2 -c * λ + f ′ (0) = 0. The following sharpest asymptotic is given by Bramson [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF][START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF], used probabilistic methods, m(t) = -3 2λ * ln t + O(1).

These results were also proved by Lau [START_REF] Lau | On the nonlinear diusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF] using intersection number theory. More recently, the paper by Hamel, Nolen, Roquejore and Ryzhik [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF] proposed a PDE method to give a short proof for this problem.

According to these celebrated results, we can conclude that although the spreading speed equal to minimal wave speed in (1.1.2), this does not mean that the solution propagates parallel to the travelling wave with speed c * . There is a backward phase drift of O(ln t) from the position c * t in KPP equations.

Inuence of initial data

Some works also showed that the spreading speed is aected by the tail of the initial data. Before coming to the precise results, let us recall that if φ c is a travelling wave solution of (1.1.2) with speed c > c * , then for some M > 0 large enough, one has φ c (z) ∼ M e -λz as z → +∞, where λ is the smallest root of

λ 2 -cλ + f ′ (0) = 0.
Thus, we may expect that the estimate of spreading speed is related to the exponential decaying rate of initial data. Set c(λ) := λ + f ′ (0) λ , λ > 0.

Note that the minimum value of c(λ) is c * = 2 f ′ (0) and c * = c(λ * ) with λ * = f ′ (0) = c * /2. From the work by Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF] and Uchiyama [START_REF] Uchiyama | The behavior of solutions of some non-linear diusion equations for large time[END_REF], one can see the following relationship between the spreading speed and the tail of initial data. Theorem 1.1.6. Let u = u(t, x) be a solution of (1.1.2) supplemented with nonzero initial data 1 ≥ u 0 ≥ 0. |1 -u(t, x)| = 0, for c ∈ [0, c(λ)).

Observing the second conclusion in the above theorem, intuitively, if we let λ → 0 + , then one has c(λ) → ∞. We may suspect that the acceleration phenomena appears when the initial data decays more slowly than exponential decaying. The spreading speed may not be a nite number any more.

In [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF], the authors considered that the initial data is globally front like and decays more slowly than any exponential decaying function, namely, u 0 satises u 0 > 0 in R, lim x→-∞ u 0 (x) > 0 and lim x→+∞ u 0 (x) = 0, and u 0 (x)e εx > 0 as x → +∞, for all ε > 0.

In this case, the spreading speed notion used before may not be suitable. The authors in [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] try to describe the location of the level set. By the way, travelling waves and spreading speed can be regarded as a way to show the motion of level sets of solutions.

In [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF], for λ ∈ (0, 1) and t ≥ 0, they denote the level set E λ (t) by E λ (t) := {x ∈ R; u(t, x) = λ} .

They proved that all level sets of solution move innitely fast as time goes to innity and displayed the locations of the level sets according to the decay of the initial conditions.

Here we only show some examples in [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] instead of the exposition of precise theorem.

Example 1.1.7. Let C, α > 0 and β ∈ (0, 1) be given.

(i) (Spread algebraic fast with t) If u 0 ∼ Ce -αx β as x → ∞, then min E λ (t) ∼ max E λ (t) ∼ f ′ (0) 1/β α -1/β t 1/β , as t → ∞, (ii) (Spread exponential fast with t) If u 0 ∼ Cx -α as x → ∞, then ln(min E λ (t)) ∼ ln(max E λ (t)) ∼ f ′ (0)α -1 t, as t → ∞, (iii) (Spread doubly-exponential fast with t) If u 0 ∼ C(ln x) -α as x → ∞, then ln ln(min E λ (t)) ∼ ln ln(max E λ (t)) ∼ f ′ (0)α -1 t, as t → ∞.

We also refer the reader to [START_REF] Hamel | Spreading properties and complex dynamics for monostable reactiondiusion equations[END_REF] for spreading speed of (1.1.2) with front like and asymptotically oscillating initial data. These works show that the spreading speed is strongly aected by the tail of initial function.

Other nonlinear reaction terms

For the sake of completeness, we also mention some other types of nonlinear reaction term f = f (u). In the following, we give the denition and typical example for nondegenerate monostable, degenerate monostable, bistable and ignition.

(i) Nondegenerate monostable if f ∈ C 1 ([0, 1]), f (0) = f (1) = 0, f > 0 in (0, 1) and f ′ (0) > 0. Example: f (u) = u(1 -u)(1 + au) with a ≥ 0.

KPP type is a special case of monostable. Example: f (u) = u(1 -u)(1 + au) for 0 ≤ a ≤ 1, see Figure 1.1 above.

Non KPP type monostable if the maximum value of f (u) u is not reach at u = 0. This corresponds to the so-called weak Allee eect in population dynamics. Example: f (u) = u(1 -u)(1 + au) with a > 1, see Figure 1.4 (a). (iii) Bistable if f ∈ C 1 ([0, 1]), f (0) = f (1) = 0, and exists θ > 0 such that f < 0 in (0, θ) and f > 0 in (θ, 1). This corresponds to strong Allee eect. Example: f (u) = u(1 -u)(u -θ), see Figure 1.4 (c).

(iv) Ignition if f ∈ C 1 ([0, 1]), f (0) = f (1) = 0, and exists θ > 0 such that f = 0 in (0, θ) and f > 0 in (θ, 1), see Figure 1. 4 (d). This type appears in combustion problems, θ is known as the ignition temperature.

We point out some phenomena which are dierent from KPP equations. For instance, in the bistable case, there is a unique speed c of travelling wave and the sign of c is same as 1 0 f (s)ds. As well as, the hair trigger eect property does not hold in bistable case. There is a huge literature studying propagation phenomena with these dierent reaction terms. It is impossible to exhaust all literature in these topics. We refer the reader to some earlier works [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF][START_REF] Fife | The approach of solutions of nonlinear diusion equations to travelling front solutions[END_REF][START_REF] Rothe | Convergence to pushed fronts[END_REF] and to the monograph [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF].

Time heterogeneity

Note that uctuating environment modeled by time heterogeneities is important in biology and ecology, particularly in population dynamics. Various important factors vary in time seasonally or daily as for instance physical environmental conditions (temperature, rainfall, wind...), species mobility, the availability of food and so on. Therefore, it is important to study wave propagation and spatial spread behaviours in equations with time periodic coecients as well as more general time dependence such as time almost periodic.

In this subsection, we mainly recall the propagation phenomena in the non-autonomous KPP equation. For statement simplicity and clarity, we consider the following time de-pendent diusive logistic equation

∂ t u = ∂ xx u + µ(t)u(1 -u), t ∈ R, x ∈ R, (1.1.4) 
where µ = µ(t) is uniformly continuous and bounded for t ∈ R and inf t∈R µ(t) > 0. Note that f (t, u) = µ(t)u(1 -u) is a typical example of KPP type nonliearity. Due to the time heterogeneity, the notion of classical travelling wave is not suitable. In order to describe the wave propagation for reaction-diusion equations in heterogeneous media, some other or generalized notions are introduced such as periodic travelling wave or pulsating wave (for periodic environment) and generalized transition front (for almost periodic and more general heterogeneous environment). Note that dierent classes of time heterogeneities may aect the dynamical behaviour. Before going to these precise results, let us recall denitions and examples for some important classes of heterogeneities. Denition 1.1.8. (i) A function h : R m → R is called periodic if there exist some positive constants L 1 , . . . , L m such that h(z) = h(z + L), where L = (L 1 , • • • , L m ).

(ii) A function g : R m → R is called almost periodic if for any sequence (z n ) n∈N ⊂ R m one can extract a subsequence (z n k ) k∈N such that g(z n k + z) converges uniformly for z ∈ R m .

(iii) A uniformly continuous and bounded function f : R m → R is called uniquely ergodic if there exists a unique invariant probability measure P on the hull

H(f ) := cl {f (• + τ ), τ ∈ R m } ,
where H(f ) is the closure of the translation set of f with respect to local uniform topology.

Example 1.1.9. Some examples are given in below:

(i) Periodic function: h(z) = sin z for z ∈ R. From the above denition, one can observe that periodic functions are almost periodic and both are uniquely ergodic. Due to the equivalent characterization of uniquely ergodic in [START_REF] Matano | Large time behavior of disturbed planar fronts in the AllenCahn equation[END_REF], one has the following property: Proposition 1.1.10. Let µ : R → R be a uniformly continuous and bouned function. If µ = µ(t) is uniquely ergodic, then the following limit exists ⟨µ⟩ = lim

T →∞ 1 T T 0 µ(τ + s)ds, uniformorly for τ ∈ R.
The quantity ⟨µ⟩ is called mean value.

There are also some functions that do not have a mean value. We show the following example which was given in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF].

Example 1.1.11. Functions without mean value.

Set t 1 := 2 and for n ∈ N,

σ n := t n + n, τ n := σ n + n, t n+1 := τ n + 2 n .
The function µ is dened by

µ(t) :=      3 if t n < t < σ n , n ∈ N, 1 if σ n < t < τ n , n ∈ N, 2 else. Note that lim t→∞ 1 t t 0 µ(s)ds = 2 and lim t→∞ inf h>0 1 t t 0 µ(h + s)ds = 1.
Therefore, µ does not admit a uniform mean value ⟨µ⟩ over (0, ∞).

Time periodic travelling wave

When µ is a periodic function with period T > 0 in (1.1.4), the classical travelling wave no longer exists and the relevant notion is time periodic travelling wave which is dened below. Denition 1.1.12. Assume that in (1.1.4) there exists T > 0 such that µ(t) = µ(t + T ) for all t ∈ R. A solution u of (1.1.4) is called time periodic travelling wave with speed

c if u(t, x) = φ(x -ct, t) and φ = φ(z, t) satises      ∂ t φ -∂ zz φ -c∂ z φ = µ(t)φ(1 -φ), ∀(z, t) ∈ R 2 , φ(-∞, t) = 1 and φ(+∞, t) = 0, ∀t ∈ R, φ(z, t) = φ(z, t + T ) and φ ≥ 0, ∀(z, t) ∈ R 2 .
This type of solution was also investigated in [START_REF] Alikakos | Periodic traveling waves and locating oscillating patterns in multidimensional domains[END_REF] for time periodic bistable equation. Another well-known notion for equation in periodic media is the pulsating wave, namely there exist T > 0 and L > 0 such that

u(t + T, x + L) = u(t, x) ∀(t, x) ∈ R 2 .
The number c := L/T can be regarded as the velocity of propagating wave front. This notion was rst introduced by Shigesada, Kawasaki and Teramoto [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF] for space periodic reaction-diusion equations. One can observe that the two notions, namely time periodic travelling wave and pulsating wave, are equivalent for (1.1.4). The following existence result of such solution in (1.1.4) can be yielded from [START_REF] Nadin | Traveling fronts in spacetime periodic media[END_REF] which studied in a more general framework of space-time periodic reaction-diusion equations.

Theorem 1.1.13 (see [START_REF] Nadin | Traveling fronts in spacetime periodic media[END_REF]). Let µ = µ(t) in (1.1.4) be a periodic function with period T . There exists a time periodic travelling wave solution with speed c in (1.1.4) if and only

if c ≥ c * := 2 1 T T 0 µ(s)ds.

Generalized transition wave

The case of time almost periodic and bistable reaction term has been investigated by Shen [START_REF] Shen | Traveling waves in time almost periodic structures governed by bistable nonlinearities: I. stability and uniqueness[END_REF][START_REF] Shen | Traveling waves in time almost periodic structures governed by bistable nonlinearities: II. existence[END_REF]. The author introduced an appropriate notion of wave which incorporated a time almost periodic speed function c = c(t).

In order to investigate more general heterogeneous (for instance uniquely ergodic coecients) equations, Berestycki and Hamel [START_REF] Berestycki | Generalized travelling waves for reaction-diusion equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF] proposed the notion of generalized transition wave. We also refer to Matano [START_REF] Matano | Traveling waves in spatially random media[END_REF] and Shen [START_REF] Shen | Traveling waves in diusive random media[END_REF] for related notions in random media. Next, we introduce the denition of generalized transition wave adapted to (1.1.4). Denition 1.1.14. A generalized transition wave connecting 1 and 0 for (1.1.4) is a solution u = u(t, x) : R 2 → [0, 1] for which there exists some interface function X : R → R

such that    lim x→-∞ u(t, x + X(t)) = 1, lim x→∞ u(t, x + X(t)) = 0,
uniformly with respect to t ∈ R.

The important point in the above denition is that the transition between 0 and 1 is well localized in space, uniformly in t. That means for a given transition wave u, for all 0 < α ≤ β < 1, the level set {x ∈ R : α ≤ u(t, x) ≤ β} has a bounded length uniformly in t ∈ R.

Next, we recall the denition of generalized travelling wave which is used in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF]. 

c = c(t) ∈ L ∞ (R) if u is a
transition wave of (1.1.4) with the interface function

X(t) = t 0 c(s)ds, ∀t ∈ R.
In this case, we dene its prole φ :

R 2 → [0, 1] by φ(t, z) = u t, z + t 0 c(s)ds , ∀(t, z) ∈ R 2 .
The prole function φ : R 2 → [0, 1] satises the following behaviours at z = ±∞:

lim z→-∞ φ(t, z) = 1 and lim z→∞ φ(t, z) = 0 uniformly for t ∈ R.
Note that this denition is nothing but a transition wave associated with a globally Lipschitz continuous interface function.

In time uniquely ergodic case, Shen [START_REF] Shen | Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations[END_REF] proved the minimal speed of generalized travelling waves in (1.1.4) by a dynamical system approach.

For (1.1.4) with more general time heterogeneities (such as the mean value does not exist), Nadin and Rossi [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF] used an average, so-called least mean, to provide a sharp estimate of the minimal speed of generalized travelling wave. Denition 1.1.16. For any given function g ∈ L ∞ (R), the quantity ⌊g⌋ is called least mean of function g if ⌊g⌋ := lim

T →∞ inf t∈R 1 T T 0 g(t + s)ds.
One can observe that if g exists mean value, then ⌊g⌋ = ⟨g⟩.

Theorem 1.1.17 ([124]). Assume that µ ∈ L ∞ (R) and inf t∈R µ(t) > 0 in (1.1.4).

(i) For all γ > 2 ⌊µ⌋, there exists a generalized travelling wave u with a speed function c such that ⌊c⌋ = γ.

(ii) There exists no generalized travelling wave with a speed c such that ⌊c⌋ < 2 ⌊µ⌋.

By the way, we point out that the wave speed function constructed in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF] has the particular form

c(t) = λ + µ(t) λ , λ ∈ (0, ⌊µ⌋).
However, there might exist some generalized travelling waves with a speed which cannot be written in this form. For instance, we refer the reader to [START_REF] Berestycki | Generalized transition waves and their properties[END_REF] for an interesting example which shows a transition front temporally connecting between two classical travelling waves with two dierent wave speeds. As well as, [START_REF] Hamel | Admissible speeds of transition fronts for nonautonomous monostable equations[END_REF] obtained the set of admissible asymptotic future and past speeds of generalized transition waves for (1.1.4) with µ(t) admitting two limits as t → ±∞.

Spreading speed results

Now we review the work of spreading property in the non-autonomous KPP equation.

Let us consider the Cauchy problem associated with (1.1.4), namely,

∂ t u = ∂ xx u + µ(t)u(1 -u), t ∈ (0, ∞), x ∈ R, u(0, x) = u 0 (x), x ∈ R. (1.1.5) 
In the time periodic case, the spreading speed in monotone systems was studied by Liang, Yi and Zhao [START_REF] Liang | Spreading speeds and traveling waves for periodic evolution systems[END_REF] by the abstract dynamical system method. Shen [START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF] investigated the spreading speed in time almost periodic and space periodic case for KPP equations. Here, we recall precisely that spreading properties in general time heterogeneities was proved by Nadin and Rossi [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF]. Theorem 1.1.18 ([124]). Assume that µ ∈ L ∞ (0, ∞) and inf t≥0 µ(t) > 0. Let the nontrivial continuous initial function 0 ≤ u 0 ≤ 1 be compactly supported. Then the solution u of (1.1.5) satises

     lim t→∞ sup |x|≥2 √ t t 0 µ(s)ds+σt u(t, x) = 0, ∀σ > 0, lim t→∞ inf |x|≤ct u(t, x) = 0, ∀c ∈ [0, 2 ⌊µ⌋ + ),
where ⌊µ⌋ + = lim We also refer the reader to Berestycki et al. [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF] for dierent methods of studying spreading speed in general heterogeneous media. In [START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF], the authors used homogenization techniques and generalized principal eigenvalues to prove the spreading speed in the framework of space-time heterogeneous equations.

There are also a lot of works considering propagation behaviour of reaction-diusion equations in spatial varying or time-space heterogeneous environments, as well as in space with obstacles. In this manuscript, we do not plan to go further in this part. We refer the reader to [START_REF] Berestycki | Generalized travelling waves for reaction-diusion equations[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF] and references cited therein for a nice survey in more general media.

Nonlocal diusion

Dispersal is a driving factor for species expanding the distribution of its population. In previous, we discuss the local diusion case, described by ∂ xx u, that is the motion governed by random work. However, some species in nature may disperse at a long distance in a short time. For example, pollen can be blown far away by wind and the spread of seeds can be aected by some animals possess caching behaviours such as some birds and squirrels. We refer the reader to [START_REF] Okubo | Diusion and ecological problems: modern perspectives[END_REF] for more biological examples about long distance diusion. To take into account this long range dispersion, the following intergro-dierential equation was introduced,

∂ t u = R J(x -y) [u(t, y) -u(t, x)] dy + f (u), for x ∈ R. (1.1.6)
Here the diusion mechanism is described by convolution operator

ϕ → R J(x -y) [ϕ(y) -ϕ(x)] dy,
the quantity J(x-y) represents the probability distribution of an individual of the species jumping from position y to position x. Hence the integral R J(x -y)u(t, y)dy shows the rate of individuals arriving at location x from other places, while the integral R J(xy)u(t, x)dy is the rate of individuals leaving from location x to other places.

The propagation phenomena in the above equation have attracted a lot of interests in the last decades. Despite its biological sense, the nonlocal diusion operator also brings some new mathematical diculties such as the dynamical system generated by (1.1.6) is noncompact.

Local diusion vs. Nonlocal diusion

We rst focus on the pure diusive cases: the linear equation with local diusion (namely heat equation),

∂ t u(t, x) = ∂ xx u(t, x), t > 0, x ∈ R, u(0, x) = u 0 (x), x ∈ R, (1.1.7)
and the linear equation with nonlocal diusion,

   ∂ t u(t, x) = R J(x -y) [u(t, y) -u(t, x)] dy, t > 0, x ∈ R, u(0, x) = u 0 (x), x ∈ R. (1.1.8)
Let us compare the two diusion mechanisms from various aspects.

• Derivation of diusion: For the local diusion case, there are two ways to introduce the notion of local diusion, see Murray [START_REF] Murray | Mathematical biology: I. An introduction[END_REF]. One way is according to Fick's law, namely, the ux of material which could be cells, amount of animals and so on, is proportional to the negative gradient of concentrations of the material. The other way is considering the random walk of the dif fusing particles. More details can be found in [START_REF] Murray | Mathematical biology: I. An introduction[END_REF].

For the derivation of nonlocal diusion model, we refer the reader to [START_REF] Hutson | The evolution of dispersal[END_REF] where used discretization and approximation. We also refer to [START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF] for deriving the theoretical forms of dispersal kernels.

• Fundamental solution: The function

Φ(t, x) = 1 √ 4πt e -|x| 2 4t , t > 0, x ∈ R,
is the fundamental solution of the heat equation. We can employ Φ to fashion a solution to Cauchy problem (1.1.7) as

u(t, x) = R Φ(t, x -y)u 0 (y)dy = 1 √ 4πt R e -|x-y| 2 4t u 0 (y)dy.
The fundamental solution of nonlocal diusion equation (1.1.8) is

Φ J (t, x) = e -t δ 0 (x) + K t (x),
where δ 0 is a Dirac function at 0 and K t = K(t, x) is a smooth function dened in Fourier variables by Kt (ξ) = e -t e t Ĵ(ξ) -1 .

Moreover the solution of (1.1.8) can be written as

u(t, x) = R Φ J (t, x -y)u 0 (y)dy.
We refer the reader to monograph [START_REF] Andreu-Vaillo | Nonlocal diusion problems[END_REF] for more details.

• Parabolic regularity: From the above fundamental solutions, one can observe the following facts instantly. The solution of heat equation (1.1.7) enjoys the parabolic regularizing eect. However, there is no parabolic regularity in nonlocal diusion equation (1.1.8). As well as, the semi-ow generated by such nonlocal diusion equation is noncompact. These dierences bring new diculties in analysis nonlocal diusion equations no matter using PDE arguments or dynamical system methods.

• Maximum principles: Both cases enjoy the maximum principles, see [START_REF] Evans | Partial dierential equations[END_REF][START_REF] Andreu-Vaillo | Nonlocal diusion problems[END_REF].

• Approximation: The heat equation (1.1.7) can be seen as an approximation of (1.1.8). Indeed if we consider the kernel function J which is compactly supported and symmetric. Let us dene J ε given by

J ε (x) := 1 ε J( x ε ), for 0 < ε ≪ 1.
Then formally we have

R J ε (x -y) [u(t, y) -u(t, x)] dy = 1 ε R J( x -y ε ) [u(t, y) -u(t, x)] dy = R J(z) [u(t, x + εz) -u(t, x)] dz = ε∂ x u(t, x) R J(z)zdz + ε 2 2 ∂ xx u(t, x) R J(z)z 2 dz + o(ε 2 ) = Cε 2 ∂ xx u(t, x) + o(ε 2 ).
In the above last equality, we use the fact that R J(z)zdz = 0 and C = 1 2 R J(z)z 2 dz < ∞. This is due to J is assumed to be symmetric and compactly supported.

• Asymptotic behaviour for nonlocal diusion equation: In [START_REF] Chasseigne | Asymptotic behavior for nonlocal diusion equations[END_REF], the authors proved that the long time behavior of the solutions to (1.1.8) is determined by the behaviour of J at innity. They showed that if the kernel function J is symmetric and decays suciently fast at innity (such as J is compactly supported or J = e -x 2 ), then the asymptotic behaviour is the same as the one for the heat equation, that is the solution u(t, x) to (1.1.8) satises:

lim t→∞ t 1 2 max x∈R |u(t, x) -v(t, x)| = 0,
where v(t, x) is the solution of heat equation with initial data u(0, x). As well as, for some kernel function J decays slowly, [START_REF] Chasseigne | Asymptotic behavior for nonlocal diusion equations[END_REF] obtained that the asymptotic behaviour is given by the nonlocal fractional Laplacian parabolic equation. The fractional power of the Laplacian is that the kernel function satises J(x -y) ∼ |x -y| -1-2s for s ∈ (0, 1).

Note that the tail of the dispersal kernel has an important eect on the dynamical behaviour of nonlocal diusion equation even for the pure diusive equations. The next denition gives the classication of kernel function according to its behaviour at innity. Denition 1.1.20. The kernel function J ∈ L 1 (R) is called thin-tailed kernel (or exponentially bounded) if there exists some constant λ 0 > 0 such that R J(y)e λ 0 |y| dy < ∞.

Otherwise, if R J(y)e λ|y| dy = ∞ for any λ > 0, then J is called fat-tailed kernel.

Some examples of such kernel functions are shown in Figure 1.6. In this manuscript, we mainly focus on the thin-tailed kernel.

Travelling wave results

Now we review the results about propagation phenomena in Fisher-KPP equations with nonlocal diusion

∂ t u = R J(x -y) [u(t, y) -u(t, x)] dy + f (u), for x ∈ R, (1.1.9)
where f satises KPP assumption (1.1.3).

The rst work about the existence of travelling waves in (1.1.9) is by Schumacher [START_REF] Schumacher | Travelling-front solutions for integro-dierential equations[END_REF]. Then Carr and Chmaj [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF] completed this work, which extended the uniqueness of travelling wave to minimal wave speed. We refer the reader to Coville et al. [START_REF] Coville | On a non-local equation arising in population dynamics[END_REF][START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF] for monostable nonlinearity, to Bates et al. [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF] for bistable case and to Liang and Zhao [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] and Yagisita [START_REF] Yagisita | Existence and nonexistence of traveling waves for a nonlocal monostable equation[END_REF] for abstract dynamical system methodology. Theorem 1.1.21 (see [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF][START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF][START_REF] Schumacher | Travelling-front solutions for integro-dierential equations[END_REF]). Assume that J is a thin-tailed kernel. There exists c * ∈ R such that for all c ≥ c * , equation (1.1.9) exists a travelling wave solution u(t, x) = φ(x -ct) with speed c and the wave prole φ satisfying

   -cφ ′ (z) = R J(y) [φ(z -y) -φ(z)] dy + f (φ(z)), for z ∈ R, φ(-∞) = 1 and φ(∞) = 0.
And such solution is unique up to translation. While there is no such solutions if c < c * . Moreover, the minimal speed c * is characterized by

c * := inf λ>0 R J(y) e λy -1 dy + f ′ (0) λ .
Note that for the nonlocal diusion KPP equation, the minimal wave speed is also linearly determined. The quantity c * can be derived similarly as the case of classical KPP equation.

Spreading speed results

Let us consider the Cauchy problem of (1.1.9) supplemented with compactly supported initial data u 0 . To describe the large time behaviour of solutions, the asymptotic speed of spread is studied in [START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF][START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF]. The result reads as follows:

Theorem 1.1.22 (see [START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF][START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF]). Assume that function J is a thin-tailed kernel. Let u(t, x) be the solution of (1.1.9) equipped with initial data u 0 . If u 0 is compactly supported, then there exist two constants c * l and c * r such that

     lim t→∞ sup x≥c 2 t, x≤c 1 t u(t, x) = 0, for c 1 < c * l or c 2 > c * r , lim t→∞ sup c 1 t≤x≤c 2 t |u(t, x) -1| = 0, for c * l < c 1 < c 2 < c * r ,
where c * l and c * r are dened by

c * r := inf λ>0 λ -1 R J(y) e λy -1 dy + f ′ (0) , c * l := sup λ<0 λ -1 R J(y) e λy -1 dy + f ′ (0) .
Remark 1.1.23. Since here the kernel function is not assumed to be symmetric, the speed propagating to the left and to the right can be dierent. Also, the speed may not be positive.

These are dierent from the local diusion KPP equation.

Note that the minimal speed of wave (propagating to right) coincides with the right spreading speed which is nite for (1.1.9) with thin-tailed nonlocal dispersal kernel.

In the case of the fat-tailed dispersal kernel in (1.1.9), the acceleration phenomena may appear and the spreading speed is innite. The rst rigorous mathematical results are due to Garnier [START_REF] Garnier | Accelerating solutions in integro-dierential equations[END_REF]. Herein, instead of stating precise results in [START_REF] Garnier | Accelerating solutions in integro-dierential equations[END_REF], we only recall the simulation in [START_REF] Garnier | Accelerating solutions in integro-dierential equations[END_REF] to show the acceleration phenomena, see Figure 1.7.

Figure 1.7: The solution u(t, x) of (1.1.9) with f (u) = u(1 -u), u 0 (x) = max{0, (1 -(x/10) 2 )} and fat-tailed kernel J(x) = (1 + |x|) -3 , see [START_REF] Garnier | Accelerating solutions in integro-dierential equations[END_REF].

We also refer the reader to some recent results about Bramson correction for nonlocal diusion KPP equations, see [START_REF] Graham | The bramson correction for integro-dierential Fisher-KPP equations[END_REF][START_REF] Roquejore | Large time behaviour in nonlocal reaction-diusion equations of the Fisher-KPP type[END_REF].

Time varying environment

As far as the propagation phenomena in time heterogeneous nonlocal diusion equations are concerned, we refer the reader to [START_REF] Jin | Seasonal inuences on population spread and persistence in streams: spreading speeds[END_REF][START_REF] Jin | Spatial dynamics of a periodic population model with dispersal[END_REF] in time periodic environment, to [START_REF] Shen | Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media[END_REF][START_REF] Shen | Regularity and stability of transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity[END_REF][START_REF] Shen | Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity[END_REF] in general time heterogeneities and references cited therein.

Again, we recall the example of long range dispersion that the pollen can be blown far away by wind. Note that the wind velocity is varying with time. Thus, in Chapter 2 of this manuscript, we consider the nonlocal diusion KPP equations with both dispersal kernel and reaction term are dependent on time,

∂ t u = R J(t, x -y) [u(t, y) -u(t, x)] dy + f (t, u), for x ∈ R.
We also refer the reader to [START_REF] Coville | Pulsating fronts for nonlocal dispersion and KPP nonlinearity[END_REF][START_REF] Liang | Spreading speeds of nonlocal KPP equations in almost periodic media[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] for nonlocal diusion equation with spatial heterogeneous reaction term, to [START_REF] Liang | Spreading speeds of nonlocal KPP equations in heterogeneous media[END_REF][START_REF] Peltier | Analyse mathématique de modèles non-locaux en écologie évolutive[END_REF] for spatial heterogeneous kernel function and references cited therein for a nice review about propagation phenomena in spatial (and time) heterogeneous nonlocal diusion equations.

Prey-predator systems

The population dynamic of species can be aected by other interacting species. The systems of equations involving two or more species are considered in mathematical biology and ecology. There are three main types of interaction: (i) The prey-predator type means that the growth rate of one population is decreased while the other one is increased; (ii) The competition type means that the growth rate of each species is decreased due to this type interaction; (iii) If the growth rate of each species is increased then it is called mutualism. In this manuscript, we only focus on the prey-predator situation.

Let us rst recall the classical Lotka-Volterra prey-predator system du dt = ru -puv, dv dt = quv -νv, (1.1.10) where u = u(t) and v = v(t) denote the density of the prey and the predator at time t, respectively. The parameters r, p, q and ν are real and positive numbers. In the rst component u-equation, the parameter r is the growth rate of the prey while the predation term puv describes the rate of predation upon the prey in the form of proportional to the rate at which the predator and the prey meet. In the predator equation, the term quv represents the growth of the predator species contributed by the prey. Note that it is proportional to the available prey as well to the size of the predator population. The parameter ν is the death rate of the predator. The term -νv in (1.1.10) leads to exponentially decay in the absence of any prey.

In the 1920s, Volterra used the simple prey-predator model (1.1.10) to explain the oscillatory levels of certain sh catches in the ocean. This model was also derived by Lotka in the theory of chemical reaction. Later, the model was extended to some more general form as:

du dt = uh(u) -Π(u)v, dv dt = µΠ(u)v -νv.
Herein, the constants µ and ν describe the conversion rate of biomass and death rate of the predator respectively. The function h : [0, ∞) → R represents the intrinsic growth rate of the prey, for example the logistic growth h(u) = r(1 -u). The function Π : [0, ∞) → R is the functional response to predator which varies with the prey density, some typical examples as:

Π(u) = qu, Π(u) = mu n b + u n with n ≥ 1, and Π(u) = m(1 -e -u ),
where q, m and b are positive numbers. The form of the functional response was developed by Holling [START_REF] Holling | Some characteristics of simple types of predation and parasitism[END_REF] who showed some saturation eect. We also refer the reader to [START_REF] Cheng | Some results on global stability of a predator-prey system[END_REF][START_REF] Oaten | Functional response and stability in predator-prey systems[END_REF][START_REF] Rosenzweig | Graphical representation and stability conditions of predator-prey interactions[END_REF] for more examples of functions h and Π.

Since the prey and the predator are spatially distributed, then the systems of reactiondiusion equations have attracted a lot of attention in the last decades. In order to understand the propagation behaviours in diusive prey-predator systems, the two important mathematical notions, namely travelling wave and spreading speed, are used to study such systems also. Next, we recall some well known results about propagation phenomena in reaction-diusion systems of prey-predator type.

Travelling wave results

The pioneering work by Dunbar [START_REF] Dunbar | Travelling wave solutions of diusive Lotka-Volterra equations[END_REF][START_REF] Dunbar | Traveling wave solutions of diusive Lotka-Volterra equations: a heteroclinic connection in R 4[END_REF] considered following diusive Lotka-Volterra system with logistic growth of the prey,

∂ t u = d∂ xx u + ru (1 -u) -puv, ∂ t v = ∂ xx v + quv -νv, (1.1.11)
where d ∈ [0, 1] is the diusion rate of the prey, the positive parameters r, p, q and ν represent the growth rate of the prey, the predation rate, the conversion rate and the death rate of the predator, respectively. As well as assume that q > ν. Note that there are three steady states in the above system: (0, 0), (1, 0) and

(u * , v * ) = ν q , r(q -ν) pq .
One can observe that (0, 0) and (1, 0) are unstable while the coexistence equilibrium (u * , v * ) is stable. [START_REF] Dunbar | Travelling wave solutions of diusive Lotka-Volterra equations[END_REF][START_REF] Dunbar | Traveling wave solutions of diusive Lotka-Volterra equations: a heteroclinic connection in R 4[END_REF] used the shooting method and LaSalle's invariance principle to study the existence of travelling wave in (1.1.11). The precise theorem reads as follows:

Theorem 1.1.24. There exists a travelling wave solution

(u, v)(t, x) = (U, V )(x -ct) satisfying (U, V )(-∞) = (u * , v * ) and (U, V )(+∞) = (1, 0) in (1.1.11) if and only if c ≥ c * := 2 √ q -ν.
We remark that the travelling wave in system (1.1.11) indicates the existence of a transition zone from a boundary equilibrium to a coexistence steady state. The wave is analogous to the travelling wave in KPP-type scalar equations. However, here the travelling wave in the prey-predator system may be non-monotone, see Figure 1.8. We also refer the reader to the pioneering work [START_REF] Gardner | Existence of travelling wave solutions of predatorprey systems via the connection index[END_REF] via connection index by Gardner and to some recent works [START_REF] Huang | Existence of traveling wave solutions in a diusive predatorprey model[END_REF][START_REF] Huang | Traveling wave solutions for a class of predatorprey systems[END_REF][START_REF] Ducrot | Large speed traveling waves for the Rosenzweig MacArthur predatorprey model with spatial diusion[END_REF], as well as the survey paper [START_REF] Li | Traveling wave solutions for diusive predatorprey type systems with nonlinear density dependence[END_REF] and the reference cited therein for the existence of travelling wave solutions in the prey-predator system with a more general functional response and for a nice review of this topic.

Spreading speed results

Let us consider the Cauchy problem of (1.1.11), namely

∂ t u = d∂ xx u + ru (1 -u) -puv, ∂ t v = ∂ xx v + quv -νv, equipped with initial data u(0, x) = u 0 (x), v(0, x) = v 0 (x).
(1.1.12)

In this part, we only assume that all parameters in (1.1.11) are positive numbers and q > ν.

One may expect that the large time behaviour of solutions to the Cauchy problem (1.1.11)-(1.1.12) is already determined by such travelling wave solutions, however, travelling wave is only a special class solution. The connection between wave solutions and the asymptotic behaviour of the Cauchy problem (1.1.11)-(1.1.12) has been rarely studied. We refer the reader to [START_REF] Gardner | Stability of travelling wave solutions of diusive predator-prey systems[END_REF] which investigated the local stability of wave solutions.

Before the recent work [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF] by Ducrot, Giletti and Matano, little has been known about the spreading speed of prey-predator systems (including (1.1.11)-(1.1.12) considered here), largely extent because of the lack of the comparison principle for such system. In [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF], the authors obtained exact spreading speeds for a large class reaction-diusion systems of prey-predator type by using some ideas from uniform persistence theory in dynamical systems. For the persistence theory, we refer the reader for instance to Hale and Waltman [START_REF] Hale | Persistence in innite-dimensional systems[END_REF], to Magal and Zhao [START_REF] Magal | Global attractors and steady states for uniformly persistent dynamical systems[END_REF] and to the monograph [START_REF] Smith | Dynamical systems and population persistence[END_REF] by Smith and Thieme.

Next, we introduce some notations and recall the precise spreading speed results for (1.1.11)-(1.1.12) which is obtained in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. Let us dene quantities c * u and c * v by

c * u := 2 √ dr and c * v := 2 √ q -ν.
One can note that c * u is the spreading speed of the prey u in the absence of predator. This is due to when v ≡ 0, the u-equation in (1.1.11) becomes a KPP equation

∂ t u = d∂ xx u + ru (1 -u) .
On the other hand, when the prey is abundant, namely u ≡ 1, the function v satises

∂ t v = ∂ xx v + (q -ν) v.
Then one can use the same argument as in [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF] to show that c * v is the spreading speed of the above equation equipped with compactly supported initial data. Here the only dierence is that the solution may not converge to a stationary state after propagation but grow unbounded.

In [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF], the authors considered the prey and the predator can co-invade an empty space. Their rst theorem showed that if the predator invades the empty environment slower than the prey, then the propagation occurs in two separate steps involving an intermediate equilibrium (namely u = 1, v = 0) in the middle zone, see Figure 1.9.

Theorem 1.1.25 ([55]). Let u 0 and v 0 be two given bounded and continuous functions in R with compact support, and 0 ̸ ≡≤ The following second main result in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF] showed that if the predator invades the empty environment faster than the prey, then the predator's population could grow fast enough to overtake the prey. One can note that the system spreading speed is c * u , which means that the prey and the predator invade the empty space almost simultaneously, see Figure 1.10.

u 0 ≤ 1, 0 ̸ ≡≤ v 0 . Let (u, v) = (u(t, x), v(t, x)) be the solution of (1.1.11) with initial data (u 0 , v 0 ). If c * u > c * v ,
Theorem 1.1.26 ([55]). Let u 0 and v 0 be two given bounded and continuous functions in R with compact support, and 0 ̸ ≡≤ The similar idea in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF] was also extended to study the spreading speed for preypredator systems in a shift environment in [START_REF] Choi | Persistence of species in a predator-prey system with climate change and either nonlocal or local dispersal[END_REF] and to investigate the propagation behaviour arising in the interaction between two predators and one prey, see [START_REF] Ducrot | Asymptotic spreading speeds for a predatorprey system with two predators and one prey[END_REF]. We also refer the reader to [START_REF] Chen | Spreading speed in a farmers and hunter-gatherers model arising from Neolithic transition in Europe[END_REF][START_REF] Ducrot | Convergence to generalized transition waves for some HollingTanner prey predator reactiondiusion system[END_REF][START_REF] Ducrot | Spatial propagation for a two component reactiondiusion system arising in population dynamics[END_REF][START_REF] Lin | Spreading speeds of a LotkaVolterra predatorprey system: the role of the predator[END_REF] for studying large time behaviour of solutions in other types prey-predator systems.

u 0 ≤ 1, 0 ̸ ≡≤ v 0 . Let (u, v) = (u(t, x), v(t, x)) be the solution of (1.1.11) with initial data (u 0 , v 0 ). If c * u ≤ c * v ,

Time heterogeneous systems

As shown before, there are many biotic and abiotic factors that vary with time. These aect the species a lot. In the case of interactive species, it is also necessary to include time variations in modeling such as the predation rate and conversion rate of biomass may depend on time, see [START_REF] Butler | Periodic solutions of a predator-prey system with periodic coecients[END_REF][START_REF] Cushing | Periodic time-dependent predator-prey systems[END_REF][START_REF] Gatica | Predator-prey models with almost periodic coecients[END_REF] for the non-autonomous prey-predator system of ordinary dierential equations. We refer the reader to [START_REF] Bo | Traveling wave solutions for time periodic reaction-diusion systems[END_REF][START_REF] Wang | Traveling waves for a periodic LotkaVolterra predatorprey system[END_REF][START_REF] Zhao | Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic LotkaVolterra competition system with diusion[END_REF][START_REF] Zhao | Time periodic traveling wave solutions for periodic advection reactiondiusion systems[END_REF] for travelling wave in time-periodic reaction-diusion systems and to recent paper [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF] for generalized travelling wave in non-autonomous prey-predator systems.

For the spreading speed results in non-autonomous monotone systems, we refer to [START_REF] Fang | Traveling waves and spreading speeds for timespace periodic monotone systems[END_REF][START_REF] Liang | Spreading speeds and traveling waves for periodic evolution systems[END_REF] in periodic media and to [START_REF] Bao | Spreading speeds and linear determinacy of time dependent diusive cooperative/competitive systems[END_REF] for the almost periodic case. It seems that there are only partial results about spreading speed for time periodic prey-predator systems, see [START_REF] Wang | Asymptotic spreading for a time-periodic predator-prey system[END_REF] for some estimates about spreading speed.

To the best of our knowledge, the spreading behaviours of prey-predator systems with time heterogeneity might remain unknown at least theoretically. Thus, we study the spreading speed for reaction-diusion systems of prey-predator type with general time heterogeneities in Chapter 4. As well as, we provide a dierent method compared with [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF].

Discrete equations

In the above, we have recalled propagation results for reaction-diusion equations in continuous time and space variables which show spatio-temporal dynamic behaviour of solutions in an unbounded domain. There are also large classes of models in which the time and space variables are allowed to be discrete.

The dierence equations (that is discrete in time variable) rose to fame since in 1975, May [START_REF] May | Biological populations obeying dierence equations: stable points, stable cycles, and chaos[END_REF] discovered that the complex and chaotic dynamic behavior could be generated by simple density-dependent growth functions. The dierence equations sometimes are easier to formulate and simulate. The celebrated work which investigates asymptotic properties for discrete-generation population dynamic models with dispersal in continuous space or discrete space was given by Weinberger [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF]. We refer to monograph [START_REF] Lutscher | Integrodierence Equations in Spatial Ecology[END_REF] for studying integrodierence equations (where discrete in time variable and continuous in space variable) and its application in ecology. For dynamical models where time and space are discrete, known as coupled map lattices, we refer the reader to [START_REF] De Camino-Beck | Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile[END_REF] and references cited therein.

In this manuscript, we mainly focus on the lattice dierential equations, sometimes known as patch models, which is with continuous time variable and discrete space variable. On one hand, the lattice dierential equations arise in several dierent contexts, for instance modeling species grow over patchy environment, we refer the reader to [START_REF] Bell | Threshold behavior and propagation for nonlinear dierentialdierence systems motivated by modeling myelinated axons[END_REF][START_REF] Keener | Propagation and its failure in coupled systems of discrete excitable cells[END_REF] and to [START_REF] Deangelis | Positive feedback in natural systems[END_REF] for a list of ecological scenarios with patchy environments. As well as, such lattice equations can be used to describe phase transition, see [START_REF] Bates | A discrete convolution model for phase transitions[END_REF]. On the other hand, lattice equations are the discretization of the dierential equations in which the spatial variable are continuous.

Let us rst recall some propagation results for the following Fisher-KPP equation on lattice,

du(t, i) dt = u(t, i + 1) -2u(t, i) + u(t, i -1) + f (u(t, i)), i ∈ Z, (1.1.13)
where f ∈ C 1 ([0, 1]) satises KPP conditions. In fact, it is an innite system of ordinary dierential equation indexed by points in a lattice Z. As well as, it is a discrete version of (1.1.2). The propagation phenomena in lattice single equations and systems have attracted a lot of interest. In [START_REF] Zinner | Traveling wavefronts for the discrete Fisher's equation[END_REF], the authors proved the following theorem. Recently, the Bramson correction for lattice equation (1.1.13) has been proved by the paper [START_REF] Besse | The logarithmic Bramson correction for Fisher-KPP equations on the lattice Z[END_REF].

The spatial motion of individuals may have dierent form with (1.1.13). Some general diusion is modeled by a discrete convolution operator. There are some propagation results in [START_REF] Bates | A discrete convolution model for phase transitions[END_REF][START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF] for lattice dierential equations with nonlocal diusion as follows:

du(t, i) dt = ∞ j=-∞ J(i -j)[u(t, j) -u(t, i)] + f (u(t, i)), i ∈ Z.
We also refer to [START_REF] Chen | Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations[END_REF][START_REF] Chen | Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics[END_REF][START_REF] Fang | Spreading speeds and travelling waves for non-monotone time-delayed lattice equations[END_REF][START_REF] Ma | Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice dierential equation[END_REF] for existence, nonexistence and uniqueness of travelling waves and spreading speed in other forms lattice dierential equations. As we discussed in the previous subsections for space continuous variable, time heterogeneity is an important factor in biological modeling and mathematical structure. The generalized transition fronts and spreading speeds for lattice KPP equations in time varying environments are investigated in [START_REF] Shen | Spreading and generalized propagating speeds of discrete KPP models in time varying environments[END_REF][START_REF] Cao | Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media[END_REF][START_REF] Wang | Generalized spreading speeds for lattice dierential equations with time and space dependence[END_REF][START_REF] Wang | Transition waves for lattice Fisher-KPP equations with time and space dependence[END_REF]. We also mention some works devoted to understanding spreading phenomena in spatially heterogeneous lattice equations, see [START_REF] Guo | Front propagation for discrete periodic monostable equations[END_REF][START_REF] Liang | Spreading speeds of KPP-type lattice systems in heterogeneous media[END_REF] and references cited therein.

It is also necessary to consider the system of lattice equations since species living in patchy environment may interact. For the existence of travelling fronts in lattice systems, we refer to [START_REF] Guo | The minimal speed of traveling fronts for the LotkaVolterra competition system[END_REF][START_REF] Guo | Traveling wave front for a two-component lattice dynamical system arising in competition models[END_REF] in monotone systems and to [START_REF] Chen | Traveling waves for a lattice dynamical system arising in a diusive endemic model[END_REF] for an endemic model. However, it seems that there are few results about the spreading speeds in lattice systems, especially of the prey-predator type, not to mention with general time heterogeneities. Thus, in Chapter 5, we will investigate spreading speeds of the non-autonomous prey-predator system in a lattice where the diusion is described by a discrete convolution operator with time dependent kernel.

Our results

In this section, we state some important results obtained in this thesis. We focus on the propagation phenomena in non-autonomous equations and systems. General time heterogeneity is a common feature of my works. Before stating the precise results, let us introduce some notions related to time averaging. These notions, so called least mean, upper mean and mean value, will be used often throughout this thesis. Some of them have already been introduced in the previous section. Note that these notions are successfully used to study propagation phenomena in non-autonomous reaction-diusion equations, see [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF][START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF], (also refer to [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF] for systems). The least mean and upper mean value enjoy the following property.

Proposition 1.2.2 (see [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF]). For each function g ∈ L ∞ (R), the least mean ⌊g⌋ satises ⌊g⌋ = lim

T →+∞ inf t∈R 1 T T 0 g(t + s)ds = sup A∈W 1,∞ (R) inf t∈R (A ′ + g)(t),
while the upper mean ⌈g⌉ satises ⌈g⌉ = lim

T →+∞ sup t∈R 1 T T 0 g(t + s)ds = inf A∈W 1,∞ (R) sup t∈R (A ′ + g)(t).
The next notion is about mean value. The similar property as Proposition 1.2.2 also holds true for ⌊h⌋ and ⌈h⌉.

As noticed in Proposition 1.1.10, mean value exists for a large class functions such as periodic, almost periodic and uniquely ergodic functions.

In our works, nonlocal diusion is also a key factor. The focus of this manuscript is on exponentially bounded kernel functions. We give the denition of abscissa of convergence below. Denition 1.2.5. Let (X, ∥ • ∥ X ) be a Banach space. For f ∈ L 1 (R; X) and g ∈ l 1 (Z; X), we dene quantities σ(f ) and abs(g) which are called the abscissa of convergence of f and g respectively, as follows

σ(f ) = sup λ ≥ 0 : the improper integral ∞ -∞
e λs f (s)ds converges in X , and respectively abs(g) = sup λ ≥ 0 : the series ∞ j=-∞ e λj f (j) converges in X . [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF].

Problem

We investigate the existence and nonexistence of the generalized travelling wave solutions for the following non-autonomous nonlocal diusion equation

∂ t u(t, x) = R K(t, y) [u(t, x -y) -u(t, x)] dy + F t, u(t, x) , (t, x) ∈ R × R. (1.2.15)
Here K = K(t, y) denotes a nonnegative time dependent and exponentially bounded dispersal kernel function while the nonlinear term F = F (t, u) is of Fisher-KPP type with

F (t, 0) = F (t, 1) = 0, ∀t ∈ R.
This equation typically models the spatio-temporal evolution of an invading population into some empty environment. Here the individual exhibits a long distance dispersion according to the kernel K, in other words, the quantity K(t, x -y) corresponds to the probability of jumping from y to x at time t; while the local population dynamics (birth and death processes) is described by the time varying Fisher-KPP nonlinearity F .

Assumptions Assumption 1.2.6 (Kernel K = K(t, y)). The kernel K : R × R → [0, ∞) satises the following set of assumptions:

(i) The function K is measurable, nonnegative and K(•, y) ∈ L ∞ + (R) for almost every y ∈ R;

(ii) The map K : y → K(•, y) satises K ∈ L 1 (R; L ∞ (R));
(iii) The abscissa of convergence satises σ( K) > 0.

In the following, for notational simplicity, we use σ(K) instead of σ K .

For instance K(t, y) = exp {-y 2 /(1 + t 2 )} satises Assumption 1.2.6. Next, we turn to our KPP assumptions for the nonlinear function F = F (t, u). Assumption 1.2.7 (KPP nonlinearity). We assume that the function F takes the form F (t, u) = uf (t, u) where the function f : R × [0, 1] → R satises the following set of hypotheses: Remark 1.2.8. In the above set of hypotheses, a typical example is F (t, u) = u(1 -u).

(f1) Assume that f (•, u) ∈ L ∞ (R) for all u ∈ [0, 1
We have assumed, for simplicity, that f (t, 0) ≡ 1. This assumption can be relaxed by using a change of variable in time to take into account more general KPP nonlinearity function 

F (t, u) = uf (t, u) such that f (t, 1) ≡ 0 and f (•, 0) = µ ∈ L ∞ (R) with inf t∈R µ(t) > 0. Indeed, if u = u(t,
∂ τ û(τ, x) = R K(τ, y) [û(τ, x -y) -û(τ, x)] dy + û(τ, x) f (τ, û(τ, x)),
wherein we have set

K(τ, y) = K(t, y) µ(t) , f (τ, û) = f (t, û) µ(t) .
Hence F (τ, u) = u f (τ, u) becomes a KPP nonlinearity with f (τ, 0) ≡ 1, while K satises Assumption 1.2.6 with σ(K) = σ( K).

Now, for the reader convenience, we recall again the denition of generalized travelling wave which was used in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF]. Denition 1.2.9. A continuous function u = u(t, x) : R 2 → [0, 1] is said to be a generalized travelling wave of (1.2.15) with the wave speed function c = c(t) ∈ L ∞ (R) if u(t, x), solution to (1.2.15), can rewrite as

u(t, x) = ϕ t, x - t 0 c(s)ds , ∀(t, x) ∈ R 2 ,
and the prole function ϕ : R 2 → [0, 1] satises the following behaviours at z = ±∞:

lim z→-∞ ϕ(t, z) = 1 and lim z→+∞ ϕ(t, z) = 0 uniformly for t ∈ R.
Recall that generalized travelling waves are nothing but generalized transition waves (see Denition 1.1.14) associated to a globally Lipschitz continuous interface function X(t) = t 0 c(s)ds. Let us also notice that when the prole ϕ of a generalized travelling wave u = u(t, x) with a speed function c = c(t) is rather smooth in space and time, say locally Lipschitz continuous, then it satises the following equation for almost every (t, z) ∈ R 2 : For some a ∈ W 1,∞ (R), ansatz φ(t, z) = e -λ(z+a(t)) into above linear equation, we obtain that

∂ t ϕ(t, z) = c(t)∂ z ϕ(t, z) + R K(t, y) [ϕ(t, z -y) -ϕ(t, z)] dy + F (t,
c(t) = λ -1 R K(t, y)[e λy -1]dy + 1 + a ′ (t).
Now for each λ ∈ (0, σ(K)) and a ∈ W 1,∞ (R), for t ∈ R, let us introduce 

c(λ)(t) := λ -1 R K(t,
⌊c λ,a (•)⌋ = ⌊c(λ)(•)⌋.
In order to dene the critical speed, we consider the set

Λ = {λ ∈ (0, σ(K)) : ∃λ ′ ∈ (λ, σ(K)), ∀k ∈ (λ, λ ′ ], ⌊c(λ) -c(k)⌋ > 0} .
We can show the following property of speed function.

Proposition 1.2.10. There exists λ * ∈ (0, σ(K)] such that Λ = (0, λ * ) and λ → ⌊c(λ)⌋ is decreasing on Λ. Moreover, one has c(λ) is of class C 1 from (0, σ(K)) to L ∞ (R) and dc(λ) dλ > 0, ∀λ ∈ (0, λ * ) and -dc(λ * ) dλ = 0 if λ * < σ(K).

Next we introduce the admissible speed function set. In this work, we give some estimates for the admissible speed function set C . In addition, under suitable assumptions on time varying coecients, we can derive a sharp estimate for the addmissible speed set.

Existence of generalized travelling waves

Using above notations, our rst theorem ensures the existence of generalized travelling waves for problem (1.2.15) with the speed function c λ,a , for each λ ∈ (0, λ * ) and a ∈ W 1,∞ (R).

Theorem 1.2.12 (Existence). Let Assumption 1.2.6 and 1.2.7 be satised. Recalling that λ * is dened in Proposition 1.2.10, for each λ ∈ (0, λ * ) and each a ∈ W 1,∞ (R), problem (1.2.15) possesses a generalized travelling wave with the speed function c λ,a ∈ L ∞ (R), dened in (1.2.20). Furthermore, these travelling wave proles are globally Lipschitz continuous on R 2 .

In other words, the above theorem ensures that t → c λ,a (t), λ ∈ (0, λ * ) and a ∈ W Let us rst construct super-solution and sub-solution of (1.2.16) with the speed function c(t) = c λ,a (t) where λ ∈ (0, λ * ) and a ∈ W 1,∞ (R) are given. Set for (t, z) ∈ R 2 , ϕ(t, z) = min 1, e -λ(z+a(t)) .

By direct computation and the assumption F (t, ϕ) ≤ ϕ, one has ϕ is a super-solution of (1.2.16). For the same xed λ and a, for some b ∈ W 1,∞ (R) and k > 0 suciently small, for (t, z) ∈ R 2 , we dene ϕ(t, z) := max{0, φ(t, z)} with φ(t, z) = e -λ(z+a(t)) -e -λa(t)+b(t) e -(λ+k)z .

From Proposition 1.2.10, one can choose some k > 0 small enough such that ⌊c λ,a -c λ+k,a ⌋ > 0.

Combined with the above inequality and the property of least mean, we can verify that ϕ is a sub-solution of (1.2.16).

Next, we consider the following initial value problem, posed in t ≥ -n and z ∈ R,

   ∂ t ϕ = c λ,a (t)∂ z ϕ(t, z) + R K(t, y) [ϕ(t, z -y) -ϕ(t, z)] dy + F (t, ϕ), ϕ(-n, z) = ϕ(-n, z). (1.2.22)
We denote ϕ n = ϕ n (t, z) to be the solution of the above equation and dene the function

u n = u n (t, z) by u n (t, z) = ϕ n t, z - t 0 c λ,a (s)ds .
One may observe that the function u n (t, z) satises the following equation without the drift term c λ,a (t)∂ z , c λ,a (s)ds) is nonincreasing in R, then the function z → u n (t, z) is also nonincreasing with respect to z ∈ R for each given t ≥ -n.

       ∂ t u(t, z) = R K(t, y) [u(t, z -y) -u(t, z)] dy + F (t, u), t ≥ -n, z ∈ R, u(-n, z) = ϕ -n, z - -n 0 c λ,a (s)ds , z ∈ R. ( 1 
In order to pass to the limit n → ∞, let us observe that u n is a Lipschitz continuous function for (t, z) ∈ [-n, ∞) × R. Due to (1.2.23) and 0 ≤ u n ≤ 1, one can note that

∥∂ t u n ∥ ∞ ≤ 2 R ∥K(•, y)∥ ∞ dy + 1, ∀n ≥ 1.
Then let us show that

|u n (t, z + h) -u n (t, z)| ≤ min 1, e m|h| -1 , ∀t ≥ -n, ∀z ∈ R, ∀n ≥ 1.
(1.2.24)

Indeed, for h > 0, there exists some m > λ such that

e -mh ≤ u n (-n, z + h) u n (-n, z) ≤ 1, ∀n ≥ 1.
We can verify that v h (t, z) := e mh u n (t, z + h) is the super-solution of (1.2.23). The comparison principle applies and ensures that

u n (t, z) ≤ e mh u n (t, z + h), ∀(t, z) ∈ [-n, ∞) × R.
Due to z → u n (t, z) is nonincreasing for all t ≥ -n, one observes that

|u n (t, z + h) -u n (t, z)| = u n (t, z) -u n (t, z + h) ≤ e mh -1.
The case of h < 0 can be proved similarly. Hence, we obtain the estimate (1.2.24). Next, Arzelà-Ascoli theorem ensures that there exists a subsequence of {u n }, still denoted with the same indexes, and a globally Lipschitz continuous function u = u(t, z) : R 2 → R such that u n (t, z) → u(t, z) as n → ∞, locally uniformly for (t, z) ∈ R 2 . This also allows us to dene the Lipschitz continuous function ϕ = ϕ(t, z) by

ϕ(t, z) = u t, z + t 0 c λ,a (s)ds , ∀(t, z) ∈ R 2 .
Lastly, we show that lim z→-∞ ϕ(t, z) = 1 and lim z→∞ ϕ(t, z) = 0 uniformly for t ∈ R.

The limit at z = ∞ can be obtained from the super-solution e -λ(z+a(t)) . The behaviour of ϕ as z → -∞ can be shown by a contradiction argument. We assume that there exists a sequence (t n , z n ) n such that

lim n→∞ u t n , z n + tn 0 c λ,a (s)ds = Θ, with 0 < Θ < 1.
Let us consider the time-space shift function

u n (t, z) := u t + t n , z + z n + tn 0 c λ,a (s)ds .
One can observe that

u n (t, z) → u ∞ (t, z) as n → ∞ locally uniformly for (t, z) ∈ R 2 ,
and u ∞ (0, 0) = Θ.

Next we derive the equation satised by u ∞ . Then for this equation, one can construct a suitable sub-solution to obtain that Θ = 1. This is a contradiction. So the limit behaviour is obtained.

Nonexistence of generalized travelling wave

Our next result provides further properties for the admissible speed set C . This result reads as follows.

Theorem 1.2.13 (Wave speed lower estimate). Let Assumption 1.2.6 and 1.2.7 be satised. Dene for λ ∈ (0, σ(K))

the function t → c(λ)(t) ∈ L ∞ (R) given by c(λ)(t) := ∞ -∞ zK(t, z)e λz dz,
Then for any c ∈ C the following estimate holds

⌈c(λ)(•) -c(•)⌉ ≤ 0, ∀λ ∈ (0, λ * ) . (1.2.25) 
As a consequence one also has

sup λ∈(0,λ * ) ⌊c(λ)⌋ ≤ inf ⌊C ⌋ .
As a corollary of the above theorem, we can derive some conditions ensuring that the estimate of ⌊C ⌋ provided in (1.2.21) is sharp. This is somehow an extension of the well known results for the travelling waves of the Fisher-KPP equation either local or nonlocal diusion, for which we refer to [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] and [START_REF] Coville | On a non-local equation arising in population dynamics[END_REF][START_REF] Schumacher | Travelling-front solutions for integro-dierential equations[END_REF]. Corollary 1.2.14. Under the same assumptions as in Theorem 1.2.13, assume that λ * < σ(K) and that ⌈c(λ

* )(•) -c(λ * )(•)⌉ ≤ 0. (1.2.26)
Then ⌊C ⌋ is an unbounded interval with

inf ⌊C ⌋ = ⌊c(λ * )(•)⌋ .
Within the framework of the above corollary and due to (1.2.21), one obtains that the set ⌊C ⌋ is given by

either (⌊c(λ * )(•)⌋ , ∞) or [⌊c(λ * )(•)⌋ , ∞) .
By analogy with the usual Fisher-KPP equation, we suspect that ⌊C ⌋ coincides with the closed interval. However we are not able to prove it for the moment. In other words, we cannot prove that c λ * ,a is an admissible wave speed function, for some a ∈ W 1,∞ (R).

Let us comment on the additional conditions λ * < σ(K) and (1.2.26).

Remark 1.2.15. The rst condition λ * < σ(K) holds if we assume that lim sup

λ→σ(K) - 1 λ ⌊L(λ)⌋ = ∞.
By combining the decreasing property of the map λ → ⌊c(λ)⌋ on (0, λ * ) and ⌊c(λ)(•)⌋ → ∞ as λ → 0 + , one can observe that λ * < σ(K).

For the condition (1.2.26), let us observe that

-λ dc(λ) dλ = c(λ) -c(λ), ∀λ ∈ (0, σ(K)).
Recalling the property that

- dc(λ * ) dλ = 0 if λ * < σ(K), one can observe that condition (1.2.26) is equivalent to the function c(λ * )(•) -c(λ * )(•) exists a mean value, that is ⌊c(λ * )(•) -c(λ * )(•)⌋ = ⌈c(λ * )(•) -c(λ * )(•)⌉ = 0.
Condition Then for R > 0 and B > 0 large enough, for some θ > 0 suciently small, we show that u R,B (t, x) satises following equation for all x ∈ [-R, R] and t ∈ R,

(∂ t -c R,B (γ)(t)∂ x ) u R,B (t, x) ≤ R K(t, x-y)[u R,B (t, y)-u R,B (t, x)]dy +(1 -θ) u R,B (t, x).
Recall that u = u(t, x) denotes a generalized travelling wave of (1.2.15) with speed function c = c(t) ∈ C while ϕ = ϕ(t, z) denotes its wave prole. Next, we introduce the parameter τ ∈ R and dene

u(t, x; τ ) := ϕ t -τ, x - t 0 c(l -τ )dl , ∀t ∈ R, x ∈ R, τ ∈ R.
It satises the equation

∂ t u(t, x; τ ) = R K(t -τ, y)[u(t, x -y; τ ) -u(t, x; τ )]dy + F (t -τ, u).
For some η > 0 small enough, the comparison principle in a moving domain applies and ensures that ηu R,B t -τ, x -

t 0 c R,B (γ)(s -τ )ds ≤ u(t, x; τ ),
for all t ≥ 0, τ ∈ R and x ∈ R. This rewrites as

0 < ηu R,B (t -τ, 0) ≤ ϕ t -τ, t 0 [c R,B (γ)(l -τ ) -c(l -τ )] dl , ∀t ≥ 0, τ ∈ R.
Lastly, recalling that the limit behaviour

lim z→∞ ϕ(t, z) = 0, uniformly for t ∈ R, we can derive that ⌈c R,B (γ)(•) -c(•)⌉ ≤ 0.
Letting R, B → ∞ in above inequality, we obtain the estimate (1.2.25). From the denition of least mean and upper mean, we can complete the proof of Theorem 1.2.13.

Summary of Chapter 3: Spreading properties for nonautonomous Fisher-KPP equations with nonlocal diusion

This joint work with Arnaud Ducrot has been submitted, see [START_REF] Ducrot | Spreading properties for non-autonomous Fisher-KPP equations with nonlocal diusion[END_REF].

Problem

We consider the following non-autonomous Fisher-KPP equation with nonlocal diusion

∂ t u(t, x) = R K(y) [u(t, x -y) -u(t, x)] dy + F (t, u), ∀t ≥ 0, x ∈ R, (1.2.27) 
which is equipped with initial data u 0 . Here the function K is a thin-tailed kernel. We investigate spreading properties for solutions of (1.2.27) equipped with fast exponential decaying and slow exponential decaying initial data respectively. For a better exposition, let us rst use the following non-autonomous Logistic equation to illustrate our ideas. We consider

∂ t u(t, x) = R K(y) [u(t, x -y) -u(t, x)] dy + µ(t)u(1 -u),
(1.2.28) posed for time t ≥ 0 and x ∈ R. This evolution problem is supplemented with initial data u(0, x) = u 0 (x).

Assumptions

Now we present the main assumptions that shall be used in this work.

Assumption 1.2.16. We assume that the kernel K : R → [0, ∞) satises the following set of assumptions:

(i) The function y → K(y) is non-negative, continuous and integrable;

(ii) The abscissa of convergence of K enjoys σ(K) > 0;

(iii) Assume that K(0) > 0.

We assume that µ satises following assumption. 

Linear speed

Ansatz the function exp -λ x -t 0 c(λ)(s)ds into the linearized equation of (1.2.28) at u = 0, one obtains that 

λc(λ)(t) = R K(y)[e λy -1]dy + µ(t), ∀t ≥ 0. For λ ∈ (0, σ(K)), a ∈ W 1,∞ (0, ∞) and t ≥ 0, we set c(λ)(t) := λ -1 R K(y)[e
(i) The map λ → ⌊c(λ)(•)⌋ from (0, σ(K)) to R is of class C 1 . (ii) Set c * r := inf λ∈(0,σ(K)) ⌊c(λ)(•)⌋. There exists λ * r ∈ (0, σ(K)] such that lim λ→(λ * r ) -⌊c(λ)(•)⌋ = c * r .
The map λ → ⌊c(λ)(•)⌋ is decreasing on (0, λ * r ).

(iii) One has c * r > 0.

(iv) Assume that λ * r < σ(K). One has

c * r = R K(y)e λ * r y ydy. (1.2.30)
Let us rst observe that c * r > 0. Indeed, from assumption ⌊µ⌋ > K and Proposition 1.2.2, one can choose some function a ∈ W 1,∞ (0, ∞) such that µ(t) -K + a ′ (t) ≥ 0 for all t ≥ 0. Recall that for λ ∈ (0, σ(K)), λc(λ)(t) = R K(y)e λy dy + µ(t) -K, ∀t ≥ 0.

Since K(0) > 0, then for all λ ∈ (0, σ(K)) and t ≥ 0, one has

λc(λ)(t) + a ′ (t) = R K(y)e λy dy + µ(t) -K + a ′ (t) ≥ R K(y)e λy dy > 0,
Thus we obtain that c * r > 0. Since

⌊c(λ)⌋ = λ -1 R K(y)[e λy -1]dy + ⌊µ⌋ ,
and the function λ → λ⌊c(λ)⌋ is convex, then one can prove the other results in the above proposition.

As we discussed in Remark 1.2.15, one can assume that λ * r is dierent from the convergence abscissa of K.

Assumption 1.2.20. Assume that λ * r < σ(K).

Upper bound for the propagating set to the right Theorem 1.2.21. Let Assumption 1.2.16, 1.2.17 and 1.2.20 be satised. Let u = u(t, x) denote the solution of (1.2.28) equipped with a continuous initial data u 0 , with 0 ≤ u 0 (•) ≤ 1 and u 0 (•) ̸ ≡ 0. The following upper bound for the propagating set holds: if u 0 (x) = O(e -λx ) as x → ∞ for some λ > 0, then one has lim t→∞ sup

x≥ t 0 c + (λ)(s)ds+ηt u(t, x) = 0, ∀η > 0,
where the function c

+ (λ)(•) is dened by c + (λ)(•) := c(λ * r )(•) if λ ≥ λ * r , c(λ)(•) if λ ∈ (0, λ * r ).
In order to prove this theorem, it is suciently to construct suitable super-solutions and apply the comparison principle. Note that the decay rate of initial data has inuences on the spreading speed. If u 0 (x) = O(e -λx ) as x → ∞ for some λ ≥ λ * r , we construct the super-solution as

u 1 (t, x) := Ae -λ * r (x-t 0 c(λ * r )(s)ds) .
If u 0 (x) = O(e -λx ) as x → ∞ for some λ ∈ (0, λ * r ), we dene u 2 (t, x) := Ae -λ(x-t 0 c(λ)(s)ds) .

Let A > 0 be given large enough such that u 1 (0, •) ≥ u 0 (•) and u 2 (0, •) ≥ u 0 (•). Applying comparison principle, we can prove the above theorem.

Lower bound for the propagating set to the right Theorem 1. 

β satises ⌊c + (λ)⌋ < β < lim inf t→∞ 1 t t 0 c + (λ)(s)ds,
This open problem is similar to the Fisher-KPP equation with local diusion [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF].

Remark 1.2.24. In the above results, we only consider the propagation to the right-hand side of the real line. This is intentional, for the sake of brevity and clarity. To study the propagation of the left-hand side, it is suciently to change x to -x. As a consequence, one can obtain the spreading speed for equation supplemented with the initial data which has dierent tails on the left and right-hand side.

Note also that the kernel is not assumed to be symmetric, so that the minimal spreading speeds on the right and the left can be dierent even if the initial data with the same decay rate on the left and right-hand sides.

Next we state the scheme of proof Theorem 1.2.22. In this work, we provide a new point of view to study the spreading speed of nonlocal diusion problems. It is dierent from the well developed monotone semi-ow method, refer to [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Jin | Spatial dynamics of a periodic population model with dispersal[END_REF][START_REF] Liang | Spreading speeds and traveling waves for periodic evolution systems[END_REF][START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF]. Roughly speaking, we rst prove a persistence lemma for uniformly continuous solutions. This key lemma ensures that if the uniformly continuous solution u = u(t, x) admits a propagating path t → X(t), then [0, kX(t)] with any k ∈ (0, 1) is a propagating interval, that is u stays uniformly far from 0 on this interval, in the large time. By applying this key lemma, we obtain a lower estimate of spreading speed.

We also apply this idea to obtain the spreading speed for non-autonomous KPP equations with nonlocal diusion in a lattice, see Chapter 5 for some details.

As mentioned previously, it is not easy to obtain that the uniform continuity of solution to nonlocal diusion equations. Note that in [START_REF] Li | Entire solutions in the Fisher-KPP equation with nonlocal dispersal[END_REF], the authors showed that when the nonlinear term satises F u (u) < K for any u ≥ 0, where K = R K(y)dy, then the solutions of the homogeneous problem inherit the Lipschitz continuity property from their initial data. Here we require ⌊µ⌋ > K. The above condition fails. We show the regularity of solutions to Logistic equation (1.2.28) supplemented with suitable initial data.

A key persistence lemma To show the persistence lemma, let us introduce some notations. Denition 1.2.25 (Limit orbits set). Let u = u(t, x) be a uniformly continuous function on [0, ∞) × R into [0, 1], which is a solution to (1.2.28). We dene ω(u), the set of the limit orbits, as: the function ũ ∈ ω(u) if there exist sequences (x n ) n ⊂ R and

(t n ) n ⊂ [0, ∞) such that t n → ∞ as n → ∞ and u(t + t n , x + x n ) → ũ(t, x), as n → ∞, locally unifomrly for (t, x) ∈ R 2 .
Observe that if u is bounded and uniformly continuous on [0, ∞) × R, then Arzelà-Ascoli theorem ensures that ω(u) is not empty. Indeed, for each sequence

(t n ) n with t n → ∞ and (x n ) n ⊂ R, the sequence of function (t, x) → u(t + t n , x + x n ) is equi-
continuous and thus has a converging subsequence with respect to the local uniform topology.

From the strong maximum principle, we can claim that the set ω(u) enjoys the following property: Claim 1.2.26. Let ũ ∈ ω(u) be given, then one has:

Either ũ(t, x) > 0 for all (t, x) ∈ R 2 or ũ(t, x) ≡ 0 on R 2 .
With the above notations, now we state our persistence lemma. Lemma 1.2.27 (Uniform persistence lemma). Let Assumption 1.2.16 (i) and (iii), Assumption 1.2.17 be satised.

Let u = u(t, x) : [0, ∞)×R → [0, 1] be a uniformly continuous solution of (1.2.28). Let t → X(t) from [0, ∞) to [0, ∞) be a given continuous function.
Assume that the following set of hypothesis holds, (H1) Assume that lim inf t→∞ u(t, 0) > 0;

(H2) There exists ε0 > 0 such that

lim inf t→∞ ũ(t, 0) > ε0 , ∀ũ ∈ ω(u) \ {0} ; (H3) The map t → X(t) is a propagating path for u, in the sense that lim inf t→∞ u(t, X(t)) > 0.
Then for any k ∈ (0, 1), one has

lim inf t→∞ inf 0≤x≤kX(t) u(t, x) > 0.
Remark 1.2.28. The above result holds without assuming that the convolution kernel is exponentially bounded. We expect that this key lemma may also be useful to study the spatial propagation for Fisher-KPP equation with fat-tailed dispersion kernel, which may accelerate, see [START_REF] Cabré | The inuence of fractional diusion in Fisher-KPP equations[END_REF][START_REF] Finkelshtein | Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line[END_REF][START_REF] Garnier | Accelerating solutions in integro-dierential equations[END_REF].

The above lemma is proved by some ideas coming from uniform persistence theory, somehow close to those developed in [START_REF] Ducrot | Asymptotic spreading speeds for a predatorprey system with two predators and one prey[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF].

We rst state the idea of proving the regularity of solution, which is very technical. Then it remains to choose proper X(t) and verify conditions (H1)-(H3) in above lemma are satised.

Regularity of solution

Now we explain the idea of showing the regularity of solution. We consider two cases: an initial data with compact support in the right half line and an initial data with prescribed exponential decay for x ≫ 1. Note that

∥∂ t u∥ ∞ ≤ 2K + ∥µ∥ ∞ .
Hence, the solution u(t, x) is Lipschitz continuous for t ∈ [0, ∞), uniformly with respect to x ∈ R.

Next we investigate the regularity with respect to the spatial variable x ∈ R. For the case in Section 1.2.1, we can nd some m > 0 such that

e -mh ≤ u(0, x + h) u(0, x) ≤ 1, ∀x ∈ R.
However, here the initial data is not monotone and u 0 may vanish at some point. We make a slight modication. For all h > 0 suciently small, we show that there exists some 0 < σ(h) < 1 such that σ(h) → 1 as h → 0 and

u( √ h, x) ≥ σ(h)u 0 (x -h), ∀x ∈ R.
However, due to the shift in time, we can not apply the comparison principle directly. We dene function b h (t) as follows,

b h (t) = b h (0) exp t 0 µ(s + √ h) -µ(s) ds , for all t ≥ 0.
And b h (0) is some constant depending on h and satises the following three conditions:

(i) 0 < b h (0) ≤ σ(h) < 1, (ii) b h (0) → 1 as h → 0, (iii) for all h > 0 small enough, b h (0) ≤ inf t≥0 µ(t) µ(t + √ h) exp t 0 µ(s) -µ(s + √ h) ds .
Then we derive the equation satised by u(t + √ h, x) -b h (t)u(t, x -h) and apply the maximum principle to show that

u(t + √ h, x) -b h (t)u(t, x -h) ≥ 0, ∀t ≥ 0.
For h < 0, we can analysis similarly. Combined with the Lipschitz continuity with respect to variable t ∈ [0, ∞), we can obtain that u is uniformly continuous with respect to spatial variable x ∈ R uniformly for t ∈ [0, ∞).

Remark 1.2.29. The construction of b h (t) is in order to eliminate some bad term which appears in the equation satised by u(t+

√ h, x)-b h (t)u(t, x-h).
We should point out that we only show the uniform continuity of solutions to Logistic equation. For the moment, we still do not know how to construct proper b h (t) for general KPP-type equation.

For the case of slow exponential decaying initial data, we use the similar idea to prove the uniform continuity. The main dierence appears in showing the existence of proper

σ(h) such that u( √ h, x) ≥ σ(h)u 0 (x -h) for all x ∈ R.
To do this, we need to show such solutions decay at the same rate as the initial data, at least in a short time.

Sketch the proof of Theorem 1.2.22 (i)

We focus on the case of initial data u 0 is fast exponential decaying, that is u 0 = O(e -λx ) as x → ∞ with λ ≥ λ * r . We show that the Lispschitz continuous solution u(t, x) satises conditions (H1)-(H3) in Lemma 1.2.27. In some extent, (H1) and (H2) can be regarded as hair trigger eect.

Let us rst show that (H1) is satised. Recall that the kernel function K is continuous and K(0) > 0. Hence, there exist δ > 0 and a continuous function k : R → [0, ∞) which is even and compactly supported such that

supp k = [-δ, δ], k(y) > 0, ∀y ∈ (-δ, δ), k(y) ≤ K(y) and k(y) = k(-y), ∀y ∈ R.
Then, one can observe that u = u(t, x), the solution of (1.2.28) with suitable initial data u 0 , satises

∂ t u(t, x) ≥ R k(y)u(t, x -y)dy -Ku(t, x) + µ(t)u(t, x) (1 -u(t, x)) . Due to ⌊µ⌋ > K, one can choose some a ∈ W 1,∞ (0, ∞) such that µ(t) -K + a ′ (t) ≥ 0 for all t ≥ 0. Set w(t, x) := e a(t) u(t, x). Note that w satises ∂ t w(t, x) ≥ R k(y)w(t, x -y)dy -kw(t, x) + w(t, x) m -e ∥a∥∞ ∥µ∥ ∞ w(t, x) , where k = R k(y)dy and m := inf t≥0 k + µ(t) -K + a ′ (t) ≥ k > 0. Let w = w(t, x
) be the solution of following equation

∂ t w(t, x) = k * w(t, x) -kw(t, x) + w(t, x) m -e ∥a∥∞ ∥µ∥ ∞ w(t, x) .
(1.2.31)

supplemented with the initial data w(0, x) = e -∥a∥∞ u 0 (x).

Recall the spreading speed results for the above autonomous Fisher-KPP equation with nonlocal dispersal, see [START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF][START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF]. Applying comparison principle, one obtains

lim inf t→∞ u(t, 0) ≥ lim t→∞ e -∥a∥∞ w(t, 0) = m ∥µ∥ ∞ e 2∥a∥∞ > 0.
The condition (H1) is fullled.

Next, for all ũ ∈ ω(u) \ {0}, one can derive that ũ satises

∂ t ũ(t, x) ≥ R k(y)ũ(t, x -y)dy -K ũ(t, x) + μ(t)ũ(t, x) (1 -ũ(t, x)) , (t, x) ∈ R 2 ,
where μ is the limit of µ(•+t n ) in local uniform topology for t ∈ R. By the similar analysis in proving (H1), one can show that the condition (H2) is satised. Now let us choose proper X(t). For all B, R > 0, γ ∈ R, we dene the quantity c R,B (γ) by

c R,B (γ) := 2R π B -B K(z)e γz sin( πz 2R )dz. (1.2.32) Note that γ → c R,B (γ) is continuous and recall that c * r = R K(y)e λ * r y ydy. One has lim γ→λ * r lim R→∞ B→∞ c R,B (γ) = c * r . So for each given c ∈ [0, c * r ) and c ′ ∈ (c, c * r ), one can choose proper γ = γ close to λ * r such that for R, B > 0 large enough, c ′ ≤ c R,B (γ). Set X(t) := c R,B (γ)t. Observe that for all c c ′ < k < 1, one has ct ≤ kc ′ t ≤ kX(t), ∀t > 0.
We construct u 1 to be the sub-solution of (1.2.28) as follows. For all R, B > 0 large enough, for some suitable a ∈ W 1,∞ (R), for η > 0 small enough, we dene

u R,B (t, x) = ηe a(t) e -γx cos( πx 2R ) if t ≥ 0 and x ∈ [-R, R], 0 else.
One can verify that

u 1 (t, x) := u R,B (t, x -X(t)), with X(t) = c R,B (γ)t,
is the sub-solution of (1.2.28). The comparison principle applies and ensures that

lim inf t→∞ u(t, X(t)) ≥ lim inf t→∞ u 1 (t, X(t)) = lim inf t→∞ u R,B (t, 0) > 0,
which implies that (H3) is satised. The key Lemma 1.2.27 ensures that

lim inf t→∞ inf 0≤x≤kX(t) u(t, x) > 0.
Recalling that ct ≤ kX(t) for t > 0, one has

lim inf t→∞ inf 0≤x≤ct u(t, x) > 0, ∀c ∈ [0, c * r ). (1.2.33)
Moreover, we can show that

lim inf t→∞ inf 0≤x≤ct u(t, x) = 1, ∀c ∈ [0, c * r ).
Sketch the proof of Theorem 1.2.22 (ii)

For the case of slow exponential decay initial data u 0 , the proof is similar to the rst case.

To prove (H1), it is also suciently to consider a sub-solution like w with compactly supported initial data w 0 satisfying w 0 ≤ u 0 . The condition (H2) can be proved similarly as (H1).

Next, let us introduce some functions. For each λ ∈ (0, λ * r ), for the given c ∈ [0, ⌊c(λ)⌋), due to the property of least mean, one can choose some a ∈ W 1,∞ (0, ∞) such that c < c λ,a (t) for all t ≥ 0, where c λ,a is dened in (1.2.29). For some B ∈ W 1,∞ (0, ∞) and ε > 0 small enough, we dene that

φ(t, x) = e -λ(x+a(t)) -e -λa(t)+B(t) e -(λ+ε)x , t ≥ 0, x ∈ R, (1.2.34)
With suitable parameters B ∈ W 1,∞ (0, ∞) and ε > 0, one can verify that ϕ dened as follows is the sub-solution of (1.2.28),

ϕ(t, x) := max 0, φ t, x - t 0 c λ,a (s)ds . Note that ϕ is positive when x > ∥B∥ ∞ /ε.
Let us choose proper X(t) for each given λ ∈ (0, λ * r ) and c ∈ [0, ⌊c(λ)⌋). We dene

X(t) := t 0 c λ,a (s)ds + P,
where P > ∥B∥∞ ε > 0. As well as, for some k ∈ (0, 1), one has kX(t) ≥ ct for all t ≥ 0. This is due to c λ,a (t) ≥ c for all t ≥ 0. By comparison principle, one has

lim inf t→∞ u(t, X(t)) ≥ lim inf t→∞ ϕ(t, X(t)) = lim inf t→∞ φ(t, P ) > 0.
Next one can apply persistence Lemma 1.2.27 to obtain that

lim inf t→∞ inf x∈[0,ct] u(t, x) > 0, ∀c ∈ [0, ⌊c(λ)⌋) .
Moreover, we can show that the above limit equals to 1.

General KPP-type

As a corollary, we can also show the spreading speed for general KPP-type equation (1.2.27). However, due to lack of the regularity results for this general situation, we only show the solution is persistence on a spreading interval without obtaining the results of the convergence to steady state.

Let us state the assumption of F .

Assumption 1.2.30 (KPP nonlinearity). We assume that the function

F : [0, ∞) × [0, 1] → R takes the form F (t, u) = uf (t, u) where the function f : [0, ∞) × [0, 1] → R
satises the following set of hypotheses:

(f1) For all u ∈ [0, 1], function f (•, u) ∈ L ∞ (0, ∞; R)
, and f is Lipschitz continuous with respect to u ∈ [0, 1], uniformly with respect to t ≥ 0;

(f2) Let f (t, 1) ≡ 0 and µ(t) := f (t, 0). Assume µ(•) is a bounded and uniformly continuous function. Also, we assume that

h(u) := inf t≥0 f (t, u) > 0 for all u ∈ [0, 1); (f3) For almost every t ≥ 0, the function u → f (t, u) is nonincreasing on [0, 1];
(f4) We assume that ⌊µ⌋ > K.

From the above assumption, one can nd some constant C > 0 such that

µ(t)u(1 -Cu) ≤ F (t, u) ≤ µ(t)u, ∀t ≥ 0.
Hence, the solution of a Logistic-type equation can be treated as the sub-solution of (1. denote the solution of (1.2.27) supplemented with a continuous initial data u 0 , with 0 ≤ u 0 (•) ≤ 1 and u 0 (•) ̸ ≡ 0. Then the following propagation result holds true:

(i) (Fast exponential decay case) If u 0 (x) = O(e -λx ) as x → ∞ for some λ ≥ λ * r , then one has      lim t→∞ sup x≥ t 0 c(λ * r )(s)ds+ηt u(t, x) = 0, ∀η > 0, lim t→∞ inf x∈[0,ct] u(t, x) > 0, ∀c ∈ (0, c * r ); (ii) (Slow exponential decay case) If u 0 (x) ∼ e -λx as x → ∞ for some λ ∈ (0, λ * r ), then one has      lim t→∞ sup x≥ t 0 c(λ)(s)ds+ηt u(t, x) = 0, ∀η > 0, lim t→∞ inf x∈[0,ct] u(t, x) > 0, ∀c ∈ (0, ⌊c(λ)⌋).

Summary of Chapter 4: Spreading speeds for time heterogeneous prey-predator systems with diusion

This is a joint work with Arnaud Ducrot. It has been submitted, see [START_REF] Ducrot | Spreading speeds for time heterogeneous reaction-diusion systems of the prey-predator type[END_REF].

Problem

We study spreading speed for the following reaction-diusion systems of prey-predator type,

∂ t u = d(t)∂ xx u + uf (t, u, v) , ∂ t v = ∂ xx v + vg (t, u, v) , (1.2.35) 
posed in t > 0 and x ∈ R. This problem is supplemented with suitable compactly supported initial data u(0, x) = u 0 (x) and v(0, x) = v 0 (x) for x ∈ R.

(1.2.36)

Here u = u(t, x) and v = v(t, x) denote the density of the prey and the predator, respectively. Also, the prey and the predator are able to co-invade the empty space. Without loss of generality, here we assume that the diusion rate of predator equals to one. Similarly to Remark 1.2.8, when the diusion rate of v is d v (t), we can achieve that by a suitable time transformation as τ (t) = t 0 d v (s)ds. As mentioned in the previous section, the spreading speed for homogeneous preypredator systems has been obtained in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. In this work we provide a new method that allows us to study non-autonomous prey-predator systems and to give a shorter proof for the homogeneous problem as in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. Our analysis is based on the derivation of some local pointwise estimates so that we can compare the solutions of the prey-predator problem with those of a KPP scalar equation on suitable spatio-temporal domains.

Rather similar pointwise estimates have been obtained and used by Wu in [START_REF] Wu | The spreading speed for a predatorprey model with one predator and two preys[END_REF] to study the invasion of a single predator with two abundant preys in the case where the two prey species have the same diusion coecient. The analysis in [START_REF] Wu | The spreading speed for a predatorprey model with one predator and two preys[END_REF] is based on the equation formed by the total density of the two preys coupled with rened estimates of the heat kernel.

Here the situation is dierent since we study the co-invasion of the two species, the prey and the predator. We extend the analysis to handle time heterogeneities and propose a new methodology based on suitable applications of the strong comparison principle for scalar parabolic equations. This methodology is rather general and can be extended to other problems. Indeed, it can be extended to handle predator-prey systems on discrete lattices (see Chapter 5 in this manuscript).

Assumptions and biological explanation Assumption 1.2.32. We assume that d : [0, ∞) → R is a bounded and uniformly continuous function with a mean value ⟨d⟩ and inf t≥0 d(t) > 0.

Assumption 1.2.33. The function

f : [0, ∞) 3 → R satises: (f1) For each given u, v ≥ 0, the function t → f (t, u, v) is bounded and uniformly con- tinuous from [0, ∞) to R, and t → f (t, u, v) has a mean value ⟨f (•, u, v)⟩. The function (u, v) → f (t, u, v) is Lipschitz continuous with respect to u, v ≥ 0, uni- formly for t ≥ 0; (f2) For all t ≥ 0 and u > 0, the map v → f (t, u, v) is strictly decreasing; (f3) Assume f (t, 1, 0) = 0 for all t ≥ 0 and h(u) := inf t≥0 f (t, u, 0) > 0, ∀u ∈ [0, 1); (f4) For all t ≥ 0 and v ≥ 0, the map u → f (t, u, v) is nonincreasing; (f5) For all v > 0, the function f further satises sup t≥0 f (t, 1, v) < 0. Assumption 1.2.34. The function g : [0, ∞) 3 → R satises: (g1) For each given u, v ≥ 0, the function t → g(t, u, v) is bounded and uniformly con- tinuous from [0, ∞) to R, and t → g(t, u, v) has a mean value ⟨g(•, u, v)⟩, while the function (u, v) → g(t, u, v
) is Lipschitz continuous with respect to u, v ≥ 0, uniformly with respect to t ≥ 0;

(g2) For all t ≥ 0 and v ≥ 0, the map u → g(t, u, v) is nondecreasing;

(g3) It satises inf t≥0 g(t, 1, 0) > 0;

(g4) For all t ≥ 0 and u ≥ 0, the map v → g(t, u, v) is nonincreasing;

(g5) Let the mean value of function t → g(t, 0, 0) satisfy ⟨g(•, 0, 0)⟩ < 0.

Now we explain Assumption 1.2.33 and 1.2.34 in the biological context.

• The species usually live in a time varying environment. Thus we assume that f and g both depend on time. We require that these variations in time exhibit an averaging property.

• Assumptions (f 2) and (g2) describe predatory behaviour. Condition (f 2) means that more predators reduce the prey density while (g2) implies that more prey leads to an increase in the predator population. Due to this asymmetry, the comparison principle does not apply to (1.2.35).

• When there is no predator, (f 3) ensures that u ≡ 1 is the maximal environmental carrying capacity of the prey. (g3) means that the predator density will increase when the prey is abundant.

• (f 4) and (g4) imply that the growth rate of each species is maximal at low density. By analogy with the Fisher-KPP equation, this indicates that the propagation of two species is driven by the leading edge of the invasion.

• (f 5) is a technical assumption. Note also that (f 2) and f (t, 1, 0) ≡ 0 already ensure that f (t, 1, v) < 0 for all t ≥ 0 and v > 0. (f 5) implies that the prey cannot reach the environmental carrying capacity 1 as long as there exists the predator. (g5) means that the predator cannot survive without the prey. The prey population is the only resource for the growth of the predator.

Let us recall the classical Lotka-Volterra prey-predator system,

∂ t u = d(t)∂ xx u + r(t)u (1 -u) -p(t)uv, ∂ t v = ∂ xx v + q(t)uv -ν(t)v. (1.2.37)
Note that it corresponds to (1.2.35) with

f (t, u, v) = r(t) (1 -u) -p(t)v, g(t, u, v) = q(t)u -ν(t).
With additional smoothness and sign conditions for the coecients, it satises Assumption 1.2.33 and 1.2.34.

From now on and for writing convenience, we set

r 1 (t) := f (t, 0, 0) and r 2 (t) := g(t, 1, 0). (1.2.38) 
Due to the monotonicity and regularity assumptions of f and g, there exists some constant L > 0 such that for all t ≥ 0, u ∈ [0, 1] and v ≥ 0,

r 1 (t) (1 -Lu -Lv) ≤ f (t, u, v) ≤ r 1 (t), r 2 (t) 1 -L(1 -u) -Lv ≤ g(t, u, v) ≤ r 2 (t). (1.2.39)

Linear speed

To state our main results, we dene two speed functions λ → c u (λ) and

γ → c v (γ) from (0, ∞) to L ∞ (0, ∞) given by c u (λ)(t) := d(t)λ + r 1 (t) λ and c v (γ)(t) := γ + r 2 (t) γ , (1.2.40) 
for all t ≥ 0, where r 1 and r 2 are dened in (1.2.38). These two functions corresponds to linear speeds for u and v respectively, around the stationary state (0, 0) (no species) and (1, 0) (predator free equilibrium) for solution with exponential decay rate λ and γ. We also introduce the quantities c * u and c * v given by

c * u := inf λ>0 ⟨c u (λ)⟩ and c * v := inf γ>0 ⟨c v (γ)⟩.
Setting

λ * := ⟨r 1 ⟩ ⟨d⟩ and γ * := ⟨r 2 ⟩, (1.2.41) one has c * u = ⟨c u (λ * )⟩ = 2 ⟨d⟩⟨r 1 ⟩ and c * v = ⟨c v (γ * )⟩ = 2 ⟨r 2 ⟩. (1.2.42)
Due to (f 1), (f 3) and (f 4), one can observe that for v ≡ 0, the system (1.2.35) degenerates to following Fisher-KPP type equation satised by u,

∂ t u(t, x) = d(t)∂ xx u(t, x) + u(t, x)f (t, u(t, x), 0) .
The quantity c * u is the spreading speed of above equation equipped with compactly supported initial data, we refer the reader to [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF].

On the other hand, for u ≡ 1, the solution v of (1.2.35) satises following equation

∂ t v(t, x) = ∂ xx v(t, x) + v(t, x)g (t, 1, v(t, x)) .
Note that we do not assume the existence of nontrivial stationary state solution in the above equation. It is not a standard KPP-type equation. However, by the similar argument in [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF], one can show that c * v is the spreading speed of above equation equipped with compactly supported initial data. The main dierence is that v may not converge to a stationary state but grow and become unbounded in the large time.

Spreading speed results

With the above notations and assumptions, we state our main results. For the case of the predator invading the empty environment slower than the prey, the rst theorem implies that the propagation occurs in two separate steps involving an intermediate equilibrium (namely u = 1, v = 0) in the middle zone. One can see the simulation in Figure 1.11. Theorem 1.2.35 (Slow predator case). Let Assumption 1.2.32, 1.2.33 and 1.2.34 be satised. We assume that the predator is slower than the prey, in the sense that

c * u > c * v .
Let u 0 and v 0 be two given bounded and continuous functions in R with compact support, and 0

̸ ≡≤ u 0 ≤ 1, 0 ̸ ≡≤ v 0 . Let (u, v) = (u(t, x), v(t, x)) be the solution of (1.2.35) with initial data (u 0 , v 0 ). Assume that (u, v) is bounded.
Then the function pair (u, v) satises:

(i) for all c > c * u , one has lim t→∞ sup |x|≥ct u(t, x) = 0;

(ii) for all c * v < c 1 < c 2 < c * u and for all c > c * v , one has:

lim t→∞ sup c 1 t≤|x|≤c 2 t |1 -u(t, x)| = 0 and lim t→∞ sup |x|≥ct v(t, x) = 0; (iii) for all c ∈ [0, c * v ) one has: lim inf t→∞ inf |x|≤ct v(t, x) > 0, lim inf t→∞ inf |x|≤ct u(t, x) > 0 and lim sup t→∞ sup |x|≤ct u(t, x) < 1.
In the case of the predator invading the empty environment faster than the prey, the population of the predator could grow fast enough to overtake the prey. From the assumption of g (see Assumption 1.2.34), one can note that the predator cannot survive in the absence the prey at large time. We may expect that the prey and the predator will invade the empty space at the same time. In the next theorem, we show that the spreading speed of the system is c * u , which means that the prey and the predator invade the empty space almost simultaneously. One can see the simulation in Figure 1.12. Theorem 1.2.36 (Fast predator case). Let Assumption 1.2.32, 1.2.33 and 1.2.34 be satised and assume that the predator is faster than the prey, in the sense that

c * u ≤ c * v .
Let u 0 and v 0 be two given bounded and continuous functions in R with compact support, and 0

̸ ≡≤ u 0 ≤ 1, 0 ̸ ≡≤ v 0 . Let (u, v) = (u(t, x), v(t, x)) be the solution of (1.2.35) with initial data (u 0 , v 0 ). Assume that (u, v) is bounded.
Then the function pair (u, v) satises:

(i) for all c > c * u , one has lim t→∞ sup |x|≥ct [u(t, x) + v(t, x)] = 0; (ii) for all c ∈ [0, c * u ) one has: lim inf t→∞ inf |x|≤ct v(t, x) > 0, lim inf t→∞ inf |x|≤ct u(t, x) > 0 and lim sup t→∞ sup |x|≤ct u(t, x) < 1.
Remark 1.2.37. In the situation of all coecients in (1.2.35) are independent of t,

that is d(t) ≡ d > 0, f (t, u, v) ≡ f (u, v
) and g(t, u, v) ≡ g(u, v), the above two theorems have been proved in Theorem 2.1 and 2.2 in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. In this work, we provide a new method that allows 1) to recover this result in the homogeneous case, 2) to extend them for non-autonomous prey-predator systems, 3) to provide a shorter proof as in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF] for the homogeneous problem.

Sketch the proof of Theorem 1.2.35

Step 1: Upper estimates on spreading speed

To obtain the upper estimates for the spreading speed, we only need to construct suitable super-solutions.

Recall that the denition of c * u in (1.2.42) and the property of mean value. For c > c ′ > c * u , there exists a function a ∈ W 1,∞ (0, ∞) such that for all t > 0,

c ′ ≥ d(t)λ * + r 1 (t) λ * + a ′ (t).
For A > 0, we dene u given by

u(t, x) := Ae -λ * a(t) e -λ * (x-c ′ t) .
One can verify that u satises

∂ t u(t, x) -d(t)u xx (t, x) -r 1 (t)u(t, x) ≥ 0.
From (1.2.39) and comparison principle, we can obtain that

lim t→∞ sup x≥ct u(t, x) = 0, ∀c > c * u .
By a similar symmetric argument, we can obtain the results for x ≤ 0. Theorem 1.2.35

(i) is proved. Similarly, for all c > c > c * v , there exists ã ∈ W 1,∞ (0, ∞) such that for all t > 0 c ≥ γ * + r 2 (t) γ * + ã′ (t).
Then the function

v 1 (t, x) := Ae -γ * ã(t) e -γ * (x-ct)
satises the following dierential inequality

∂ t v 1 (t, x) -∂ xx v 1 (t, x) -r 2 (t)v 1 (t, x) ≥ 0.
By (1.2.39) and comparison principle, one can obtain the half of statement (ii) in Theorem 1.2.35.

Step 2: Local pointwise estimates

We construct two important lemmas which play a key role in proving Theorem 1.2.35 and 1.2.36. From Assumption 1.2.33 and 1.2.34, we observe two important facts: the predator cannot survive without the prey and the prey asymptotically reach its carrying capacity without the predator. For simplicity and clarity, in this step, let us use (1.2.37), which is a typical example of (1.2.35), to explain the ideas of deriving the local pointwise estimates between u(t, x) and v(t, x). We recall the classical Lotka-Voterra prey-predator system (1.2.37) below which satises our assumptions,

∂ t u = d(t)∂ xx u + r(t)u (1 -u) -p(t)uv, ∂ t v = ∂ xx v + q(t)uv -ν(t)v.
The rst fact: the predator will starve without the prey. Hence if the prey is in the absence, namely u ≡ 0, then v becomes a solution of

∂ t v = d v (t)∂ xx v -ν(t)v,
and v decays exponentially to 0 due to inf t≥0 ν(t) > 0. This observation yields our rst key lemma. Lemma 1.2.38. For all δ > 0, there exist M δ > 0 and T δ > 0 such that the following estimate holds true

v(t, x) ≤ δ + M δ u(t, x), ∀t ≥ T δ , x ∈ R.
The proof of above lemma is based on strong maximum principle in parabolic equations. Let us sketch the proof of this key lemma. By a contradiction argument, assume that there exist δ 0 > 0 and sequences

(t n ) n and (x n ) n such that t n → ∞ and v(t n , x n ) > δ 0 + nu(t n , x n ), ∀n ≥ 1.
(1.2.43)

Let us consider the time and space shift functions

u n (t, x) := u(t+t n , x+x n ) and v n (t, x) := v(t + t n , x + x n ).
The parabolic regularity ensures that there exists function

(u ∞ , v ∞ ) such that (u n , v n )(t, x) → (u ∞ , v ∞ )(t, x) as n → ∞ locally uniformly for (t, x) ∈ R 2 .
As well as, the function

(u ∞ , v ∞ ) satises ∂ t u ∞ = d(t)∂ xx u ∞ + r(t)u ∞ (1 -u ∞ ) -p(t)u ∞ v ∞ , ∂ t v ∞ = ∂ xx v ∞ + q(t)u ∞ v ∞ -ν(t)v ∞ . (1.2.44)
Set σ = {d, r, p, q, ν}. Herein σ(•) is the limit function of σ(• + t n ) as n → ∞ in local uniform topology. Due to v is assumed to be bounded, (1.2.43) implies that u ∞ (0, 0) = 0.

The strong maximum principle ensures that u ∞ ≡ 0. Then by constructing a proper super-solution for following equation

∂ t v ∞ = ∂ xx v ∞ -ν(t)v ∞ , one can show that v ∞ (0, 0) = 0. This contradicts (1.2.43).
The key lemma is obtained.

Next, we state another key lemma which is due to the following observation: if there is no predator, namely v ≡ 0, then the density of the prey satises the Fisher-KPP equation

∂ t u = d(t)∂ xx u + r(t)u (1 -u) .
The prey will spread with the speed c * u = 2 ⟨d⟩⟨r⟩. With the help of this observation and strong maximum principle, similarly, we can prove the following key lemma. Lemma 1.2.39. Fix c ∈ [0, c * u ). For each α > 0, there exist M α > 0 and T α > 0 such that the following estimate holds true

1 -u(t, x) ≤ α + M α v(t, x), ∀t ≥ T α , |x| ≤ ct.
Step 3: Middle zone Now we start to prove Theorem 1.2.35 (ii). Recalling (1.2.39) and applying the rst key Lemma 1.2.38, one can observe that the solution u(t, x) of (1.2.35) satises the following dierential inequality

∂ t u(t, x) ≥ d(t)∂ xx u(t, x)+r 1 (t)u(t, x) 1-Lu(t, x)-L δ+M δ u(t, x) , ∀t ≥ T δ , ∀x ∈ R.
From comparison principle and the spreading speed for Fisher-KPP equation (see [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF]), one can obtain that

lim inf t→∞ inf |x|≤ct u(t, x) > 0, ∀c ∈ [0, c * u (δ)),
where the quantity c * u (δ) is given by

c * u (δ) := 2 ⟨d⟩⟨r 1 ⟩(1 -Lδ).
From the arbitrariness of δ > 0 and c * u (0) = c * u , one obtains that

lim inf t→∞ inf |x|≤ct u(t, x) > 0, ∀c ∈ [0, c * u ). (1.2.45)
Combining the following limits which has been proved in the rst step,

lim t→∞ sup |x|≥c 1 t v(t, x) = 0, ∀c 1 > c * v ,
we can further prove that

lim inf t→∞ inf c 1 ≤|x|≤c 2 t u(t, x) = 1, ∀c * v < c 1 < c 2 < c * u .
Step 4: Final zone 

u(t, x) < 1, ∀c ∈ [0, c * v ).
The proof of these results shall make use of our key Lemma 1.2.39. Recalling (1.2.39), we can derive a dierential inequality satised by v as follows

∂ t v(t, x) ≥ ∂ xx v(t, x) + r 2 (t)v(t, x) 1 -Lα -L(1 + M α )v(t, x) , ∀t ≥ T α , x ∈ [-c ′ t, c ′ t].
Next we can construct a nonnegative sub-solution which is compactly supported, to show that lim inf

t→∞ v(t, ±ct) > 0, ∀c ∈ [0, c * v ).
Finally we make use of a positive constant number as a sub-solution on a moving domain to obtain that lim inf

t→∞ inf |x|≤ct v(t, x) > 0, ∀c ∈ [0, c * v ).
Combining the assumption sup t≥0 f (t, 1, v) < 0 for all v > 0, we can show that

lim sup t→∞ sup |x|≤ct u(t, x) < 1, ∀c ∈ [0, c * v ).
Sketch the proof of Theorem 1.2.36

The proof of Theorem 1.2.36 is similar to above discussion. There is only one dierence appears in the part of upper estimate. We explain how to show that v cannot spread faster than c * u , namely lim

t→∞ sup |x|≥ct v(t, x) = 0, ∀c > c * u .

Same as

Step 1 in the above discussion, we can show that

lim t→∞ sup |x|≥ct u(t, x) = 0, ∀c > c * u .
Thus, xing any c > c * u and ε > 0 small enough, there exists T > 0 such that sup

t≥T sup |x|≥ct u(t, x) ≤ ε.
From Assumption 1.2.34 (g1) and (g5), for suciently small ε > 0, one can choose

b ∈ W 1,∞ (0, ∞) such that sup t>0 {g(t, ε, 0) + b ′ (t)} < 0.
For B > 0 and for some

γ ′ > 0 small enough, for c > c ′′ > c * u , we dene v 2 (t, x) := Be -γ ′ (x-c ′′ t) e -b(t) . Since g(t, u, v) ≤ g(t, ε, 0) for all t ≥ 0, v ≥ 0 and 0 ≤ u ≤ ε, then one can verify that v 2 (t, x) is a super-solution of v-equation in (1.2.35) for all t ≥ T and x ≥ c ′′ t with c ′′ > c * u . By comparison principle in the domain {(t, x) : t ≥ T, x ≥ c ′′ t}, one has lim t→∞ sup |x|≥ct v(t, x) = 0, ∀c > c * u .

Boundedness

Note that in the above two theorems, we require that the solution (u, v) is bounded. For the sake of completeness, we show that the solution can be bounded with some additional assumptions.

We emphasize that the boundedness assumption is satised for a large classes of systems. Recall that the comparison principle does not hold for system (1.2.35). However we can apply partial comparison principle to each component equation. Note that 0 ≤ u(t, x) ≤ 1 and v(t, x) ≥ 0 for all t ≥ 0 and x ∈ R, if the initial data satises 0 ≤ u 0 ≤ 1 and v 0 ≥ 0. The boundedness of the solutions can be obtained if we assume that lim sup t→∞ g(t, 1, ∞) < 0, which is satised for the predator with intraspecic competition, for example, g(t, u, v) := q(t)u -v -ν(t). When this condition is not satised, the situation is more complicated. With some additional conditions, we can also show that v is bounded in the next proposition. Proposition 1.2.40. Let Assumption 1.2.32, 1.2.33 and 1.2.34 be satised. Assume that inf t≥0 g(t, 0, ∞) > -∞ and there exists M 0 > 0 such that the mean value ⟨f (•, 0, M )⟩ < 0 for all M ≥ M 0 . Let (u, v) = (u, v) (t, x) be the solution of (1.2.35) supplemented with nonnegative and uniformly continuous initial function

(u 0 , v 0 ). If 0 ≤ u 0 ≤ 1 and v 0 ≥ 0 is bounded, then the function (u, v) = (u, v)(t, x) is bounded on [0, ∞) × R.
The proof of the above proposition is close to the idea developed in [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. We try to give some essential point. Roughly speaking, if v is unbounded, then the decay rate in the component u-equation in (1.2.35) would become very large. This yields that u ∼ 0. While the v-equation in (1.2.35) with u ∼ 0, implies that v ∼ 0. There is a contradiction. 

Problem

We investigate the large time behaviour of solutions for the following Cauchy problem

         d dt u(t, i) = j∈Z J 1 (t, j) [u(t, i -j) -u(t, i)] + u(t, i)f (t, u(t, i), v(t, i)) , d dt v(t, i) = j∈Z J 2 (t, j) [v(t, i -j) -v(t, i)] + v(t, i)g (t, u(t, i), v(t, i)) , (1.2.46) 
posed in t > 0 and i ∈ Z. This problem is supplemented with bounded initial data

u(0, i) = u 0 (i) and v(0, i) = v 0 (i).
Herein the two sets {i ∈ Z; u 0 (i)

̸ = 0} ̸ = ∅ and {i ∈ Z; v 0 (i) ̸ = 0} ̸ = ∅ have nite elements.
In the previous literature review, we have known that the spreading speed for nonautonomous diusive prey-predator system in lattice Z, remains at least theoretically unknown neither time varying in periodicity nor almost periodicity. General time heterogeneity has its meaning in biological modeling and inuences the spreading behaviour. Due to the discrete nonlocal operator depending on time, to the best of our knowledge, even the spreading speeds for scalar KPP equations with such dispersion is unknown before this work. We apply the similar idea developed in the prey-predator system with local diusion, that is using some local pointwise estimates to compare solutions of systems to those of scalar KPP type equation in suitable spatio-temporal domains (see Chapter 4). But the analysis is dierent from local diusion case when we study spreading behaviours for scalar equation in a moving domain. We will use some ideas which are developed in studying spreading speed for nonlocal diusion equation with continuous space variable (see Chapter 3).

Assumptions

Here the nonlinear reaction terms f and g in (1.2.46) satises same mathematical structure as Assumption 1.2.33 and 1.2.34. For convenience, we set f (t, 0, 0) = 1 and r(t) := g(t, 1, 0). Instead of repeating Assumption 1.2.33 and 1.2.34, here we only recall a typical example of f and g as

f (t, u, v) = 1 -u -p(t)v, g(t, u, v) = q(t)u -ν(t), (1.2.47)
where the time dependent functions p, q and ν represent the predation rate, the conversion rate and the death rate of the predator, respectively. Next, we state assumptions for the nonlocal diusion kernel functions.

Assumption 1.2.41 (Kernel

J k = J k (t, i)). The kernel function J k : [0, ∞) × Z → [0, ∞) (for k = 1, 2)
satises the following set of assumptions:

(J1) The function J k is nonnegative and J k (•, i) ∈ L ∞ (0, ∞) has a mean value for each i ∈ Z; (J2) The function Ĵk : i → J k (•, i) from Z to L ∞ (0, ∞) whose series is absolutely conver- gent, that is Ĵk ∈ l 1 (Z, L ∞ (0, ∞)).
And we assume that its abscissa of convergence satises abs( Ĵk ) > 0.

In the following, for notation simplicity, we use abs(J k ) instead of abs( Ĵk );

(J3) Assume that J k (•, i) = J k (•, -i) for all i ∈ Z (symmetric); (J4) The function J k satises inf t≥0 J k (t, ±1) > 0;
(J5) Let the following limits hold true lim sup

λ→abs(J 1 ) - λ -1 j∈Z ⟨J 1 (•, j)⟩ e λj = lim sup γ→abs(J 2 ) - γ -1 j∈Z ⟨J 2 (•, j)⟩ e γj = ∞, where ⟨J k (•, j)⟩ (for k = 1, 2) is the mean value of function t → J k (t, j) (for k = 1, 2) for each j ∈ Z.
Due to some technical reasons in studying the hair trigger eect for non-autonomous KPP equations with nonlocal diusion, we impose following assumption.

Assumption 1.2.42. Set J k (t) = j∈Z J k (t, j) for k = 1, 2. Assume that ⟨f (t, 0, 0)⟩ > ⟨J 1 (t)⟩ and ⟨g(t, 1, 0)⟩ > ⟨J 2 (t)⟩.

Spreading speed for scalar KPP equations in a lattice

We investigate the spreading speed for following KPP type equation,

d dt w(t, i) = j∈Z J(t, j)[w(t, i-j)-w(t, i)]+m(t)w(t, i) 1-lw(t, i) , t ≥ 0, i ∈ Z, (1.2.48)
where the constant l > 0. Set J(t) = j∈Z J(t, j).

Let us rst show the hair trigger eect property for (1.2.48).

Lemma 1.2.43 (Hair trigger eect). Assume that kernel function J = J(t, i) is nonneg- Next, in order to state the spreading speed result in scalar equation, more conditions on J should be given. We assume that J and m satisfy the following assumptions. Assumption 1.2.45. The kernel function J satises Assumption 1.2.41. Assume that the function m : [0, ∞) → R is bounded and uniformly continuous with inf t≥0 m(t) > 0.

ative and inf t≥0 J(t, ±1) > 0. Let i → J(•, i) ∈ l 1 (Z, L ∞ (0, ∞)) be satised. Assume that the function m : [0, ∞) → R
Assume that m has a mean value, denoted by ⟨m⟩, which satises ⟨m⟩ > ⟨J⟩.

As Subsection 1.2.2, we can introduce the speed function µ → c w (µ) dened in (0, abs(J)) given by

c w (µ)(•) := µ -1 j∈Z J(•, j)[e µj -1] + m(•) .
As well as, dene c * w by

c * w := inf 0<µ<abs(J) ⟨c w (µ)⟩ = inf 0<µ<abs(J) µ -1 j∈Z ⟨J(•, j)⟩ [e µj -1] + ⟨m(•)⟩ . (1.2.49)
With the above notations, we state the following proposition.

Proposition 1.2.46. Let Assumption 1.2.45 be satised. Let initial data 0 ≤ w 0 ≤ 1 l be given. Assume that the set {i ∈ Z : w 0 (i) ̸ = 0} ̸ = ∅ has nite elements. Then the solution w = w(t, i) of (1.2.48) supplemented with initial data w 0 satises:

     lim t→∞ sup |i|≥ct w(t, i) = 0, ∀c > c * w , lim t→∞ inf |i|≤ct w(t, i) = 1 l , ∀c ∈ [0, c * w ),
where c * w is dened in (1.2.49).

The idea of proving the above proposition is similar to the case of nonlocal diusion KPP equations with continuous spatial variable (see Chapter 3). We rst construct suitable super-solutions to obtain the upper estimate of spreading speed. Then we develop the persistence lemma for lattice equation similar to Lemma 1.2.27. Lastly, by the hair trigger eect property and constructing proper sub-solutions, we can apply the persistence lemma to derive the lower estimate of speed which coincides with the upper estimate. We can obtain that the exact spreading speed of solutions to (1.2.48) is c * w . Note that here we only consider the Logistic equation. In fact, the results can be extended to general KPP type F (t, u) with ⟨F ′ u (t, 0)⟩ > ⟨J⟩. The spreading speed result for (1.2.48) is suciently to derive our main results in systems.

Spreading speed results for systems

To state our main results, Let us introduce some notations. Dene two functions c u : (0, abs(J

1 )) → L ∞ (0, ∞) and c v : (0, abs(J 2 )) → L ∞ (0, ∞) by c u (λ)(•) := λ -1 j∈Z J 1 (•, j)[e λj -1] + 1 , ∀λ ∈ (0, abs(J 1 )), c v (γ)(•) := γ -1 j∈Z J 2 (•, j)[e γj -1] + r(•) , ∀γ ∈ (0, abs(J 2 )).
(1.2.50)

Herein J 1 and J 2 satisfy Assumption 1.2.41 and r(t) = g(t, 1, 0). Set

c * u := inf λ∈(0,abs(J 1 )) ⟨c u (λ)(•)⟩ and c * v := inf γ∈(0,abs(J 2 )) ⟨c v (γ)(•)⟩ . (1.2.51)
From Proposition 1.2.46, one can observe that c * u is the spreading speed of solutions to the following equation

d dt u(t, i) = j∈Z J 1 (t, j) [u(t, i -j) -u(t, i)] + uf (t, u, 0) ,
equipped with initial data u 0 . Similarly, one can show that the quantity c * v is the spreading speed of equation

d dt v(t, i) = j∈Z J 2 (t, j) [v(t, i -j) -v(t, i)] + vg (t, 1, v) ,
equipped with initial data v 0 . While the dierence is that the solution v may no longer converge to some steady state after propagation but may grow and become unbounded. The rst theorem is in the case of the prey invading the empty environment faster than the predator. We show that there are two separate steps involving an intermediate equilibrium (namely u = 1, v = 0) in the middle zone in the propagation. 

c * v < c * u . Let 1 ≥ u 0 ≥ 0 and v 0 ≥ 0 be two given bounded functions in Z. Assume that two sets {i ∈ Z; u 0 (i) ̸ = 0} ̸ = ∅ and {i ∈ Z; v 0 (i) ̸ = 0} ̸ = ∅ have nite elements. Let (u, v) = (u(t, i), v(t, i))
lim t→∞ sup c 1 t≤|i|≤c 2 t |1 -u(t, i)| = 0 and lim t→∞ sup |i|≥ct v(t, i) = 0, (iii) for all c ∈ [0, c * v ), one has lim inf t→∞ inf |i|≤ct v(t, i) > 0, lim inf t→∞ inf |i|≤ct u(t, i) > 0 and lim sup t→∞ sup |i|≤ct u(t, i) < 1.
In the next theorem, we consider the case of the predator invading the empty environment faster than the prey. The population of the predator could grow fast enough to overtake the prey. Then the prey and the predator invade the empty space almost simultaneously. Theorem 1.2.48 (Fast predator). Let Assumption 1.2.33, 1.2.34, 1.2.41 and 1.2.42 be satised. Assume that the predator is faster than the prey, in the sense that

c * v ≥ c * u . Let 1 ≥ u 0 ≥ 0 and v 0 ≥ 0 be two given bounded functions. Assume that two sets {i ∈ Z; u 0 (i) ̸ = 0} ̸ = ∅ and {i ∈ Z; v 0 (i) ̸ = 0} ̸ = ∅ have nite elements. Let (u, v) = (u(t, i), v(t, i
)) be the solution of (1.2.46) equipped with initial data (u 0 , v 0 ). Assume that (u, v) is bounded. Then the function pair (u, v) satises:

(i) for all c > c * u , one has lim t→∞ sup |i|≥ct [u(t, i) + v(t, i)] = 0; (ii) for all c ∈ [0, c * u ), one has lim inf t→∞ inf |i|≤ct v(t, i) > 0, lim inf t→∞ inf |i|≤ct u(t, i) > 0 and lim sup t→∞ sup |i|≤ct u(t, i) < 1.
We combine the new methods developed in Chapter 3 and Chapter 4 to prove the above two theorems. Roughly speaking, we derive some pointwise estimates between u(t, i) and v(t, i), which are solutions to (1.2.46). These estimates are similar to Lemma 1.2.38 and 1.2.39. According to these estimates, we can compare solutions of (1.2.46) with those of scalar KPP equations with nonlocal diusion in suitable moving domains.

However, due to the nonlocal diusion operator, we cannot nd a positive constant as a sub-solution in the moving domain to obtain the uniform persistence of solutions. In order to overcome this diculty, we apply a similar idea in Chapter 3 where considered the scalar nonlocal diusion equation.

Boundedness

In above two theorems, we require that the solution (u, v) is bounded. This assumption can be satised for some systems under certain additional conditions. Assumption 1.2.49. Assume that there exist some constants ε > 0, η > 0 and M > 0

such that for all 0 ≤ u ≤ 1, v ≥ 0 and t ≥ 0, uf (t, u, v) + εvg(t, u, v) ≤ M -ηv.
Remark 1.2.50. Let us show that the typical example (1.2.47) satises Assumption 1.2.49. Let us choose 0 < ε < inf t≥0 p(t)/ sup t≥0 q(t). Assume that inf t≥0 ν(t) > 0.

Note that for all 0 ≤ u ≤ 1, v ≥ 0 and t ≥ 0,

uf (t, u, v) + εvg(t, u, v) = u(1 -u) -p(t)uv + εq(t)uv -εν(t)v ≤ 1 -ε inf t≥0 ν(t)v.
Hence (1.2.47) satises Assumption 1.2.49 with some given 0 < ε < inf t≥0 p(t)/ sup t≥0 q(t), M = 1 and η = ε inf t≥0 ν(t).

Let ε > 0, η > 0 and M > 0 be given in Assumption 1.2.49. Set 

J k (•) = j∈Z J k (•, j) ∈ L ∞ (0, ∞), (k = 1, 2
(u, v) = (u, v)(t, i) be the solution of (1.2.46) supplemented with initial data (u 0 , v 0 ). If 0 ≤ u 0 ≤ 1 and v 0 ≥ 0 is bounded, then the solution (u, v) is bounded.
Let us consider W := u + εv. Due to Assumption 1.2.49 and

0 ≤ u ≤ 1, one can observe that d dt W (t, i) ≤ j∈Z J 2 (t, j)[W (t, i -j) -W (t, i)] + ∥J 1 ∥ ∞ + ∥J 2 ∥ ∞ + M -η W (t, i) -u(t, i) ε , ≤ j∈Z J 2 (t, j)[W (t, i -j) -W (t, i)] + ∥J 1 ∥ ∞ + ∥J 2 ∥ ∞ + M + η ε - η ε W (t, i),
where η and M are given in Assumption 1.2.49. Then we can construct a bounded supersolution for the above equation. The comparison principle implies that u + εv is bounded. Thus the Proposition 1.2.51 holds.

Perspectives

In this section, we will discuss some interesting problems for future works.

How time heterogeneities aect generalized travelling waves

In Chapter 2, we show the existence and nonexistence of generalized travelling wave solutions. Under certain conditions such as time uniquely ergodic, we show a sharp estimates of minimal wave speed. However, we do not show whether the time structure (almost periodic, uniquely ergodic and so on) would transmit to generalized travelling waves. We expect that if the coecients are time almost periodic for nonlocal diusion equations considered in Chapter 2, then the wave prole is time almost periodic and the speed function is almost periodic. The similar results for non-autonomous reactiondiusion equations were proved by Shen [START_REF] Shen | Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations[END_REF] using dynamical systems theory. We also refer the reader to [START_REF] Liang | Traveling fronts for Fisher-KPP lattice equations in almost periodic media[END_REF] which showed the almost periodic traveling fronts share the same recurrence property as the structure of the media for KPP lattice equations.

As we noticed in the local diusion case [START_REF] Hamel | Admissible speeds of transition fronts for nonautonomous monostable equations[END_REF], there may exist some generalized travelling wave solutions with other form speed functions which are dierent from the following speed function derived from the linear equation as

c(t) = λ + f ′ u (t, 0) λ , ∀λ > 0.
It would be interesting to give a more exhaustive description for generalized travelling waves in nonautonomous nonlocal diusion equation, for instance generalized travelling waves with some other type speed functions not merely as

c(t) = λ -1 R K(t, y)[e λy -1]dy + 1 + a ′ (t), for λ > 0 and a ∈ W 1,∞ (R).

The lack of regularizing eect in nonlocal diusion equations

As discussed previously, there is no parabolic regularity theory for nonlocal diusion equations. Although the regularity of solutions does not improve with time, we want to obtain some solutions with proper initial data in which the regularity does not worsen by the nonlocal dispersal operator. Note that in Chapter 3, we spend lots of pages to show that some solutions with suitable initial data are Lipschitz continuous. Our proof is based on some delicate constructions. Due to the special construction, we only prove some regularities of solutions for Logistic type equations. The spreading behaviours in such nonlocal diusion KPP equations are only partially solved. The lack of regularity of solutions causes lots of diculties in the analysis of large time behaviours of solutions. Also, we are curious about how to prove the regularity of solutions to the following nonlocal diusion KPP equations with time dependent kernel,

∂ t u(t, x) = R K(t, y) [u(t, x -y) -u(t, x)] dy + F (t, u).
If the regularity estimates of solutions to the above equation are obtained, we believe that our uniform persistence lemma developed in Chapter 3 can also be applied to study spreading behaviours of solutions to the above equation.

For prey-predator systems with nonlocal diusion operators, how to show the solutions have good regularity is not answered completely as well. We refer the reader to [START_REF] Zhao | Spreading speeds for the predator-prey system with nonlocal dispersal[END_REF] for investigation of spreading speeds in nonlocal diusion prey-predator system with large diusion rates. We also refer to [START_REF] Zhang | Propagation phenomena for a two-species LotkaVolterra strong competition system with nonlocal dispersal[END_REF] for studying competition system with nonlocal dispersal operators.

As long as one can show the regularity of solutions to prey-predator system with nonlocal diusion, we believe that our methods developed in Chapter 4 and 5 can also be extended to study spreading speed for the following system:

∂ t u(t, x) = R K 1 (t, y) [u(t, x -y) -u(t, x)] dy + F (t, u, v), ∂ t v(t, x) = R K 2 (t, y) [v(t, x -y) -v(t, x)] dy + G(t, u, v), t > 0, x ∈ R.

Accelerating propagation

In this manuscript, we mainly focus on the nonlocal diusion operator with thin-tailed kernel function. As we noticed in the literature review, the fat-tailed kernel might cause acceleration phenomena in KPP equations. Note that in our rst work the kernel function K = K(t, y) is dependent on time and K is assumed to be thin-tailed uniformly for t ∈ R.

If we couple the thin-tailed kernel and fat-tailed kernel function varying with time, for example we dene for all k ∈ Z, for some T > 0,

J(t, y) =    e -|y| 2 , ∀t ∈ [2kT, (2k + 1)T ], 1 (1 + |y|) 3 , ∀t ∈ [(2k + 1)T, (2k + 2)T ].
Then it would be interesting to study the large time behaviours of solutions to nonlocal diusion equation with such kernel function. Is it possible that the acceleration caused by the fat-tailed kernel will slow down due to the coupled thin-tailed kernel?

Spatial heterogeneous

Note that we only consider the time heterogeneities and one dimensional space in this manuscript. The propagation phenomena for reaction-diusion equations in spatial heterogeneous environment have been attracted a lot of attentions in the last decades. To the best of our knowledge, there is no results in spreading speeds for prey-predator systems with spatial-time heterogeneities. Our local pointwise estimates between the prey and the predator derived in Chapter 4 might be able to extend to the heterogeneous time-space media. In the forthcoming works, we will try to understand spreading behaviours for the following prey-predator systems:

∂ t u -∇ • (A 1 (t, x)∇u) + q 1 (t, x) • ∇u = F (t, x, u, v), ∂ t v -∇ • (A 2 (t, x)∇v) + q 2 (t, x) • ∇v = G(t, x, u, v), t > 0, x ∈ R N ,
equipped with compactly supported initial data u 0 and v 0 .

Chapter 2

Generalized travelling fronts for nonautonomous Fisher-KPP equations with nonlocal diusion

This work in collaboration with Arnaud Ducrot is published in Annali di Matematica Pura ed Applicata [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF].

Abstract

This work is concerned with the study of generalized travelling wave solutions for time heterogeneous Fisher-KPP equations with nonlocal diusion. Here we consider general time heterogeneities both for the diusion kernel and the reaction term. We investigate the existence and non existence of generalized travelling wave solutions for such a problem. Roughly speaking we prove that generalized travelling waves do exist for all suciently large wave speed function in some average sense, while such solutions do not exist for speed function with small average. In addition, under suitable assumptions on the time varying coecients, we derive a sharp estimate for the average speed functions of the generalized travelling wave solutions.

Introduction

In this work we investigate the existence and non existence of the so-called generalized travelling wave solutions for the following non-autonomous nonlocal equation

∂ t u(t, x) = R K(t, y) [u(t, x -y) -u(t, x)] dy + F t, u(t, x) , (2.1.1)
where (t, x) ∈ R × R.

Here K = K(t, y) denotes a nonnegative time dependent dispersal kernel while the nonlinear term F = F (t, u) is of Fisher-KPP type with

F (t, 0) = F (t, 1) = 0, ∀t ∈ R.

See Assumption 2.2.3 below for our precise hypothesis.

This equation typically models the spatio-temporal evolution of an invading population into some empty environment. Here the motion of individuals is due to long range dispersal according to the time varying kernel K while the local population dynamics (birth and death processes) is described by the time varying Fisher-KPP nonlinearity F .

When the functions K(t, y) = K(y) and F (t, u) = F (u) are both independent of time t and the kernel K has a thin tail, namely there exists σ > 0 such that R K(y)e σy dy < ∞, then Problem (2.1.1) is well known to admit travelling wave solutions, that is solution of the form

u(t, x) = U (x -ct), (t, x) ∈ R 2
for some wave speed c ∈ R.

Recall that travelling wave solutions have been widely studied in the last decades since the pioneer works of Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] for reactiondiusion equations. Such solutions have also received a lot of interests for problems with nonlocal diusion. We refer for instance the reader to [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF][START_REF] Coville | On a non-local equation arising in population dynamics[END_REF][START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF] and the references therein for results on nonlocal diusion equations with monostable nonlinearities and to [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF][START_REF] Coville | Propagation speed of travelling fronts in non local reaction diusion equations[END_REF] for bistable nonlinearities.

As far as heterogeneous environments are concerned, the notion of travelling waves discussed above has to be generalized to take into account the lack of translation invariance of the medium. The case of periodic medium has also been widely studied, giving raise to the notion of the so-called pulsating waves (see [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF]). We refer the reader for instance to [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Nadin | Traveling fronts in spacetime periodic media[END_REF][START_REF] Nolen | Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds[END_REF] and the references therein for results on pulsating waves for monostable and ignition nonlinearities and local diusion. See also [START_REF] Alikakos | Periodic traveling waves and locating oscillating patterns in multidimensional domains[END_REF][START_REF] Ducrot | A multi-dimensional bistable nonlinear diusion equation in a periodic medium[END_REF] for bistable nonlinearities, [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diusion equations[END_REF][START_REF] Giletti | Pulsating solutions for multidimensional bistable and multistable equations[END_REF] for multistable nonlinearities. We also refer to [START_REF] Ducrot | Convergence to a pulsating travelling wave for an epidemic reaction-diusion system with non-diusive susceptible population[END_REF][START_REF] Wang | Time periodic traveling waves for a periodic and diusive SIR epidemic model[END_REF][START_REF] Zhao | Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic LotkaVolterra competition system with diusion[END_REF][START_REF] Zhao | Time periodic traveling wave solutions for periodic advection reactiondiusion systems[END_REF] for systems of equations with local diusion operators. For problems with nonlocal diusion, we refer to [START_REF] Coville | Pulsating fronts for nonlocal dispersion and KPP nonlinearity[END_REF][START_REF] Jin | Seasonal inuences on population spread and persistence in streams: spreading speeds[END_REF][START_REF] Jin | Spatial dynamics of a periodic population model with dispersal[END_REF] and the references cited therein for results on scalar problems and to [START_REF] Bao | Traveling wave solutions of LotkaVolterra competition systems with nonlocal dispersal in periodic habitats[END_REF][START_REF] Bao | Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems[END_REF] for extensions to systems with nonlocal diusion operators.

As far as general heterogeneous media are concerned, Berestycki and Hamel [START_REF] Berestycki | Generalized travelling waves for reaction-diusion equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF] proposed a generalization of these notions introducing those of transition waves. We also refer to Matano [START_REF] Matano | Traveling waves in spatially random media[END_REF] and Shen [START_REF] Shen | Traveling waves in diusive random media[END_REF]. Here we follow the denition given in these works. To do so, we rst introduce the following denition. Denition 2.1.1. A continuous function u = u(t, x) : R 2 → [0, 1] is said to be a transition wave of (2.1.1) if (i) For all x ∈ R the function t → u(t, x) is absolutely continuous on R and satises (2.1.1) for almost every t ∈ R;

(ii) There exists some interface function X : R → R such that

lim x→-∞ u(t, x + X(t)) = 1 and lim x→∞ u(t, x + X(t)) = 0,
uniformly with respect to t ∈ R.

From the above denition, we now state the denition of a generalized travelling wave for (2.1.1), which is a special case of transition waves dened above. We refer to [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF] and [START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF] where this denition is used. Denition 2.1.2. A continuous function u = u(t, x) : R 2 → [0, 1] is said to be a generalized travelling wave of (2.1.1) with the wave speed function c = c(t) ∈ L ∞ (R) if u is a transition wave of (2.1.1) with the interface function

X(t) = t 0 c(s)ds, ∀t ∈ R.
In that case, we dene its prole ϕ :

R 2 → [0, 1] by ϕ(t, z) = u t, z + t 0 c(s)ds , ∀(t, z) ∈ R 2 .
Note that the prole ϕ satises the following behaviours at z = ±∞:

lim z→-∞ ϕ(t, z) = 1 and lim z→∞ ϕ(t, z) = 0 uniformly for t ∈ R.
Note that generalized travelling waves are nothing but transition waves associated to a globally Lipschitz continuous interface function. Let us also notice that when the prole ϕ of a generalized travelling wave u = u(t, x) with a speed function c = c(t) is rather smooth in space and time, say locally Lipschitz continuous, then it satises the following equation for almost every (t, z) ∈ R 2 :

∂ t ϕ(t, z) = c(t)∂ z ϕ(t, z) + R K(t, y) [ϕ(t, z -y) -ϕ(t, z)] dy + F (t, ϕ(t, z)), (2.1.2) 
together with the limit behaviours

lim z→-∞ ϕ(t, z) = 1 and lim z→+∞ ϕ(t, z) = 0 uniformly in t ∈ R. (2.1.3)
This generalized notion of waves has attracted of a lot interests and several recent works are devoted to the study of such front solutions. We may refer the reader to [START_REF] Hamel | Admissible speeds of transition fronts for nonautonomous monostable equations[END_REF][START_REF] Hamel | Transition fronts for the Fisher-KPP equation[END_REF][START_REF] Mellet | Stability of generalized transition fronts[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF][START_REF] Nolen | Existence and non-existence of Fisher-KPP transition fronts[END_REF][START_REF] Shen | Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations[END_REF] for studies, including existence, non existence, uniqueness and stability, of scalar reaction-diusion equations. See also [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF][START_REF] Bao | Transition waves for two species competition system in time heterogeneous media[END_REF][START_REF] Bao | Existence and stability of generalized transition waves for timedependent reaction-diusion systems[END_REF] for extensions to systems with time heterogeneities. As far as nonlocal diusion is concerned, we refer to [START_REF] Lim | Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diusion[END_REF] for results on spatially heterogeneous problems with monostable nonlinearities, to [START_REF] Cao | Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media[END_REF][START_REF] Wang | Transition waves for lattice Fisher-KPP equations with time and space dependence[END_REF] for heterogeneous lattice equations. For nonlocal equation with general time heterogeneous KPP nonlinearity we refer to [START_REF] Shen | Stability of transition waves and positive entire solutions of sher-kpp equations with time and space dependence[END_REF][START_REF] Shen | Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media[END_REF]. In these aforementioned works, the authors dealt with a dispersal kernel function independent of time and a general time heterogeneous KPP nonlinearity. They derived existence, uniqueness and stability properties.

In this work we extend some of these results by considering general time heterogeneities for both the nonlinear term and the dispersal kernel. Our aim is rst to construct generalized travelling waves for (2.1.1) and secondly to derive lower estimates for the speed function of the generalized travelling waves. This latter estimate implies some non-existence results when the speed is too small (in some average sense). In addition we shall roughly show that under suitable assumptions on the time varying coecients, there exists a minimal average speed of propagation. This somehow generalizes the well known results for the travelling waves of the Fisher-KPP equation both with local and nonlocal diusion, for which we refer to [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] and [START_REF] Coville | On a non-local equation arising in population dynamics[END_REF][START_REF] Schumacher | Travelling-front solutions for integro-dierential equations[END_REF].

Assumptions and main results

This section is devoted to the statement of our main assumptions for the functions, K and F , arising in (2.1.1) as well as to the statement of the main results presented in this note.

In order to state our assumptions for the kernel function K = K(t, y), let us introduce the following denition, that will be referred along this work as the abscissa of convergence. Denition 2.2.1. Let (X, ∥ • ∥ X ) be a Banach space and f ∈ L 1 (R; X). We dene the quantity, denoted by σ(f ) and called the abscissa of convergence of f , as follows

σ(f ) = sup λ ≥ 0 : the improper integral ∞ -∞
e λs f (s)ds converge in X .

Since f ∈ L 1 (R; X) the above quantity is also given by σ(f ) = sup λ ≥ 0 : lim τ →∞ τ 0 e λs f (s)ds exists in X .

Using the above denition, we now state our main assumptions for the kernel K.

Assumption 2.2.2 (Kernel K = K(t, y)). The kernel K : R × R → [0, ∞) satises the following set of assumptions:

(i) The function K is measurable, nonnegative and K(•, y) ∈ L ∞ + (R) for almost every y ∈ R; (ii) The map K : y → K(•, y) from R into L ∞ (R) is measurable and integrable, namely K ∈ L 1 (R; L ∞ (R));
(iii) Its abscissa of convergence, according to Denition 2.2.1 above, satises σ K > 0.

In the following, for notational simplicity, we will simply use σ(K) instead of σ K .

We now turn to our KPP assumptions for the nonlinear function F = F (t, u).

Assumption 2.2.3 (KPP nonlinearity). We assume that the function F takes the form F (t, u) = uf (t, u) where the function f : R × [0, 1] → R satises the following set of hypotheses:

(f1) f (•, u) ∈ L ∞ (R), for all u ∈ [0, 1],
and f is Lipschitz continuous with respect to u ∈ [0, 1], uniformly with respect to t ∈ R;

(f2) f (t, 0) = 1, f (t, 1) = 0 for a.e. t ∈ R and h(u) := inf t∈R f (t, u) > 0 for all u ∈ [0, 1); (f3) For almost every t ∈ R, the function u → f (t, u) is nonincreasing on [0, 1].
Remark 2.2.4. Note that since f (t, 0) ≡ 1 and (f 1), there exists some constant C > 0

such that |f (t, 0) -f (t, u)| ≤ Cu, ∀(t, u) ∈ R × [0, 1].
Hence due to (f 3) we get 

1 ≥ f (t, u) ≥ 1 -Cu, ∀(t, u) ∈ R × [0, 1]. ( 2 
F (t, u) = uf (t, u) such that f (t, 1) ≡ 0 and f (•, 0) = µ ∈ L ∞ (R) with inf t∈R µ(t) > 0. Indeed if u = u(t,
∂ τ û(τ, x) = R K(τ, y) [û(τ, x -y) -û(τ, x)] dy + û(τ, x) f (τ, û(τ, x)),
wherein we have set

K(τ, y) = K(t, y) µ(t) , f (τ, û) = f (t, û) µ(t) .
Hence F (τ, u) = u f (τ, u) becomes a KPP nonlinearity with f (τ, 0) ≡ 1, while K satises Assumption 2.2.2 with σ(K) = σ K .

In order to state our main results, we need to recall the denitions of the so-called least mean and upper mean value for functions in L ∞ (R). Such notions have been introduced and successfully used to study generalized travelling waves by Nadin and Rossi in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF] (see also [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF] for systems). Let us also recall (see [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF]) the following important reformulation of the least and upper mean value. For each function g ∈ L ∞ (R) one has ⌊g⌋ = lim

T →+∞ inf t∈R 1 T T 0 g(t + s)ds = sup A∈W 1,∞ (R) inf t∈R (A ′ + g)(t), (2.2.5) 
while

⌈g⌉ = lim T →+∞ sup t∈R 1 T T 0 g(t + s)ds = inf A∈W 1,∞ (R) sup t∈R (A ′ + g)(t). (2.2.6)
These alternative reformulations will be used throughout this manuscript. The next denition will also be used at some point. The main results of this work are strongly related to the following functions L :

[0, σ(K)) → L ∞ (R) and c : (0, σ(K)) → L ∞ (R) given by L(λ) := R K(•, y)e λy dy, λ ∈ [0, σ(K)) , (2.2.7) 
and

c(λ)(t) := λ -1 R K(t, y) e λy -1 dy + 1 , (2.2.8) 
for λ ∈ (0, σ(K)) and t ∈ R, as well as some of their properties, stated below.

Proposition 2.2.8. Let Assumption 2.2.2 be satised. Then the following properties hold:

(i) The maps L dened above in (2.2.7) is of class C 1 from (0, σ(K)) into L ∞ (R).
(ii) Consider the sets

Λ = {λ ∈ (0, σ(K)) : ∃λ ′ ∈ (λ, σ(K)), ∀k ∈ (λ, λ ′ ], ⌊c(λ) -c(k)⌋ > 0} ,
and

Λ = {λ ∈ (0, σ(K)) : ∃λ ′ ∈ (λ, σ(K)), ⌊c(λ) -c(λ ′ )⌋ > 0} .
Then one has Λ = Λ and there exists λ * ∈ (0, σ(K)] such that Λ = (0, λ * ) .

(iii) One also has:

dc(λ) dλ > 0, ∀λ ∈ (0, λ * ) and -dc(λ * ) dλ = 0 if λ * < σ(K).

(iv) The function λ → ⌊c(λ)⌋ is decreasing on Λ.

Now for each λ ∈ (0, σ(K)) and a ∈ W 1,∞ (R), we dene c λ,a ∈ L ∞ (R) the function given by c λ,a (t) = c(λ)(t) + a ′ (t), t ∈ R.
(2.2.9)

Using the above notation, our next result ensures the existence of generalized travelling waves for problem (2.1.1) with the speed function c λ,a , for each λ ∈ (0, λ * ) and a ∈ W 1,∞ (R).

Theorem 2.2.9 (Existence). Dene C ⊂ L ∞ (R) the set of admissible speed function, that is the set of the functions c ∈ L ∞ (R) such that there exists a generalized travelling wave, according to Denition 2.1.2, with the speed function c. Next the above theorem ensures that

t → c λ,a (t), λ ∈ (0, λ * ) and a ∈ W 1,∞ (R) ⊂ C .
As a consequence, recalling the denition of c(λ) in (2.2.8) and Proposition 2.2.8 (iv) one also obtains that 

lim λ→λ * ⌊c(λ)⌋, ∞ ⊂ ⌊C ⌋ := {⌊c⌋ , c ∈ C } . ( 2 
λ ∈ (0, σ(K)) the function t → c(λ)(t) ∈ L ∞ (R) by c(λ)(t) := ∞ -∞ zK(t, z)e λz dz,
Then for any c ∈ C the following estimate holds

⌈c(λ)(•) -c(•)⌉ ≤ 0, ∀λ ∈ (0, λ * ) .
As a consequence one also has

sup λ∈(0,λ * ) ⌊c(λ)⌋ ≤ inf ⌊C ⌋ .
As a corollary of the above theorem, we now derive some conditions ensuring that the upper estimate of inf ⌊C ⌋ provided in (2.2.10) is sharp.

Corollary 2.2.11. Under the same assumptions as in Theorem 2.2.10, assume that λ * < σ(K) and that ⌈c(λ

* )(•) -c(λ * )(•)⌉ ≤ 0. ( 2 

.2.11)

Then ⌊C ⌋ is an unbounded interval with

⌊c(λ * )(•)⌋ = inf ⌊C ⌋ .
Within the framework of the above corollary, note that due to (2.2.10) one obtains that the set ⌊C ⌋ is given by

either (⌊c(λ * )(•)⌋ , ∞) or [⌊c(λ * )(•)⌋ , ∞) .
By analogy with the usual Fisher-KPP equation, we suspect that ⌊C ⌋ coincides with the closed interval. However we are not able to prove it for the moment. In other words, we cannot prove that c λ * ,a is an admissible wave speed function, for some a ∈ W 1,∞ (R).

Let us comment on (2.2.11). To do so, observe that one has

-λ dc(λ) dλ = c(λ) -c(λ), ∀λ ∈ (0, σ(K)).
Hence, in view of Proposition 2.2.8 (iii), Condition (2.2.11) is equivalent to the unique ergodicity of the function c(λ

* )(•) -c(λ * )(•), that is ⌊c(λ * )(•) -c(λ * )(•)⌋ = ⌈c(λ * )(•) -c(λ * )(•)⌉ = 0.
As a special case, if for all λ closed λ * the function t → ∞ -∞ K(t, y)[e λy -1]dy is uniquely ergodic then (2.2.11) holds true and Corollary 2.2.11 applies.

Let us nally observe that the condition λ * < σ(K) holds if we assume that lim sup

λ→σ(K) - 1 λ ⌊L(λ)⌋ = ∞,
This property directly follows from the decreasing property of the map λ → ⌊c(λ)⌋ on (0, λ * ).

Comparison principle

In this section, we state a comparison principle for parabolic nonlocal diusion equation, that will be used throughout this note.

Proposition 2.3.1 (Comparison principle). Let t 0 ∈ R and T > 0 be given. Let K :

(t 0 , t 0 + T ) × R → [0, ∞) be a measurable kernel such that the map t → R K(t, y)dy is bounded and let F = F (t, u) be a function dened in [t 0 , t 0 + T ] × [0, 1] which is Lipschitz continuous with respect to u ∈ [0, 1], uniformly with respect to t. Let u and u be two uniformly continuous functions dened from [t 0 , t 0 + T ] × R into the interval [0, 1] such that for each x ∈ R, the maps u(•, x) and u(•, x) both belong to W 1,1 (t 0 , t 0 + T ), satisfying u(t 0 , •) ≤ u(t 0 , •) and, for all x ∈ R and for almost every t ∈ (t 0 , t 0 + T ),

∂ t u(t, x) ≥ R K(t, y) [u(t, x -y) -u(t, x)] dy + F (t, u(t, x)), ∂ t u(t, x) ≤ R K(t, y) [u(t, x -y) -u(t, x)] dy + F (t, u(t, x)).
Then u ≤ u on [t 0 , t 0 + T ] × R.

Proof. Assume for notational simplicity that t 0 = 0. Next for δ ∈ R to be chosen later, consider the function

v(t, x) = e δt [u(t, x) -u(t, x)] , so that v is uniformly continuous on [0, T ] × R, v(0, •) ≥ 0 and for all x ∈ R t → v(t, x) ∈ W 1,1 (0, T ) so that for all x ∈ R, ∂ t v ∈ L 1 (0, T ).
Then the function v satises for all x ∈ R and a.e. t ∈ (0, T )

∂ t v(t, x) ≥ R K(t, y) [v(t, x -y) -v(t, x)] dy + e δt [F (t, u(t, x)) -F (t, u(t, x))] + δv.
Next there exists some function a = a(t, x)

∈ L ∞ ((0, T ) × R) such that e δt [F (t, u(t, x)) -F (t, u(t, x))] = a(t, x)v(t, x).
Hence setting K(t) = R K(t, y)dy, one obtains

∂ t v(t, x) ≥ R K(t, y)v(t, x -y)dy + a(t, x) -K(t) + δ v(t, x).
Now choose δ > 0 large enough such that a(t, x) -K(t) + δ ≥ 1 for all (t, x) ∈ (0, T ) × R.

Next, consider the function w(t) := inf x∈R v(t, x) and observe that w is continuous since v is bounded and uniformly continuous on [0, T ] × R. Observe also that one has for all

(t, x) ∈ (0, T ) × R a(t, x) -K(t) + δ v(t, x) ≥ a(t, x) -K(t) + δ w(t) ≥ G(t)w(t),
where the positive function G ∈ L ∞ (0, T ) is given by

G(t) = inf x∈R a(t, x) -K(t) + δ if w(t) ≥ 0, sup x∈R a(t, x) -K(t) + δ if w(t) < 0.
As a consequence, since v is continuous, v satises for all x ∈ R and all t ∈ (0, T ):

v(t, x) ≥ v(0, x) + t 0 R K(s, y)v(s, x -y)dyds + t 0 G(s)w(s)ds.
so that, taking the inmum with respect to x ∈ R yields, for all t ∈ [0, T ],

w(t) ≥ w(0) + t 0 G(s) + R K(s, y)dy w(s)ds.
Since G(s)+ R K(s, y)dy ≥ 0 for all s ∈ (0, T ) and w(0) ≥ 0, the above inequality ensures that w(t) ≥ 0 for all t ∈ [0, T ] and completes the proof of the result.

2.4

Proof of Proposition 2.2.8

In this section we are concerned with the proof of Proposition 2.2.8. We start by the proof of the rst part, namely Proposition 2.2.8 (i).

Proof of Proposition 2.2.8 (i). Firstly, let us notice that due to Assumption 2.2.2 (ii) and Lebesgue dominated convergence theorem, the map λ → 0 -∞ K(•, y)e λy dy is continuous from the half complex plane {λ ∈ C : Re λ ≥ 0} into L ∞ (R) and holomorphic on the half plane {λ ∈ C : Re λ > 0}.

Next applying Theorem 1.5.1 in [START_REF] Arendt | Vector-valued Laplace Transforms and Cauchy Problems[END_REF] the map λ → ∞ 0 K(•, y)e λy dy is holomorphic from the half space {λ ∈ C : Re λ < σ(K)} into L ∞ (R).

As a consequence the map L, the sum of the two above functions, is continuous from the strip {λ ∈ C : 0 ≤ Re λ < σ(K)} into L ∞ (R) while holomorphic on the open strip {λ ∈ C : 0 < Re λ < σ(K)}. This completes the proof of Proposition 2.2.8 (i).

Before proving Proposition 2.2.8(ii), we rst give the following Lemma. Proof. We only prove it for the least mean operator, the continuity for the upper mean follows the same arguments. Let g ∈ L ∞ (R) be given and let (g n ) ⊂ L ∞ (R) be any sequence tending to g uniformly. Let ε > 0 be given. Then there exists N ≥ 0 large enough such that for all n ≥ N and for almost every t ∈ R one has

g n (t) -ε ≤ g(t) ≤ g n (t) + ε.
Hence we get for all n ≥ N ,

⌊g n ⌋ -ε ≤ ⌊g⌋ ≤ ⌊g n ⌋ + ε, so that lim n→∞ ⌊g n ⌋ = ⌊g⌋, that proves the lemma.
From the above lemma coupled with the continuity of L provided in Proposition 2.2.8 (i), one directly obtains that the maps λ → ⌊c(λ)⌋ and λ → ⌈c(λ)⌉ are both continuous on the interval (0, σ(K)). Moreover these maps enjoy the following behaviour when λ → 0 + :

⌊c(λ)⌋ ∼ ⌈c(λ)⌉ ∼ 1 λ when λ → 0 + .
(2.4.12)

We now turn to the proof of Proposition 2.2.8 (ii). To that aim we adapt some arguments presented in [START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF] to our context.

Proof of Proposition 2.2.8 (ii). First observe that Λ ⊂ Λ. Next note that, for each xed t ∈ R, λ → λc(λ)(t) is convex. We now x λ 0 , λ 1 ∈ (0, σ(K)) and introduce, for τ ∈ [0, 1], the point λ τ given by

λ τ := (1 -τ )λ 0 + τ λ 1 .
Due to the convexity of the function λ → λc(λ)(t), we have for almost every t ∈ R and

any τ ∈ [0, 1] (1 -τ )λ 0 c(λ 0 )(t) + τ λ 1 c(λ 1 )(t) ≥ λ τ c(λ τ )(t), that rewrites λ τ c(λ 0 )(t) + τ λ 1 c(λ 1 )(t) ≥ λ τ c(λ τ )(t) + τ λ 1 c(λ 0 )(t).
As a consequence for all T > 0 and almost every t ∈ R one obtains

λ τ T 0 (c(λ 0 )(t + s) -c(λ τ )(t + s)) ds ≥ τ λ 1 T 0 (c(λ 0 )(t + s) -c(λ 1 )(t + s)) ds,
that yields, dividing both sides by T > 0, taking the inmum of t and taking the limit as T → ∞, the following inequality

⌊c(λ 0 ) -c(λ τ )⌋ ≥ τ λ 1 λ τ ⌊c(λ 0 ) -c(λ 1 )⌋, ∀τ ∈ [0, 1], (2.4.13) 
while, dividing by -T ensures that

⌊c(λ τ ) -c(λ 0 )⌋ ≤ τ λ 1 λ τ ⌊c(λ 1 ) -c(λ 0 )⌋, ∀τ ∈ [0, 1]. (2.4.14)
On the other hand, taking the supremum with respect to t ∈ R instead of the inmum, we get the following similar estimates for the upper mean,

⌈c(λ 0 ) -c(λ τ )⌉ ≥ τ λ 1 λ τ ⌈c(λ 0 ) -c(λ 1 )⌉, ∀τ ∈ [0, 1], (2.4.15) 
and

⌈c(λ τ ) -c(λ 0 )⌉ ≤ τ λ 1 λ τ ⌈c(λ 1 ) -c(λ 0 )⌉, ∀τ ∈ [0, 1]. (2.4.16)
Now let us deduce from the above properties that Λ ⊂ Λ. To do so let λ ∈ Λ be given, that is, there exists λ ′ ∈ (λ, σ(K)) such that ⌊c(λ) -c(λ ′ )⌋ > 0. Applying (2.4.13) with

λ 0 = λ, λ 1 = λ ′ , we obtain ⌊c(λ) -c(λ τ )⌋ ≥ τ λ ′ λ τ ⌊c(λ) -c(λ ′ )⌋ > 0, ∀τ ∈ (0, 1], that is ⌊c(λ) -c(k)⌋ > 0 for any k ∈ (λ, λ ′ ]. Hence λ ∈ Λ and Λ ⊂ Λ.
Next, we prove there exists λ * ∈ (0, σ(K)] such that Λ = (0, λ * ). We split this proof into three steps.

Step1. Let us show that Λ ̸ = ∅.

Let λ 0 ∈ (0, σ(K)) be given. Then one has

lim inf λ→0 + ⌊c(λ) -c(λ 0 )⌋ ≥ lim λ→0 + ⌊c(λ)⌋ -⌈c(λ 0 )⌉ = +∞.
Hence there exists 0 < λ < λ 0 < σ(K) such that ⌊c(λ) -c(λ 0 )⌋ > 0, that is λ ∈ Λ = Λ.

Step 2. In this step, let us show that if λ ∈ Λ, then (0, λ] ⊂ Λ.

To that aim, x 0 < λ ′ < λ and k ∈ (0, σ(K) -λ) such that ⌊c(λ) -c(λ + k)⌋ > 0. Then using successively (2.4.13) and (2.4.14), we get that there exists some positive constant

m > 0 such that ⌊c(λ ′ ) -c(λ ′ + k)⌋ ≥ m⌊c(λ) -c(λ + k)⌋ > 0,
and λ ′ ∈ Λ.

Step 3. We now dene λ * ∈ (0, σ(K)] by λ * := sup Λ. Now to complete the proof of Proposition 2.2.8 (ii), let us show that if λ * < σ(K) then λ * / ∈ Λ. To check this property, let k ∈ (0, σ(K) -λ * ) be given. Now from the denition of λ * , for all n ∈ N * , λ * + 1 n / ∈ Λ and there exists 0

< k n < 1 n such that ⌊c(λ * + 1 n ) -c(λ * + 1 n + k n )⌋ ≤ 0.
Hence for all n large enough such that

1 n + k n < k one has 0 ≥ ⌊c(λ * + 1 n ) -c(λ * + 1 n + k n )⌋ ≥ k n k -1 n λ * + k λ * + 1 n + k n ⌊c(λ * + 1 n ) -c(λ * + k)⌋.
On the other hand one also has for all n

⌊c(λ * ) -c(λ * + k)⌋ ≤ ⌊c(λ * + 1 n ) -c(λ * + k)⌋ + ⌈c(λ * ) -c(λ * + 1 n )⌉.
Coupling the two above inequalities yields that for all n large enough one has

⌊c(λ * ) -c(λ * + k)⌋ ≤ ⌈c(λ * ) -c(λ * + 1 n )⌉.
It follows from the continuity of the function λ → c(λ) into L ∞ (R) and the continuity of mean value (see Lemma 2.4.1) that the right hand side in the above inequality goes to 0 as n → ∞, so that yields ⌊c(λ * ) -c(λ * + k)⌋ ≤ 0 for all k ∈ (0, σ(K) -λ * ). We conclude that λ * ̸ ∈ Λ and this completes the proof of Proposition 2.2.8 (ii).

We now turn to the proof of Proposition 2.2.8 (iii).

Proof. Due to Proposition 2.2.8 (i) and recalling the denition of c(λ), namely

c(λ)(t) = L(λ)(t) -K(t) + 1 λ , a.e. t ∈ R, λ ∈ (0, σ(K)), the map λ → c(λ)(•) is of the class C 1 from (0, σ(K)) into L ∞ (R). Now x λ ∈ Λ = (0, λ * ).
Next from the denition of the set Λ, there exists k ∈ (0, λ * -λ) such that ⌊c(λ) -c(λ + k)⌋ > 0. Using (2.4.13), one has for all τ ∈ (0, 1)

⌊c(λ) -c(λ + τ k)⌋ ≥ τ λ + k λ + τ k ⌊c(λ) -c(λ + k)⌋ > 0.
Hence taking the limit τ → 0 + into the above inequality yields

lim τ →0 + ⌊c(λ) -c(λ + τ k)⌋ τ λ + τ k λ + k ≥ ⌊c(λ) -c(λ + k)⌋ > 0.
Since λ → c(λ) is of class C 1 with value in L ∞ (R) and using the continuity stated in Lemma 2.4.1, this ensures that

k - dc(λ) dλ = lim τ →0 + c(λ) -c(λ + τ k) τ = lim τ →0 + c(λ) -c(λ + τ k) τ .
Hence we obtain that dc(λ) dλ > 0 for all λ ∈ (0, λ * ).

Now, let us check that ⌊-dc(λ * ) dλ ⌋ = 0. To see this, letting λ → λ * with λ ∈ Λ into the above inequality and recalling that the map λ → dc (λ) dλ is continuous with values in L ∞ (R), this yields ⌊-dc(λ * ) dλ ⌋ ≥ 0. On the other hand, since λ * / ∈ Λ, then for all h > 0, one has ⌊c(λ * ) -c(λ

* + h)⌋ ≤ 0. Here again, since λ → c(λ) is continuously dierentiable into L ∞ (R), we get ⌊ lim h→0 + c(λ) -c(λ + h) h ⌋ = lim h→0 + ⌊ c(λ) -c(λ + h) h ⌋,
so that ⌊-dc(λ * ) dλ ⌋ ≤ 0 and the proof is completed.

Finally, we turn to the proof of Proposition 2.2.8 (iv).

Proof. By contradiction, assume that there exist 0 < λ 1 < λ 2 < λ * such that ⌊c(λ 1 )⌋ ≤ ⌊c(λ 2 )⌋. We have proved that λ → ⌊c(λ)⌋ is continuous, hence it attains its minimum on [λ 1 , λ 2 ] at some λ. Since ⌊c(λ 1 )⌋ ≤ ⌊c(λ 2 )⌋, we can assume that λ ∈ [λ 1 , λ 2 ). From the denition of Λ, there exists λ ′ ∈ (λ, λ 2 ) such that ⌊c(λ) -c(λ ′ )⌋ > 0. Hence

⌊c(λ)⌋ -⌊c(λ ′ )⌋ ≥ ⌊c(λ) -c(λ ′ )⌋ > 0.
This is impossible.

2.5

Proof of Theorem 2.2.9

This section is devoted to the proof of Theorem 2.2.9, which is split into two main steps. We rst construct suitable super-solutions and sub-solutions. They are used in the second step to construct a generalized travelling wave, by considering a suitable initial data Cauchy problem starting at time t = -n, for some integer n, and making use of a limiting argument letting n → ∞.

Construction of sub and super solutions

Throughout this section, let λ ∈ (0, λ * ) be given and x a ∈ W 1,∞ (R). Recall that t → c λ,a (t) is dened in (2.2.9).

First step: In this rst step we construct a supersolution of (2.1.2) with the speed

function c(t) = c λ,a (t). Set for (t, z) ∈ R 2 φ(t, z) = min{1, ψ(t, z)}, with ψ(t, z) = e -λ(z+a(t)) .
Note that due to Assumption 2.2.3 (see Remark 2.2.4), we have F (t, ϕ) ≤ ϕ for all t ∈ R and ϕ ∈ [0, 1]. Hence to show that φ is a supersolution, it is sucient to check that

∂ t ψ -c λ,a (t)∂ z ψ - R K(t, y) [ψ(t, z -y) -ψ(t, z)] dy -ψ(t, z) ≥ 0.
Plugging the expression of ψ(t, z) into the above equation yields

∂ t ψ -c λ,a (t)∂ z ψ- R K(t, y) [ψ(t, z -y) -ψ(t, z)] dy -ψ(t, z) = ψ(t, z) -λa ′ (t) + c λ,a (t)λ - R K(t, y) e λy -1 dy -1 = 0, for all (t, z) ∈ R 2 .
Second step: The aim of this second step is to construct a suitable subsolution.

To do that, let us start to dene some quantities that will be used in our construction process. Recall that λ ∈ (0, λ * ) is xed. Hence due to Proposition 2.2.8, we can nd

0 < k < min{λ, σ(K) -λ} such that ⌊c(λ) -c(λ + k)⌋ = ⌊c λ,a -c λ+k,a ⌋ > 0.
(2.5.17)

Next due to (2.2.5), there exist a function b 0 = b 0 (t) ∈ W 1,∞ (R) and some ε > 0 such that for all t ∈ R one has

(λ + k)c λ,a (t) - R K(t, y)[e (λ+k)y -1]dy -1 + (b ′ 0 (t) -λa ′ (t)) ≥ ε. (2.5.18) 
We now construct a subsolution for (2.1.2) with the speed function c(t) = c λ,a (t). To that aim, using the above notations, for b 1 > 0 (that will be chosen large enough below) we set b

(t) = b 0 (t) + b 1 ∈ W 1,∞ (R)
as well as φ(t, z) = e -λ(z+a(t)) -e -λa(t)+b(t) e -(λ+k)z , (t, z) ∈ R 2 .

(2.5.19)

Dene also the set

O := {(t, z) ∈ R 2 : φ(t, z) ≥ 0} = (t, z) ∈ R 2 : z ≥ b(t) k ,
and observe that Next to prove that φ is a sub-solution on the set O, we only need to check that for all (t, z) ∈ O, one has

0 ≤ φ(t, z) ≤ e -λ(z+a(t)) ≤ e -λ k (b(t)+ka(t)) , ∀(t, z) ∈ O. ( 2 
(∂ t -c λ,a (t)∂ z ) φ(t, z) - R K(t, y)[φ(t, z -y) -φ(t, z)]dy ≤ φ(t, z) -Cφ 2 (t, z). (2.5.21)
Using straightforward algebra and setting A(t) = e -λa(t)+b(t) , this rewrites as for all (t, z) ∈ O,

A ′ (t)e -(λ+k)z + A(t)e -(λ+k)z (λ + k)c λ,a (t) - R K(t, y)[e (λ+k)y -1]dy -1 ≥ Cφ 2 (t, z).
Due to (2.5.20), it is sucient to have for (t, z) ∈ O,

(λ + k)c λ,a (t) - R K(t, y)[e (λ+k)y -1]dy -1 +(b ′ 0 (t)-λa ′ (t)) ≥ CA -1 (t)e (-λ+k)z-2λa(t) .
Since k < λ, it is thus sucient to have for all t ∈ R

(λ + k)c λ,a (t) - R K(t, y)[e (λ+k)y -1]dy -1 + (b ′ 0 (t) -λa ′ (t)) ≥ Ce -λ k (b 0 (t)+b 1 )-λa(t) .
Finally in view of the denition of b 0 and ε in (2.5.18), x b 1 larger if necessary so that

Ce -λ k (b 0 (t)+b 1 )-λa(t) ≤ ε 2 , ∀t ∈ R,
and with such a choice, one may observe that (2.5.21) is satised for (t, z) ∈ O.

As a conclusion of the above analysis, the function ϕ given by

ϕ(t, z) := max{0, φ(t, z)}, ∀(t, z) ∈ R 2 , (2.5.22) 
is a sub-solution of (2.1.2) in R 2 .

Construction of a solution by a limiting procedure

For any integer n ≥ 1, we consider the following initial value problem, posed for t ≥ -n and z ∈ R,

   ∂ t ϕ = c λ,a (t)∂ z ϕ(t, z) + R K(t, y) [ϕ(t, z -y) -ϕ(t, z)] dy + F (t, ϕ), ϕ(-n, z) = ϕ(-n, z).
(2.5.23)

We denote by ϕ n = ϕ n (t, z) the solution of the above equation and dene the function

u n = u n (t, z) by u n (t, z) = ϕ n (t, z - t 0 c λ,a (s)ds).
One may observe that the function u n (t, z) satises the following equation without the

drift term c λ,a (t)∂ z        ∂ t u(t, z) = R K(t, y) [u(t, z -y) -u(t, z)] dy + F (t, u), t ≥ -n, z ∈ R, u(-n, z) = ϕ -n, z - -n 0 c λ,a (s)ds , z ∈ R.
(2.5.24)

Now note that the comparison principle stated in Proposition 2.3.1 applies and ensures that the solution u n (t, z) of (2.5.24) for all t ≥ -n and z ∈ R satises the estimates

ϕ t, z - t 0 c λ,a (s)ds ≤ u n (t, z) ≤ ϕ t, z - t 0 c λ,a (s)ds .
Moreover since the function z → ϕ(-n, z --n 0 c λ,a (s)ds) is nonincreasing on R, then the function z → u n (t, z) is also nonincreasing with respect to z ∈ R for each given t ≥ -n.

Our aim now is to pass to the limit n → ∞ in the sequence of function {u n = u n (t, z)} to construct a generalized travelling wave of (2.1.1). To do so, we rst discuss in the following lemma some important Lipschitz regularity estimates, inspired by [START_REF] Shen | Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media[END_REF].

Lemma 2.5.1. There exists some constant m > λ large enough such that for all n ≥ 1 one has

|u n (t, z + h) -u n (t, z)| ≤ min 1, e m|h| -1 , ∀t ≥ -n, ∀z ∈ R.
For all n ≥ 1 one has ∂ t u n ∈ L ∞ ((-n, ∞) × R) and the following estimate holds

∥∂ t u n ∥ ∞ ≤ 2 R ∥K(•, y)∥ ∞ dy + 1, ∀n ≥ 1.
In other words, the sequence {u n = u n (t, z)} is uniformly bounded (with respect to n) in the Lipschitz norm on the set [-n, ∞) × R.

Proof. Since for all n ≥ 1, the function u n is between 0 and 1 and since it is nonincreasing with respect to z, in order to prove the rst estimate, we only need to prove that for all n ≥ 1 one has

|u n (t, z + h) -u n (t, z)| ≤ e m|h| -1, ∀t ≥ -n, ∀z ∈ R.
In the following we prove it for h > 0. The case where h < 0 can be proved similarly.

For any n set c n =

-n 0 c λ,a (s)ds. Note that one has

u n (-n, z) = e -λ(z-cn+a(-n)) , if z ≥ c n -a(-n), 1, if z < c n -a(-n), (2.5.25) 
while for h > 0, one has

u n (-n, z + h) = e -λ(z+h-cn+a(-n)) , if z + h ≥ c n -a(-n), 1, if z + h < c n -a(-n).
(2.5.26)

Then we infer from these formulas

u n (-n, z + h) u n (-n, z) =    e -λh , if z ≥ c n -a(-n), e -λ(z+h-cn+a(-n)) , if c n -a(-n) ≥ z ≥ c n -a(-n) -h, 1, if z + h < c n -a(-n).
(2.5.27)

Hence one can choose m > λ large enough such that for all n one has

e -mh ≤ u n (-n, z + h) u n (-n, z) ≤ 1.

Now x n and h > 0 and consider the function

v h = v h (t, z) given by v h (t, z) := u n (t, z + h) e -mh .
It satises the problem

   ∂ t v h (t, z) = R K(t, y) v h (t, z -y) -v h (t, z) dy + e mh F (t, e -mh v h ), v h (-n, z) = e mh ϕ(-n, z + h -c n ).
(2.5.28)

Next Assumption 2.2.3 (see (f 3)) ensures that e mh F (t, e -mh v h ) = v h f (t, e -mh v h ) ≥ v h f (t, v h ) = F (t, v h ).
(2.5.29)

Hence v h becomes the super-solution of (2.5.24) and the following ordering holds at t = -n

v h (-n, z) = e mh u n (-n, z + h) ≥ u n (-n, z), ∀z ∈ R.
As a consequence, the comparison principle applies and provides

u n (t, z) ≤ v h (t, z), ∀(t, z) ∈ [-n, ∞) × R.
(2.5.30)

Now since for all t ≥ -n the function z → u n (t, z) is nonincreasing, for all t ≥ -n and z ∈ R one gets

|u n (t, z + h) -u n (t, z)| = u n (t, z) -u n (t, z + h) ≤ (1 -e -mh )v h (t, z) ≤ e mh -1.
(2.5.31)

Hence, since u n ≤ 1, we have obtained that, for all n ≥ 1 and for all h > 0,

|u n (t, z + h) -u n (t, z)| ≤ min 1, e m|h| -1 , ∀t ≥ -n, ∀z ∈ R.
As mentioned above, the case of h < 0 can be handled similarly and this completes the proof of the rst estimate in Lemma 2.5.1. Finally due to (2.5.24) and Remark 2.2.4, we have

∥∂ t u n ∥ L ∞ ≤ 2 R ∥K(•, y)∥ ∞ dy + 1, ∀n ≥ 1.
This proves the second estimate of the lemma and this completes the proof of the result.

The Lipschitz continuous estimate provided in Lemma 2.5.1 allows us to make use of Arzelà-Ascoli theorem, which ensures that there exists a subsequence of {u n }, still denoted with the same indexes, and a globally Lipschitz continuous function u = u(t, z) :

R 2 → R such that u n (t, z) → u(t, z) as n → ∞ locally uniformly for (t, z) ∈ R 2 .
This allows us to dene the Lipschitz continuous function ϕ = ϕ(t, z) by

ϕ(t, z) = u t, z + t 0 c λ,a (s)ds , ∀(t, z) ∈ R 2 .
(2.5.32)

We summarize in the next proposition some important properties satised by the function ϕ, directed inherited from those of sequence of function {u n }.

Proposition 2.5.2. The function ϕ = ϕ(t, z) enjoys the following properties.

(i) It is nonincreasing with respect to z ∈ R, for all t ∈ R, and is globally Lipschitz continuous on R 2 ;

(ii) It satises the following estimate for all (t, z Note that (2.5.33) ensures the following behaviour at z = ∞ ϕ(t, z) ∼ e -λ(z+a(t)) as z → ∞, uniformly for t ∈ R, so that as a special case, one has

) ∈ R 2 ϕ (t, z) ≤ ϕ (t, z) ≤ ϕ (t, z) . ( 2 
lim z→∞ ∥ϕ(•, z)∥ L ∞ (R) = 0.
Hence to complete the proof of Theorem 2.2.9, it remains to study the behaviour of ϕ as z → -∞. We will more precisely prove the following lemma.

Lemma 2.5.3. The function ϕ = ϕ(t, z) dened in (2.5.32) satises the following be-

haviour for z = -∞ lim z→-∞ sup t∈R |1 -ϕ(t, z)| = 0.
Proof. To prove the above lemma, let us show that

lim z→-∞ u t, z + t 0 c λ,a (s)ds = 1 uniformly for t ∈ R.
Recalling the denition of ϕ in (2.5.22), there exists z 0 large enough such that

inf t∈R ϕ(t, z 0 ) > 0.
Hence due to (2.5.33) and since ϕ is nonincreasing with respect to z ∈ R, it follows that

Θ := lim z→-∞ inf t∈R ϕ(t, z) > 0.
Due to (2.5.32) this also rewrites as

Θ = lim z→-∞ inf t∈R u t, z + t 0 c λ,a (s)ds .
Now, since u ≤ 1, to prove the lemma, it is sucient to check that Θ = 1. To do so, let us consider two sequences {t n } ⊂ R and {z n } ⊂ R such that z n → -∞ as n → ∞ and

lim n→∞ u t n , z n + tn 0 c λ,a (s)ds = Θ.
Consider now the sequence of functions {u n = u n (t, z)} given for n ≥ 1 by

u n (t, z) = u(t + t n , z + z n + c n ) with c n = tn 0 c λ,a (s)ds.
Note that the sequence {u n } is uniformly bounded in the Lipschitz norm on R 2 so that one may assume, possibly along a subsequence, that u n (t, z) → u ∞ (t, z) locally uniformly for (t, z) ∈ R 2 . Moreover the limit function satises u ∞ (0, 0) = Θ. We now claim that

u ∞ (t, z) ≥ Θ, ∀(t, z) ∈ R 2 .
(2.5.34)

To see this, note that

u n (t, z) = u t + t n , z + z n - t 0 c λ,a (t n + s)ds + t+tn 0 c λ,a (s)ds .
Now, since one has locally uniformly for

(t, z) ∈ R 2 z + z n - t 0 c λ,a (t n + s)ds → -∞,
it follows from the denition of Θ that (2.5.34) holds true. We now derive an equation satised by u ∞ . To that aim, observe that since the function u satises the following equation for all (t, z) ∈ R 2 ,

∂ t u(t, z) = R K(t, y) [u(t, z -y) -u(t, z)] dy + u(t, z)f (t, u(t, z)).
We obtain that for any n ≥ 1 the function u n satises the shifted equation

∂ t u n (t, z) = R K(t + t n , y) [u n (t, z -y) -u n (t, z)] dy + u n (t, z)f (t + t n , u n (t, z)).
In order to pass to the limit n → ∞ and obtain a suitable equation for u ∞ , we rst investigate the shifted kernel (t, y) → K(t + t n , y). For that purpose recall that y → K(•, y) ∈ L 1 (R; L ∞ (R)) so that Dunford-Pettis theorem applies and ensures that the sequence {(t, y) → K(t + t n , y)} is relatively weakly compact in L 1 ((-T, T ) × R) for any T > 0. Hence, there exists a subsequence, still denoted with the same notation, and

K = K(t, y) ∈ L 1 loc (R 2 ) with 0 ≤ K(t, y) ≤ ∥K(•, y)∥ L ∞ (R) a.e.(t, y) ∈ R 2 ,
and such that for all T > 0 and any φ ∈ L ∞ ((-T, T ) × R) the following convergence holds

lim n→∞ T -T R K(t + t n , y)φ(t, y)dtdy = T -T R K(t, y)φ(t, y)dtdy.
As a special case, taking φ(t, y) ≡ 1 yields

R K(t + t n , y)dy → R K(t, y)dy weakly in L 1 loc (R), so that u n (t, x) R K(t + t n , y)dy → u ∞ (t, x) R K(t, y)dy,
weakly in L 1 loc (R) with respect to t and locally uniformly with respect to x ∈ R. Using the above convergence for the sequence of the shifted kernels , we now claim that Claim 2.5.4. The following holds

lim n→∞ R K(t + t n , y)u n (t, x -y)dy = R K(t, y)u ∞ (t, x -y)dy,
weakly L 1 loc (R) with respect to t and locally uniformly with respect to x ∈ R. In other words, for any T > 0 and any ψ ∈ L ∞ (-T, T ) one has

lim n→∞ T -T R ψ(t)K(t + t n , y)u n (t, x -y)dtdy = T -T R ψ(t)K(t, y)u ∞ (t, x -y)dtdy, locally uniformly with respect to x ∈ R. Proof. Let us rst observe that R K(t + t n , y)u ∞ (t, x -y)dy → R K(t, y)u ∞ (t, x -y)dy as n → ∞, (2.5.35) 
locally uniformly for x ∈ R and weakly in L 1 loc (R) with respect to the t-variable. Next note that for any n one has

R K(t + t n , y)u n (t, x -y)dy - R K(t, y)u ∞ (t, x -y)dy = R K(t + t n , y) [u n (t, x -y) -u ∞ (t, x -y)] dy + R K(t + t n , y) -K(t, y) u ∞ (t, x -y)dy.
Due to (2.5.35) to prove Claim 2.5.4 it is sucient to check that

R K(t + t n , y) [u n (t, x -y) -u ∞ (t, x -y)] dy → 0 as n → ∞, (2.5.36) 
locally uniformly for (t, x) ∈ R 2 . To do so, note that for any B > 0 one has

R K(t + t n , y) [u n (t, x -y) -u ∞ (t, x -y)] dy ≤ |y|≤B K(t + t n , y) |u n (t, x -y) -u ∞ (t, x -y)| dy + |y|≥B K(t + t n , y) |u n (t, x -y) -u ∞ (t, x -y)| dy.
Since 0 ≤ u n ≤ 1 the above inequality implies that for all B > 0, any n and any

(t, x) ∈ R 2 one has R K(t + t n , y) [u n (t, x -y) -u ∞ (t, x -y)] dy ≤ R ∥K(•, y)∥ L ∞ (R) dy sup |y|≤B |u n (t, x -y) -u ∞ (t, x -y)| + 2 |y|≥B ∥K(•, y)∥ L ∞ (R) dy.
Next since u n (t, z) → u ∞ (t, z) locally uniformly for (t, z) ∈ R 2 , one obtains for each A > 0 and any B > 0

lim sup n→∞ sup (t,x)∈[-A,A] 2 R K(t + t n , y) [u n (t, x -y) -u ∞ (t, x -y)] dy ≤ 2 |y|≥B ∥K(•, y)∥ L ∞ (R) dy.
Finally since y → ∥K(•, y)∥ L ∞ (R) ∈ L 1 (R), letting B → ∞ ensures that (2.5.36) holds and this completes the proof of Claim 2.5.4.

Now consider the sequence of function g

n (t, z) = f (t + t n , u n (t, z)). It is a bounded sequence in L ∞ (R 2
) so that up to a subsequence, one may assume that it converges for the weak-⋆ topology of

L ∞ (R 2 ) to some function g ∞ = g ∞ (t, z) ∈ L ∞ (R 2 ). Note that due to Assumption (f 1) and (f 2) the function g ∞ satises h(u ∞ (t, z)) ≤ g ∞ (t, z) ≤ K(1 -u ∞ (t, z)), ∀(t, z) ∈ R 2 ,
(2.5.37)

where K > 0 denotes the Lipschitz constant of f with respect to u ∈ [0, 1].

As a consequence the Lipschitz continuous function u ∞ satises the equation for a.e.

(t, z) ∈ R 2 ∂ t u ∞ (t, z) = R K(t, y) [u ∞ (t, z -y) -u ∞ (t, z)] dy + u ∞ (t, z)g ∞ (t, z), together with 0 < Θ ≤ u ∞ (t, z) ≤ 1 for all (t, z) ∈ R 2 and u ∞ (0, 0) = Θ.
Now let us complete the proof of the lemma by showing that Θ = 1. To do so let us consider the function U = U (t) dened for t ≥ 0 by

U ′ (t) = h (U (t)) U (t), ∀t ≥ 0 and U (0) = Θ.
Then due to (2.5.37), the comparison principle applies and ensures that

U (t) ≤ u ∞ (s + t, z) ≤ 1, ∀t ≥ 0, ∀s ∈ R, ∀z ∈ R.
As a consequence, we obtain that

U (t) ≤ u ∞ (0, 0) = Θ ≤ 1, ∀t ≥ 0.
Since Θ > 0, U (t) → 1 as t → ∞. This implies that Θ = 1 and this completes the proof of the lemma.

2.6

Lower speed estimates

In this section we derive some lower speed estimates for generalized travelling wave solutions of (2.1.1), proving as a by-product some non-existence result for such solutions. Throughout this section we assume that Assumption 2.2.2 and 2.2.3 are satised. Consider a generalized travelling wave u = u(t, x) of (2.1.1) with speed function c = c(t) ∈ C , according to Denition 2.1.2. We also denote by ϕ = ϕ(t, z) its prole. As mentioned above, in this section we focus on deriving of a lower estimate for the speed function c, proving Theorem 2.2.10. Our analysis is based on the construction of a suitable sub-solution on some large bounded interval coupled with a comparison argument on a moving spatial domain, inspired by [START_REF] Zhang | Propagation phenomena for a two-species LotkaVolterra strong competition system with nonlocal dispersal[END_REF].

We split this section into two subsections. We rst construct a suitable sub-solution on some large interval for the problem with a compactly supported convolution kernel. Then we make use of such a sub-solution to complete the proof of Theorem 2.2.10 and those of its corollary as well.

A sub-solution

This subsection is devoted to the construction on a suitable sub-solution on some large interval for the integro-dierential operator

∂ t -v(t)∂ x -K(t, •) * • + (K(t) -1 + θ),
wherein * devoted the convolution product in R, K(t) := R K(t, y)dy while v = v(t) is a suitable speed function and θ > 0 is some given parameter. The construction presented in this section extends some preliminary ideas used in [START_REF] Rizk | Asymptotic speed of spread for a nonlocal evolutionary-epidemic system[END_REF][START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF][START_REF] Diekmann | Run for your life. A note on the asymptotic speed of propagation of an epidemic[END_REF][START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF] for nonlocal diusion.

To that aim we dene, for B > 0, R > 0 and γ ∈ R, the following function

t → c R,B (γ)(t) ∈ L ∞ (R) given by c R,B (γ)(t) := 2R π B -B
K(t, z)e γz sin( πz 2R )dz.

(2.6.38)

Using the above notation our lemma reads as follows.

Lemma 2.6.1. Let γ ∈ Λ be given. Then there exists B 0 > 0 large enough and θ 0 > 0 such that for all B > B 0 there exists R 0 = R 0 (B) > 0 large enough enjoying the following properties:

for all B > B 0 and R > max(R 0 (B), B), there exists some function a

∈ W 1,∞ (R) such that the function u R,B (t, x) = e a(t) e -γx cos( πx 2R ) if t ∈ R and x ∈ [-R, R], 0 else,
satises, for all θ ≤ θ 0 , for all x ∈ [-R, R] and for any t ∈ R,

(∂ t -c R,B (γ)(t)∂ x ) u(t, x) ≤ R K(t, x -y)u(t, y)dy + 1 -θ -K(t) u(t, x). Herein c R,B (γ)(t) is dened above in (2.6.38).
To prove this result we set, for all B > 0, the compactly supported kernel K B = K B (t, y) given by K B (t, y) = K(t, y) for (t, y) ∈ R × (-B, B), 0 else.

Proof. Let γ ∈ Λ be given. Recall that from Proposition 2.2.8 one has

- dc(γ) dλ > 0.
This rewrites as

θ ∞ := ⌊ ∞ -∞ K(t, z)e γz (1 -γz) dz + 1 -K(t)⌋ > 0, Dene θ 0 > 0 by θ 0 := θ ∞ 8 .
Next observe that since γ < σ(K), one has

∞ -∞ K(•, z)e γz (1 -γz) dz = lim B→∞ B -B K(•, z)e γz (1 -γz) dz in L ∞ (R).
so that there exists B 0 = B 0 (γ) > 0 large enough such that for all B > B 0 one has

⌊ ∞ -∞ K B (t, z)e γz (1 -γz) dz + 1 -K(t)⌋ > θ ∞ 2 .
Now for any given B > B 0 let us observe that, due to Lebesgue convergence theorem, it holds

lim R→∞ ∞ -∞ K B (t, z)e γz cos( πz 2R ) -γ 2R π sin( πz 2R ) dz = ∞ -∞ K B (t, z)e γz (1 -γz) dz,
uniformly for t ∈ R.

Hence for any B > B 0 there exists R 0 = R 0 (B) large enough such that for all R > R 0 (B) one has

⌊ ∞ -∞ K B (t, z)e γz cos( πz 2R ) -γ 2R π sin( πz 2R ) dz + 1 -K(t)⌋ > 2θ 0 > 0.
In the rest of this proof we x B > B 0 and R > max(R 0 (B), B). Then using the formulation of the least mean value recalled in (2.2.5), there exists some function a = a(t) ∈ W 1,∞ (R) (depending upon B and R) such that for a.e. t ∈ R

a ′ (t) + ∞ -∞ K B (t, z)e γz γ 2R π sin( πz 2R ) -cos( πz 2R ) dz -1 + K(t) ≤ -θ 0 .
(2.6.39)

Next with such a function a ∈ W 1,∞ (R). Fix θ ∈ (0, θ 0 ) and let us compute

∂ t -c R,B (γ)(t)∂ x -K(t, •) * • + (K(t) -1 + θ) u R,B (t, x), for t ∈ R and x ∈ [-R, R].
For notational simplicity we let L be the above integrodierential operator, namely

L = ∂ t -c R,B (γ)(t)∂ x -K(t, •) * • + (K(t) -1 + θ).
Then setting γ R = -γ + i π 2R ∈ C and denoting by Re z the real part of a complex number z ∈ C, observe that for all t ∈ R and x ∈ [-R, R] we have

e -a(t) Lu R,B (t, x) =Re e γ R x a ′ (t) -c R,B (γ)(t)γ R -(1 -θ) + K(t) - R -R K(t, x -y)e -γy cos( πy 2R )dy.
Now to estimate the last term of the above expression, we make use of some arguments developed by Diekmann in [START_REF] Diekmann | Run for your life. A note on the asymptotic speed of propagation of an epidemic[END_REF]. First let us observe that for all t ∈ R and any |x| ≤ R one has Next note that for all t ∈ R and

R -R K(t, x -y)e -γy cos( πy 2R )dy ≥ R -R K B (t, x -y)e -γy cos( πy 2R )dy ≥ ∞ -∞ K B (t,
x ∈ [-R, R] one has R -R K B (t, x -y)e -γy cos( πy 2R )dy ≥ ∞ -∞ K B (t, x -y)e -γy cos( πy 2R )dy = ∞ -∞ K B (t, z)e -γ(x-z) cos( π(x -z) 2R )dz = ∞ -∞ K B (t, z)e -γ(x-z) cos( πx 2R ) cos( πz 2R )dz + ∞ -∞ K B (t, z)e -γ(x-z) sin( πx 2R ) sin( πz 2R )dz.
We thus infer from the above estimate that for all t ∈ R and

x ∈ [-R, R] e -a(t) Lu R,B (t, x) ≤Re e γ R x a ′ (t) -c R,B (γ)(t)γ R -1 + θ + K(t) - ∞ -∞ K B (t, z)e -γ(x-z) cos( πx 2R ) cos( πz 2R )dz - ∞ -∞ K B (t, z)e -γ(x-z) sin( πx 2R ) sin( πz 2R )dz.
Hence this yields for all

(t, x) ∈ R × [-R, R] e -a(t) Lu R,B (t, x) ≤ e -γx cos( πx 2R ) a ′ (t) + γc R,B (γ)(t) -(1 -θ) + K(t) - ∞ -∞ K B (t, z)e γz cos( πz 2R )dz -e -γx sin( πx 2R ) ∞ -∞ K B (t, z)e γz sin( πz 2R )dz - π 2R c R,B (γ)(t) .
Note that due to the choice of the speed (see (2.6.38)), the last term vanishes and we end-up with

e -a(t) Lu R,B (t, x) ≤ e -γx cos( πx 2R ) a ′ (t) + γc R,B (γ)(t) -(1 -θ) + K(t) - ∞ -∞ K B (t, z)e γz cos( πz 2R )dz , for all (t, x) ∈ R × [-R, R].
Finally coupling the above computation with (2.6.39) yields for any

(t, x) ∈ R × [-R, R] e -a(t) Lu R,B (t, x) ≤ e -γx cos( πx 2R ) (θ -θ 0 ) ≤ 0.
This completes the proof of the lemma.

Proof of Theorem 2.2.10

As introduced at the beginning of this section, recall that u = u(t, x) denotes a generalized travelling wave of (2.1.1) with speed function c = c(t) ∈ C while ϕ = ϕ(t, z) denotes its prole. We focus in this section on the proof of Theorem 2.2.10 and its corollary, namely Corollary 2.2.11. Our lower estimate analysis for the speed function is related to the following lemma.

Lemma 2.6.

2. Let v = v(t) ∈ L ∞ (R) be a function such that lim sup t→∞ inf τ ∈R ϕ t -τ, t 0 [v(l -τ ) -c(l -τ )] dl > 0, (2.6.41) 
then one has ⌈v(•) -c(•)⌉ ≤ 0.

Proof. Dene α > 0 by

lim sup t→∞ inf τ ∈R ϕ t -τ, t 0 [v(l -τ ) -c(l -τ )] dl = α.
Letting τ = t -s the above limit rewrites as

lim sup t→∞ inf s∈R ϕ s, t 0 [v(l -t + s) -c(l -t + s)] dl = α.
Next let us argue by contradiction by assuming that

⌈v(•) -c(•)⌉ > 0.
(2.6.42)

Now set Γ(t, s) the function given by

Γ(t, s) = 1 t t 0 [v(l -t + s) -c(l -t + s)]dl. Consider a sequence {t n } with t n → ∞ such that inf s∈R ϕ s, tn 0 [v(l -t n + s) -c(l -t n + s)] dl → α.
(2.6.43)

Next due to (2.6.42), there exists a sequence {s n } such that one has

lim inf n→∞ Γ(t n , s n ) > 0, so that t n Γ(t n , s n ) → ∞ as n → ∞.
On the other hand, note that

t n Γ(t n , s n ) = tn 0 [v(l -t n + s n ) -c(l -t n + s n )]dl → ∞.
As a consequence, since ϕ(t, z) → 0 as z → ∞, uniformly with respect to t ∈ R, one obtains

ϕ s n , tn 0 [v(l -t n + s n ) -c(l -t n + s n )]dl → 0 as n → ∞,
that contradicts (2.6.43) and completes the proof of the lemma.

Using the above lemma we rst complete the proof of Theorem 2.2.10.

Proof of Theorem 2.2.10. To prove this result let γ ∈ Λ be given and xed. Let B 0 and θ 0 be the constants provided by Lemma 2.6.1. Recalling the denition of the function To do so, x B > B 0 and R > max(B, R 0 (B)). Now consider for t ∈ R, x ∈ R and τ ∈ R the function u given by u(t, x; τ ) = ϕ t -τ, x -t 0 c(l -τ )dl .

t → c R,B (γ)(t) ∈ L ∞ (R) in (2.

It satises the equation

∂ t u(t, x; τ ) = R K(t -τ, y)[u(t, x -y; τ ) -u(t, x; τ )]dy + F (t -τ, u).
Consider also the function u = u(t, x; τ ) given by

u(t, x; τ ) = ηu R,B t -τ, x - t 0 c R,B (γ)(l -τ )dl , ∀(t, τ, x) ∈ R 3 ,
wherein the function u R,B is dened in Lemma 2.6.1, using some function a = a(t) ∈ W 1,∞ (R).

Next dene the constant M R > 0 by

M R := e ∥a∥∞ max z∈[-R,R] e γz . Now since ϕ(τ, z) → 1 as z → -∞ uniformly for τ ∈ R, there exists z 0 ∈ R such that inf τ ∈R,z≤z 0 ϕ(τ, z) > 0.
Up to work with a shift in z of ϕ, we assume that inf τ ∈R,z≤R ϕ(τ, z) > 0.

Now choose η 0 > 0 such that one has

ϕ(τ, x) ≥ η 0 M R χ [-R,R] (x), ∀τ ∈ R, x ∈ R, wherein χ [-R,R] (x) denotes the characteristic function of the interval [-R, R].
Next note (see (2.2.4)) that for each η ∈ (0, η 0 ) one has

F (t, ηu R,B (t, x)) ≥ ηu R,B (t, x) [1 -Cηu R,B ] ≥ ηu R,B (t, x) [1 -CηM R ] . Now choose η < min(η 0 , θ 0 CM R ) so that the function u(t, x; τ ) = ηu R,B t -τ, x - t 0 c R,B (γ)(l -τ )dl satises, for all t ∈ R, τ ∈ R and x ∈ [-R + X(t; τ ), R + X(t; τ )] with X(t; τ ) = t 0 c R,B (γ)(l -τ )dl,
the following integro-dierential inequality

∂ t u(t, x; τ ) = η∂ t u R,B -ηc R,B (γ)(t -τ )∂ x u R,B ≤ R K(t -τ, y)[u(t, x -y; τ ) -u(t, x; τ )]dy + (1 -CηM R )u(t, x; τ ) ≤ R K(t -τ, y)[u(t, x -y; τ ) -u(t, x; τ )]dy + F (t -τ, u(t, x; τ )).
Now let us prove that u(t, x; τ ) ≤ u(t, x; τ ), ∀t ≥ 0, τ ∈ R, ∀x ∈ R, (2.6.45) that rewrites as

ηu R,B (t -τ, 0) ≤ ϕ t -τ, X(t; τ ) - t 0 c(l -τ )dl , ∀t ≥ 0, τ ∈ R.
Note that in view of Lemma 2.6.2, the above estimate ensures that (2.6.44) holds true.

To complete the proof of (2.6.44), it remains to prove (2.6.45). To prove this inequality, x τ ∈ R and consider the open set Ω given by

Ω = (t, x) ∈ R 2 : 0 < t and x ∈ [-R + X(t; τ ), R + X(t; τ )] ,
as well as the function v = v(t, x) given by v(t, x) = u(t, x; τ ) -u(t, x; τ ).

Note that v(0, x) > 0 on [-R + X(0; τ ), R + X(0; τ )] = [-R, R] and that one has

v(t, x) ≥ 0, ∀t ≥ 0, ∀x / ∈ [-R + X(t; τ ), R + X(t; τ )]. Furthermore, the function v is continuous on [0, ∞) × R, for all x ∈ R the map t → v(t, x) ∈ W 1,1 loc ([0, ∞))
and for almost every (t, x) ∈ Ω one has

∂ t v(t, x) ≥ R K(t -τ, y)[v(t, x -y) -v(t, x)]dy + F (t -τ, u(t, x; τ )) -F (t -τ, u(t, x; τ )).
The above dierential inequality rewrites as

∂ t v(t, x) ≥ R K(t -τ, y)v(t, x -y)dy + g(t, x)v(t, x), a.e. (t, x) ∈ Ω,
for some bounded function g = g(t, x). Choose δ > 0 large enough so that g(t, x) + δ ≥ 1. Hence, the function w(t, x) = e δt v(t, x) satises

∂ t w(t, x) ≥ R K(t -τ, y)w(t, x -y)dy + [g(t, x) + δ] w(t, x), a.e. (t, x) ∈ Ω. (2.6.46)
Assume now by contradiction that there exists (t, x) ∈ Ω such that v(t, x) < 0. Consider the time t * > 0 dened by

t * = sup{t ≥ 0 : min x∈[-R+X(t;τ ),R+X(t;τ )] v(t, x) > 0}.
Since v(t, ±R + X(t; τ )) > 0, there exists x * ∈ (-R + X(t; τ ), R + X(t; τ )) such that v(t * , x * ) = 0. Moreover, since X(•; τ ) is continuous, there exists ε > 0 small enough such that

[t * -ε, t * ] × {x * } ⊂ Ω.
Hence integrating (2.6.46) with x = x * and from t * -ε and t * yields

0 = w(t * , x * ) ≥ w(t * -ε, x * ) + t * t * -ε R K(t -τ, y)w(t, x * -y)dydt + t * t * -ε w(t, x * )dt > 0,
a contradiction, that completes the proof of (2.6.45) and thus the proof of (2.6.44). Finally observe that due to Lebesgue convergence theorem, for any γ ∈ R and for all B > 0 one has

lim R→∞ c R,B (γ)(•) = c B (γ)(•) := B -B zK(•, z)e γz dz in L ∞ (R).
As a consequence (2.6.44) yields, for all γ ∈ Λ and all B > B 0 (γ):

⌈c B (γ)(•) -c(•)⌉ ≤ 0.
Finally, observe that for each γ ∈ (0, σ(K)) one also has

lim B→∞ c B (γ)(•) = c(γ)(•) := ∞ -∞ zK(•, z)e γz dz in L ∞ (R),
and the above estimate ensures that

⌈c(γ)(•) -c(•)⌉ ≤ 0, ∀γ ∈ Λ.
(2.6.47)

From the above estimate we also have for all γ ∈ (0, λ * ),

⌊c(γ)(•)⌋ ≤ ⌈c(γ)(•) -c(•)⌉ + ⌊c(•)⌋ ≤ ⌊c(•)⌋.
This completes the proof of Theorem 2.2.10.

We now turn to the proof of Corollary 2.2.11.

Proof of Corollary 2.2.11. Note that the map γ → c(γ) is continuous from (0, σ(K)) into L ∞ (R). Hence when λ * < σ(K), this map is in particular continuous at γ = λ * . Hence letting γ → λ * with γ ∈ Λ into (2.6.47) yields for all c ∈ C ⌈c(λ * )(•) -c(•)⌉ ≤ 0 and ⌊c(λ * )(•)⌋ ≤ inf⌊C ⌋.

Now due to the assumption

⌈c(λ * )(•) -c(λ * )(•)⌉ ≤ 0, note that one has ⌊c(λ * )(•)⌋ ≤ ⌈c(λ * )(•) -c(λ * )(•)⌉ + ⌊c(λ * )(•)⌋ . Hence this implies that ⌊c(λ * )(•)⌋ ≤ ⌊c(λ * )(•)⌋ , so that ⌊c(λ * )(•)⌋ ≤ inf ⌊C ⌋ .
The upper estimate follows from (2.2.10) and this completes the proof of the corollary.

Chapter 3

Spreading properties for nonautonomous Fisher-KPP equations with nonlocal diusion

This is a joint work with Arnaud Ducrot, submitted [START_REF] Ducrot | Spreading properties for non-autonomous Fisher-KPP equations with nonlocal diusion[END_REF].

Abstract

We investigate spreading properties of solutions to a non-autonomous Fisher-KPP equation with nonlocal diusion, driven by a thin-tailed kernel. In this paper, we are concerned with both compactly supported and exponentially decaying initial data. For general time heterogeneity, we provide lower and upper estimates for the location of the propagating front, which is expressed in term of the least mean of the time varying coecients of the problem. Under some stronger time averaging assumptions for these coecients, we prove that these solutions propagate with some determined speed. In this analysis, an important diculty comes from the lake of regularization for the solutions arising with nonlocal diusion. Through delicate analysis we derive some regularity estimates (of uniform continuity type for the large time) for some solutions of the logistic equation equipped with suitable initial data. Such regularity estimates are coupled with the construction of appropriated propagating paths to derive spreading speed estimates. These results are then used to handle more general KPP nonlinearities.

Introduction and main results

In this paper we study the spreading speeds for the solutions of the following nonautonomous and nonlocal one-dimensional equation

∂ t u(t, x) = R K(y) [u(t, x -y) -u(t, x)] dy + F (t, u(t, x)) , (3.1.1) 
posed for time t ≥ 0 and x ∈ R. This evolution problem is supplemented with an appropriated initial data, that will be discussed below. Here K = K(y) is a nonnegative dispersal kernel with thin-tailed (see Assumption 3.1.3 below), while F = F (t, u) stands for the nonlinear term, which depends on time t and that will be assumed in this note to be Fisher-KPP type (see Assumption 3.1.5). The above problem typically describes the spatial invasion of a population (see for instance [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF][START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF] and the references therein) with the following features: 1) the individuals exhibit long distance dispersal according to the kernel K, in other words the quantity K(x -y) corresponds to the probability to jump from y to x;

2) time varying birth and death processes modeled by the nonlinear Fisher-KPP type function F (t, u). The time variations may stand for seasonality and/or external events (see [START_REF] Jin | Seasonal inuences on population spread and persistence in streams: spreading speeds[END_REF]).

The similar equation with local diusion operator and posed in a time homogeneous medium reads as

∂ t u(t, x) = ∂ xx u(t, x) + F (u(t, x)). (3.1.2) 
As mentioned above, this problem arises as a basic model in many dierent elds, especially in biology and ecology. It can be used for instance to describe the spatio-temporal evolution of an invading species into an empty environment. The above equation (3.1.2) was rst introduced separately by Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], when the nonlinear function F satises the Fisher-KPP conditions. Recall that a typical example of such Fisher-KPP nonlinearity is given by the logistic function

F (u) = u(1 -u).
There is a large amount of literature related to this equation (3.1.2) and to generalizations. To study propagation phenomena generated by reaction diusion equations in quantitatively, in addition to the existence of travelling wave solution, the asymptotic speed of spread (or spreading speed) was introduced and studied by Aronson and Weinberger in [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF]. Roughly speaking if u 0 is a nontrival and nonnegative initial data with compact support, then the solution of (3.1.2) associated to this initial data u 0 spreads with the speed c * > 0 (the minimal wave speed of the traveling waves) in the sense that

lim t→∞ sup |x|≤ct |u(t, x) -1| = 0, ∀ 0 ≤ c < c * and lim t→∞ sup |x|≥ct u(t, x) = 0, ∀ c > c * .
This concept of spreading speed has been further developed by several researchers in the last decades from dierent view points including PDE's argument, dynamical systems theory, probability theory and mathematical biology etc. Spreading speeds of KPP-type reaction diusion equations with homogeneous and periodic media have been extensively studied (see [START_REF] Berestycki | The speed of propagation for KPP type problems. I: periodic framework[END_REF][START_REF] Fang | Traveling waves and spreading speeds for timespace periodic monotone systems[END_REF][START_REF] Liang | Spreading speeds and traveling waves for periodic evolution systems[END_REF][START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiows with applications[END_REF][START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF] and the references therein). There are also some results about spreading phenomena for reaction diusion systems (see [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF][START_REF] Girardin | Invasion of open space by two competitors: spreading properties of monostable two-species competition-diusion systems[END_REF] and the references therein).

Recently the spreading speeds for KPP-type reaction diusion equations in more complicated structures of media obtained more and more attention, see [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF][START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF] and the references cited therein. Particularly, Nadin and Rossi [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF] studied lower and upper spreading speeds of KPP equation with general time heterogeneity. Furthermore, they showed that if the coecients are uniquely ergodic, then these two speeds equal.

The spreading properties of nonlocal diusion equation as (3.1.1) has attracted a lot of interest in the last decades. Since the semi-ow generated by nonlocal diusion equations are non-compact and the solution without priori estimates, these bring more diculties. Fisher-KPP equation or monostable problem in homogeneous environment has been studied from various point of views: wave front propagation (see [START_REF] Coville | Propagation speed of travelling fronts in non local reaction diusion equations[END_REF][START_REF] Schumacher | Travelling-front solutions for integro-dierential equations[END_REF] and the reference cited therein), hair trigger eect and spreading speed (see [START_REF] Alfaro | Fujita blow up phenomena and hair trigger eect: the role of dispersal tails[END_REF][START_REF] Cabré | The inuence of fractional diusion in Fisher-KPP equations[END_REF][START_REF] Diekmann | Run for your life. A note on the asymptotic speed of propagation of an epidemic[END_REF][START_REF] Finkelshtein | The hair-trigger eect for a class of nonlocal nonlinear equations[END_REF][START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF][START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF] and the reference cited therein). For the thin-tailed kernel, we refer for instance to [START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF] and the recent work [START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF] where a new sub-solution has been constructed to provide a lower bound of the spreading speed. Note also that the aforementioned work deals with possibly non-symmetric kernel so that the propagation speed on the left and the right hand side of the domain can be dierent. For the fat-tailed dispersion kernels the propagation behavior of the solution can be very dierent from the one observed with thin-tailed kernel. Acceleration may occur. We refer to [START_REF] Finkelshtein | Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line[END_REF][START_REF] Garnier | Accelerating solutions in integro-dierential equations[END_REF] and to [START_REF] Cabré | The inuence of fractional diusion in Fisher-KPP equations[END_REF] for fractional Laplace type dispersal. Recently, wave propagation and spreading speeds for nonlocal diusion problem incorporated time and/or space heterogeneity have been considered, the existence and nonexistence of travelling wave solutions see [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF][START_REF] Jin | Spatial dynamics of a periodic population model with dispersal[END_REF][START_REF] Lim | Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diusion[END_REF][START_REF] Shen | Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media[END_REF] and the references cited therein. For the spreading speeds results, we refer to [START_REF] Jin | Seasonal inuences on population spread and persistence in streams: spreading speeds[END_REF][START_REF] Jin | Spatial dynamics of a periodic population model with dispersal[END_REF][START_REF] Liang | Spreading speeds of nonlocal KPP equations in almost periodic media[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] and the references cited therein. For the analysis of the spreading speed for systems with nonlocal diusion, we refer the reader to [START_REF] Bao | Spreading speeds and linear determinacy of time dependent diusive cooperative/competitive systems[END_REF][START_REF] Xu | Spatial propagation in an epidemic model with nonlocal diusion: The inuences of initial data and dispersals[END_REF][START_REF] Zhang | Propagation phenomena for a two-species LotkaVolterra strong competition system with nonlocal dispersal[END_REF] and references cited therein.

In this work, we extend some of these spreading properties for (3.1.1) with both fast and slow decaying initial data by considering general time heterogeneity for the nonlinear term. For the general time heterogeneity, we provide a new approach, based on what we call a persistence lemma (see Lemma 3.2.6 below) for uniformly continuous solutions, to obtain lower estimate of the propagation speed. It is dierent from the well developed monotone semi-ow method for which we refer the reader to [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiows with applications[END_REF][START_REF] Jin | Seasonal inuences on population spread and persistence in streams: spreading speeds[END_REF][START_REF] Jin | Spatial dynamics of a periodic population model with dispersal[END_REF]. Moreover, we expect our key persistence lemma may also be applied to study the acceleration phenomena for fat-tailed dispersal kernel. However the uniform continuity property for the solutions remains complicated to check. Here we are able to prove such a property for some specic initial data and logistic type nonlinearities. Note that in [START_REF] Li | Entire solutions in the Fisher-KPP equation with nonlocal dispersal[END_REF] the authors consider this regularity problem. They show that when the nonlinear term satises F u (u) < K for any u ≥ 0, where K = R K(y)dy, then solutions of the homogeneous problem inherit the Lipschitz continuity property from those of their initial data. In this note, we prove the uniform continuity of some solutions when the above condition fails (see Assumption 3.1.5 (f 4)). This point is studied in Section 3.3.1, where we provide a class of initial data for which the solutions (of the nonlocal logistic equation) are uniformly continuous on [0, ∞) × R. Now to state our results, we rst introduce some notations and present our main assumptions. Now, we dene the important notion of the least mean value for a bounded function. In that case the quantity ⌊h⌋ is called the least mean of the function h (over (0, ∞)).

If h admits a mean value ⟨h⟩, that is, there exists

⟨h⟩ := lim T →+∞ 1 T T 0 h(t + s)dt, uniformly with respect to s ≥ 0. (3.1.4)
Then ⌊h⌋ = ⟨h⟩. An equivalent and useful characterization for the least mean of the function, as above, is given in the next lemma. Lemma 3.1.2. [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF] Let h ∈ L ∞ (0, ∞; R) be given. Then one has ⌊h⌋ = sup

a∈W 1,∞ (0,∞) inf t>0 (a ′ + h) (t).
We are now able to present the main assumptions we shall need in this note. First we assume that the kernel K = K(y) enjoys the following set of properties: Assumption 3.1.3 (Kernel K = K(y)). We assume that the kernel K : R → [0, ∞) satises the following set of assumptions:

(i) The function y → K(y) is non-negative, continuous and integrable;

(ii) There exists α > 0 such that R K(y)e αy dy < ∞.

(iii) We also assume that K(0) > 0.

Remark 3.1.4. Note that here we do not impose that the kernel function is symmetric.

There exist δ > 0 and k : R → [0, ∞), continuous, even and compactly supported such that supp k = [-δ, δ], k(y) > 0, ∀y ∈ (-δ, δ), k(y) ≤ K(y) and k(y) = k(-y), ∀y ∈ R.

(3.1.5) This is due to K(y) is continuous and K(0) > 0.

Now we discuss our Fisher-KPP assumptions for the nonlinear term F = F (t, u).

Assumption 3.1.5 (KPP nonlinearity). We assume that the function

F from [0, ∞) × [0, 1] to R takes the form F (t, u) = uf (t, u) where the function f : [0, ∞) × [0, 1] → R
satises the following set of hypotheses:

(f1) f (•, u) ∈ L ∞ (0, ∞; R), for all u ∈ [0, 1],
and f is Lipschitz continuous with respect to u ∈ [0, 1], uniformly with respect to t ≥ 0;

(f2) We assume that f (t, 1) = 0 for a.e. t ≥ 0. Setting µ(t) := f (t, 0) we assume that µ(•) is bounded and uniformly continuous. Also, we assume that h(u) := inf t≥0 f (t, u) > 0 for all u ∈ [0, 1);

(f3) For almost every t ≥ 0, the function u → f (t, u) is nonincreasing on [0, 1];

(f4) Set K := R K(y)dy. Assume that the least mean of the function µ satises ⌊µ⌋ > K.

Remark 3.1.6. From the above assumption, one can note that inf t≥0 µ(t) = h(0) > 0.

Next this assumption also implies that there exists some constant C > 0 such that for all u ∈ [0, 1] and t ≥ 0 one has Let us now dene some notations related to the speed function that will be used in the following. We dene σ(K), the abscissa of convergence of K, by σ (K) := sup γ > 0 : R K(y)e γy dy < ∞ .

µ(t) ≥ f (t, u) ≥ µ(t) -Cu ≥ µ(t)(1 -Hu), ( 3 
Assumption 3.1.3 (ii) yields that σ(K) ∈ (0, ∞]. We set L(λ) := R K(y)[e λy -1]dy, λ ∈ [0, σ(K)) , (3.1.7) 
as well as for λ ∈ (0, σ(K)) and t ≥ 0,

c(λ)(t) := λ -1 L(λ) + λ -1 µ(t). (3.1.8)
For a given function a ∈ W 1,∞ (0, ∞), denote c λ,a that the function given by c λ,a (t) := c(λ)(t) + a ′ (t), λ ∈ (0, σ(K)), t ≥ 0.

(3.1.9)

Obviously, it follows from Denition 3.1.

1 that ⌊c λ,a (•)⌋ = ⌊c(λ)(•)⌋ for each λ ∈ (0, σ(K)). Next note that ⌊c(λ)(•)⌋ = λ -1 L(λ) + λ -1 ⌊µ⌋.
Now we state some properties of ⌊c(λ)(•)⌋ in the following proposition.

Proposition 3.1.7. Let Assumption 3.1.3 and 3.1.5 be satised. Then the following properties hold:

(i) The map λ → ⌊c(λ)(•)⌋ from (0, σ(K)) to R is of class C 1 from (0, σ(K)) into R. (ii) Set c * r := inf λ∈(0,σ(K)) ⌊c(λ)(•)⌋. There exists λ * r ∈ (0, σ(K)] such that lim λ→(λ * r ) -⌊c(λ)(•)⌋ = c * r .
Moreover, one has c * r > 0 and the map λ → ⌊c(λ)(•)⌋ is decreasing on (0, λ * r ).

(iii) Assume that λ * r < σ(K). The above Proposition 3.1.7 has been mostly proved in [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF] (see Proposition 2.8 in [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF]) with a more general kernel which depends on t.

Here we only explain that c * r > 0. To see this, note that for λ ∈ (0, σ(K)) one has λc(λ)(t) = R K(y)e λy dy + µ(t) -K, ∀t ≥ 0.

Next due to Assumption 3.1.5 (f 4) and Lemma 3.1.2, there exists some function a ∈ W 1,∞ (0, ∞) such that µ(t) -K + a ′ (t) ≥ 0 for all t ≥ 0. This yields for all λ ∈ (0, σ(K)) and t ≥ 0 

λc(λ)(t) + a ′ (t) = R K ( 
⌊c(λ)(•)⌋ ∼ ⌊µ⌋ λ → ∞ as λ → 0 + .
In addition, if (3.1.11) holds then the decreasing property of the map λ → ⌊c(λ)(•)⌋ on (0, λ * r ) as stated in Proposition 3.1.7 (ii) ensures that λ * r < σ(K). To state our spreading result, we impose in the following that the condition discussed in the previous remark is satised, that means λ * r is dierent from the convergence abscissa.

Assumption 3.1.9. In addition to Assumption 3.1.3, we assume that λ * r < σ(K). Using the above properties for the speed function c(λ)(•) and its least mean value, we are now able to state the spreading properties. Theorem 3.1.10 (Upper bounds). Let Assumption 3.1.3, 3.1.5 and 3.1.9 be satised.

Let u = u(t, x) denote the solution of (3.1.1) equipped with a continuous initial data u 0 , with 0 ≤ u 0 (•) ≤ 1 and u 0 (•) ̸ ≡ 0. Then the following upper estimate for the propagation set holds: if u 0 (x) = O(e -λx ) as x → ∞ for some λ > 0, then one has lim t→∞ sup

x≥ t 0 c + (λ)(s)ds+ηt u(t, x) = 0, ∀η > 0,
where the function c

+ (λ)(•) is dened by c + (λ)(•) := c(λ * r )(•) if λ ≥ λ * r , c(λ)(•) if λ ∈ (0, λ * r ).
For our lower estimate of the propagation set, we rst state our result for a specic function f = f (t, u) of the form f (t, u) = µ(t)(1 -u). In other words, we are considering the following non-autonomous logistic equation

∂ t u(t, x) = R K(y) [u(t, x -y) -u(t, x)] dy + µ(t)u(t, x) (1 -u(t, x)) .
(3.1.12)

To enter the framework of Assumption 3.1.5, we assume that the function µ satises following conditions:

t → µ(t) is uniformly continuous and bounded with inf t≥0 µ(t) > 0, and the least mean of µ(•) satises ⌊µ⌋ > K.

(3.1.13)

For this problem, our propagation result reads as follows.

Theorem 3.1.11 (Lower bounds). Let Assumption 3.1.3, 3.1.9 be satised and assume furthermore that µ satises (3.1.13). Let u = u(t, x) denote the solution of (3.1.12) equipped with a continuous initial data u 0 , with 0 ≤ u 0 (•) ≤ |1 -u(t, x)| = 0, ∀c ∈ (0, ⌊c(λ)⌋) .

Next as a consequence of the comparison principle, one obtains the following lower estimate of the propagation set to the right for more general nonlinearity satisfying Assumption 3.1.5. Corollary 3.1.12 (Inner propagation). Let Assumption 3.1.3, 3.1.5 and 3.1.9 be satised. In the above result we only consider the propagation to the right hand-side of the real line and obtain a propagation result on some interval of the form [0, ct] for suitable speed c and for t ≫ 1. To study the propagation of the left hand side, it is sucient to change x to -x and impose K is thin-tailed in the left-hand side. Note also that the kernel is not assumed to be even, so that the minimal spreading speeds on the right and on the left can be dierent.

The results stated in this section and more precisely the lower bounds for the propagation follows from the derivation of suitable regularity estimate for the solution. Here we show that the solutions of (3.1.12) with suitable initial data are uniformly continuous. Next Theorem 3.1.11 follows from the application of a general persistence lemma (see Lemma 3.2.6) for uniformly continuous solutions. This key lemma roughly ensures that if there a uniformly continuous solution u = u(t, x) admits a propagating path t → X(t), then [0, kX(t)] with any k ∈ (0, 1) is a propagating interval, that is u stays uniformly far from 0 on this interval, in the large time.

This paper is organized as follows. In Section 2, we recall comparison principles and derive our general key persistence Lemma. Section 3 is devoted to the derivation of some regularity estimates for the solutions of (3.1.12) with suitable initial data. With all these materials, we conclude the proofs of theorems and the corollary.

Preliminary and Key Lemma

This section is devoted to the statement of the comparison principle and a key lemma that will be used to prove the inner propagation theorem, namely Theorem 3.1.11.

Comparison principle and strong maximum principle

We start this section by recalling the following more general comparison principle. T > 0 be given. Let K : R → [0, ∞) be an integrable kernel and let F = F (t, u) be a function dened in [t 0 , t 0 +T ]×[0, 1] which is Lipschitz continuous with respect to u ∈ [0, 1], uniformly with respect to t. Let u and u be two uniformly continuous functions dened from [t 0 , t 0 + T ] × R into the interval [0, 1] such that for each x ∈ R, the maps u(•, x) and u(•, x) both belong to W 1,1 (t 0 , t 0 + T ), satisfying u(t 0 , •) ≤ u(t 0 , •), and for all x ∈ R and for almost every t ∈ (t 0 , t 0 + T ),

∂ t u(t, x) ≥ R K(y) [u(t, x -y) -u(t, x)] dy + F (t, u(t, x)), ∂ t u(t, x) ≤ R K(y) [u(t, x -y) -u(t, x)] dy + F (t, u(t, x)). Then u ≤ u on [t 0 , t 0 + T ] × R.
We also need some comparison principle on moving domain as follows (this can be proved similarly as Lemma 5.4 in [START_REF] Rizk | Asymptotic speed of spread for a nonlocal evolutionary-epidemic system[END_REF] and Lemma 4.7 in [START_REF] Zhang | Propagation phenomena for a two-species LotkaVolterra strong competition system with nonlocal dispersal[END_REF]). Proposition 3.2.2. Assume that K : R → [0, ∞) is integrable. Let t 0 > 0 and T > 0 be given, let b(t, x) be a uniformly bounded function from [t 0 , t 0

+ T ] × R → R. Assume that u(t, x) is uniformly continuous dened from [t 0 , t 0 + T ] × R into the interval [0, 1] such that for each x ∈ R, u(•, x) ∈ W 1,1 (t 0 , t 0 + T ). Assume that X and Y are continuous functions on [t 0 , t 0 + T ] with X < Y . If u satises      ∂ t u ≥ R K(y) [u(t, x -y) -u(t, x)] dy + b(t, x)u, ∀t ∈ [t 0 , t 0 + T ], x ∈ (X(t), Y (t)), u(t, x) ≥ 0, ∀t ∈ (t 0 , t 0 + T ], x ∈ R \ (X(t), Y (t)), u(t 0 , x) ≥ 0, ∀x ∈ (X(t 0 ), Y (t 0 )). Then u(t, x) ≥ 0 for all t ∈ [t 0 , t 0 + T ], x ∈ [X(t), Y (t)].
We continue this section by the following strong maximum principle. We refer the reader to [START_REF] Kao | Random dispersal vs. non-local dispersal[END_REF] for the proof of following proposition. Proposition 3.2.3 (Strong maximum principle). Let Assumption 3.1.3, 3.1.5 be satised.

Let u = u(t, x) be the solution of (3.1.1) supplemented with some continuous initial data u 0 , such that 0 ≤ u 0 ≤ 1 and u 0 ̸ ≡ 0. Then u(t, x) > 0 for all t > 0, x ∈ R.

Key lemma

In this section, we derive an important lemma that will be used in the next section to prove our main inner propagation result, namely Theorem 3.1.11. In this section we only let Assumption 3.1.3 (i), (iii) and Assumption 3.1.5 be satised. Denition 3.2.4 (Limit orbits set). Let u = u(t, x) be a uniformly continuous function on [0, ∞) × R into [0, 1], solution of (3.1.1). We dene ω(u), the set of the limit orbits, as the set of bounded and uniformly continuous functions ũ : R 2 → R where exist

sequences (x n ) ⊂ R and (t n ) such that t n → ∞ as n → ∞ and ũ(t, x) = lim n→∞ u(t + t n , x + x n ), uniformly for (t, x) in bounded sets of R 2 .
Let us observe that since u is assumed to be bounded and uniformly continuous on [0, ∞) × R, Arzelà-Ascoli theorem ensures that ω(u) is not empty. Indeed, for each sequence (t n ) with t n → ∞ and (x n ) ⊂ R the sequence of functions (t, x) → u(t+t n , x+x n ) is equi-continuous and thus has a converging subsequence with respect to the local uniform topology. In addition, it is a compact set with respect to the compact open topology, that is with respect to the local uniform topology.

Before going to our key lemma, we claim that the set ω(u) enjoys the following property: Claim 3.2.5. Let ũ ∈ ω(u) be given. Then one has:

Either ũ(t, x) > 0 for all (t, x) ∈ R 2 or ũ(t, x) ≡ 0 on R 2 .
Proof. Let u = u(t, x) be a uniformly continuous solution of (3.1.1). Note that due to Assumption 3.1.5 (see Remark 3.1.6), the function u satises the following dierential inequality for all t ≥ 0 and x ∈ R

∂ t u(t, x) ≥ K * u(t, •)(x) -Ku(t, x) + u(t, x)(µ(t) -Cu(t, x)).
Since the function µ(•) is bounded, for each ũ ∈ ω(u), there exists μ = μ(t) ∈ L ∞ (R), a weak star limit of some shifted function µ(t n + •), for some suitable time sequence (t n ), such that ũ satises

∂ t ũ(t, x) ≥ K * ũ(t, •)(x) -K ũ(t, x) + ũ(t, x)(μ(t) -C ũ(t, x)) ≥ K * ũ(t, •)(x) + -K + inf t∈R μ(t) -C ũ(t, x), ∀(t, x) ∈ R 2 .
Herein ∂ t ũ is a weak star limit of ∂ t u(• + t n , • + x n ) for some suitable sub-sequence of (x n ) n and (t n ) n . This is due to

∂ t u ∈ L ∞ ([0, ∞) × R).
Next the claim follows from the same arguments as for the proof of the strong maximum principle, see [START_REF] Kao | Random dispersal vs. non-local dispersal[END_REF].

Using the above denition and its properties we are now able to state and prove the following key lemma. Lemma 3.2.6. Let u = u(t, x) : [0, ∞) × R → [0, 1] be a uniformly continuous solution of (3.1.1). Let t → X(t) from [0, ∞) to [0, ∞) be a given continuous function. Let the following set of hypothesis be satised:

(H1) Assume that lim inf t→∞ u(t, 0) > 0;

(H2) There exists some constant ε0 > 0 such that for all ũ ∈ ω(u) \ {0}, one has lim inf t→∞ ũ(t, 0) > ε0 ;

(H3) The map t → X(t) is a propagating path for u, in the sense that lim inf t→∞ u(t, X(t)) > 0.

Then for any k ∈ (0, 1), one has

lim inf t→∞ inf 0≤x≤kX(t) u(t, x) > 0.
Remark 3.2.7. The above result holds without assuming that the convolution kernel is exponential bounded. We expect this key lemma may also be useful to study the spatial propagation for Fisher-KPP equation with fat-tailed dispersion kernel, which may occur acceleration, see [START_REF] Cabré | The inuence of fractional diusion in Fisher-KPP equations[END_REF][START_REF] Finkelshtein | Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line[END_REF][START_REF] Garnier | Accelerating solutions in integro-dierential equations[END_REF].

To prove the above lemma, we make use of ideas coming from uniform persistence theory, somehow close to those developed in [START_REF] Ducrot | Asymptotic spreading speeds for a predatorprey system with two predators and one prey[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF].

Proof. To prove the lemma we argue by contradiction by assuming that there exists k ∈ (0, 1), a sequence (t n ) with t n → ∞ and a sequence

(k n ) with 0 ≤ k n ≤ k such that u(t n , k n X(t n )) → 0 as n → ∞. (3.2.14)
First we claim that one has

lim n→∞ k n X(t n ) = ∞. ( 3 

.2.15)

To prove this claim we argue by contradiction by assuming that {k n X(t n )} has a bounded subsequence. Hence there exists x ∞ ∈ R such that possibly along a subsequence still denoted with the index n such that k n X(t n ) → x ∞ as n → ∞. Now let us consider the sequence of functions u n (t, x) := u(t + t n , x). Since u = u(t, x) is uniformly continuous, possibly up to a sub-sequence still denoted with the same index n, there exists u ∞ ∈ ω(u) such that

u n (t, x) → u ∞ (t, x) locally uniformly for (t, x) ∈ R 2 . Next since k n X(t n ) → x ∞ , (3.2.14) ensures that u ∞ (0, x ∞ ) = lim n→∞ u(t n , k n X(t n )) = 0.
Since u ∞ ∈ ω(u), Claim 3.2.5 ensures that u ∞ (t, x) ≡ 0. On the other hand, (H1) ensures that for all t ∈ R, one has u ∞ (t, 0) ≥ lim inf t→∞ u(t, 0) > 0, a contradiction, so that (3.2.15) holds. Now due to (3.2.15), there exists N such that

X(0) < k n X(t n ), ∀n ≥ N.
Hence due to k n < 1 we have

X(0) < k n X(t n ) < X(t n ), ∀n ≥ N.
And since t → X(t) is continuous, then for each n ≥ N there exists

t ′ n ∈ (0, t n ) such that t ′ n → ∞ and X(t ′ n ) = k n X(t n ), ∀n ≥ N. From the above denition of t ′ n , one has u(t ′ n , k n X(t n )) = u(t ′ n , X(t ′ n ))
, ∀n ≥ N. So that (H3) ensures that for all n large enough, there exists ε 3 > 0 such that

u(t ′ n , k n X(t n )) = u(t ′ n , X(t ′ n )) ≥ ε 3 .
Recall that Assumption (H2). Now for all n large enough, we dene

t ′′ n := inf t ≤ t n ; ∀s ∈ (t, t n ), u(s, k n X(t n )) ≤ min{ε 0 , ε 3 } 2 ⊂ (t ′ n , t n ).
Since u(t n , k n X(t n )) → 0 as n → ∞, then one may assume that, for all n large enough one has

     u(t ′′ n , k n X(t n )) = min{ε 0 ,ε 3 } 2 , u(t, k n X(t n )) ≤ min{ε 0 ,ε 3 } 2 , ∀t ∈ [t ′′ n , t n ], u(t n , k n X(t n )) ≤ 1 n . Next we claim that t n -t ′′ n → ∞ as n → ∞. Indeed, if (a subsequence of) t n -t ′′ n converge to σ ∈ R, dene the sequence of functions ũn (t, x) := u(t+t ′′ n , x+k n X(t n ))
, that converge, possibly along a subsequence, locally uniformly to some function ũ∞ = ũ∞ (t, x) ∈ ω(u) that satises

ũ∞ (0, 0) = min{ε 0 , ε 3 } 2 > 0,
and ũ∞ (σ, 0) = lim n→∞ ũn (t n -t ′′ n , 0) = lim n→∞ u(t n , k n X(t n )) = 0.
Hence since ũ∞ ∈ ω(u) the two above values of ũ∞ contradict the dichotomy stated in Claim 3.2.5 and this proves that t n -t ′′ n → ∞ as n → ∞. As a consequence one obtains that the function ũ∞ ∈ ω(u) satises

ũ∞ (0, 0) = min{ε 0 , ε 3 } 2 > 0,
together with

ũ∞ (t, 0) ≤ min{ε 0 , ε 3 } 2 , ∀t ≥ 0. (3.2.16)
Due to Claim 3.2.5, the above equality yields ũ∞ ∈ ω(u) \ {0} and (3.2.16) contradicts (H2). The proof is completed.

Proof of spreading properties

In this section, we shall make use of the key lemma (see Lemma 3.2.6) to prove Theorem 3.1.11. To do this, we rst derive some important regularity properties of the solutions of the Logistic equation (3.1.12) associated with suitable initial data. Next we prove Theorem 3.1.10 by constructing suitable exponentially decaying super-solutions for (3.1.1). Finally we turn to the proof of Theorem 3.1.11. As already mentioned we crucially make use of Lemma 3.2.6 and construct a suitable propagating path t → X(t), that depends on the decay rate of the initial data u 0 = u 0 (x) for x ≫ 1. As a corollary, we conclude the propagation results for (3.1.1).

Uniform continuity estimate

This subsection is devoted to give some regularity estimates for the solutions of the following Logistic equation (recalling (3.1.12)) when endowed with suitable initial data,

∂ t u(t, x) = R K(y)u(t, x -y)dy -Ku(t, x) + µ(t)u(t, x) (1 -u(t, x)) .
Here we focus on two types of initial data, that will be used to prove Theorem 3.1.11: initial data with a compact support and initial data with support on a right semi-innite interval and with some prescribed exponential decay on this right-hand side (that is for x ≫ 1).

Our rst lemma is concerned with the compactly supported case.

Lemma 3.3.1. Let Assumption 3.1.3 and (3.1.13) be satised. Let u = u(t, x) be the solution of (3.1.12) equipped with the initial data v 0 = v 0 (x), where v 0 is Lipschitz continuous in R, and 0 < v 0 (x) < 1 for all x ∈ (0, A), for some constant A > 0 while v 0 = 0 outside of (0, A). Then, the function (t, x) → u(t, x) is uniformly continuous on [0, ∞) × R.

Proof. Firstly, since 0 ≤ u ≤ 1, then one has

∥∂ t u∥ L ∞ (R + ×R) ≤ M := 2K + ∥µ∥ ∞ . (3.3.17)
As a consequence, the map (t, x) → u(t, x) is Lipchitz continuous for the variable t ∈ [0, ∞), uniformly with respect to x ∈ R, that is

|u(t, x) -u(s, x)| ≤ M |t -s|, ∀(t, s) ∈ [0, ∞) 2 , ∀x ∈ R. (3.3.18)
Next we investigate the regularity with respect to the spatial variable x ∈ R. To do so we claim that the following holds true: Claim 3.3.2. For all h > 0 suciently small, there exists 0 < σ(h) < 1 such that

σ(h) → 1 as h → 0 and u( √ h, x) ≥ σ(h)v 0 (x -h), ∀x ∈ R.
Proof of Claim 3.3.2. Let us rst observe that since u(t, .) > 0 for all t > 0, it is sucient

to look at x -h ∈ [0, A], that is h ≤ x ≤ A + h.
Next to prove this claim, note that one has for all h > 0 and x ∈ R:

u( √ h, x) = v 0 (x) + √ h 0 ∂ t u(l, x)dl = v 0 (x) + √ h 0 R K(y) [u(l, x -y) -u(l, x)] dy + µ(l)u(l, x) (1 -u(l, x)) dl
Now coupling (3.3.18) and 0 ≤ u ≤ 1, one gets, for all h > 0 small enough and uniformly for

x ∈ R u( √ h, x) ≥ v 0 (x) + √ h 0 R K(y)v 0 (x -y)dy -Kv 0 (x) dl + o( √ h), that is u( √ h, x) ≥ v 0 (x) 1 -K √ h + √ h R K(y)v 0 (x -y)dy + o(1) .
Now observe that Assumption 3.1.3 (see (i) and (iii)) ensures that there exists ε > 0 such that

min x∈[0,A] R K(y)v 0 (x -y)dy ≥ 2ε,
so that for h > 0 small enough one has

min x∈[h,A+h] R K(y)v 0 (x -y)dy ≥ ε,
Now to prove the claim, it is suciently to reach, for all h > 0 small enough and x ∈

[h, A + h], v 0 (x) 1 -K √ h + √ h (o(1) + ε) ≥ σ(h)v 0 (x -h). (3.3.19)
Now set σ(h) = 1 -2K √ h and let us show that Claim 3.3.2 follows. Since v 0 is Lipschitz continuous, then there exists some constant L > 0 such that

|v 0 (x) -v 0 (x -h)| ≤ Lh, ∀x ∈ R.
Hence to reach (3.3.19) it is sucient to reach for all x ∈ [h, A + h] and all h > 0 small enough

K √ hv 0 (x -h) + √ h (o(1) + ε) ≥ Lh 1 -K √ h . (3.3.20)
Dividing by √ h the above inequality holds whenever

Kv 0 (x -h) + (o(1) + ε) ≥ L √ h 1 -K √ h , (3.3.21)
which holds true for all h > 0 small enough. So the claim is proved. Now we come back to the proof of Lemma 3.3.1. For each h > 0 small enough, let us introduce the following function

b h (t) = b h (0) exp t 0 µ(s + √ h) -µ(s) ds , for all t ≥ 0, (3.3.22)
where b h (0) is some constant depending on h and that satises the following three conditions:

0 < b h (0) ≤ σ(h) < 1, b h (0) → 1 as h → 0 and for all h > 0 small enough b h (0) ≤ inf t≥0 µ(t) µ(t + √ h) exp t 0 µ(s) -µ(s + √ h) ds .
For the later condition, one can observe that it is feasible since one has

t 0 µ(s + √ h) -µ(s) ds = t+ √ h √ h µ(s)ds - t 0 µ(s)ds = t+ √ h t µ(s)ds - √ h 0 µ(s)ds ≤ 2∥µ∥ ∞ √ h.
As a consequence, recalling (3.1.13), µ(•) is uniformly continuous and we end-up with

µ(t) µ(t + √ h) exp t 0 µ(s) -µ(s + √ h) ds → 1, as h → 0, uniformly for t ≥ 0.
Hence b h (0) is well dened and b h (t) → 1 as h → 0 uniformly for t ≥ 0. Now, setting w h = w h (t, x) the function given by

w h (t, x) := u(t + √ h, x) -b h (t)u(t, x -h),
one obtains that it becomes a solution of the following equation

∂ t w h (t, x) = K * w h (t, x) -Kw h (t, x) + µ(t + √ h) [w h (t, x) + b h (t)u(t, x -h)] [1 -(w h (t, x) + b h (t)u(t, x -h))] -µ(t)b h (t)u(t, x -h) [1 -u(t, x -h)] -b ′ h (t)u(t, x -h) = K * w h (t, x) -Kw h (t, x) + µ(t + √ h)w h (t, x) 1 -w h (t, x) -2b h (t)u(t, x -h) + b h (t)u(t, x -h) µ(t + √ h) -µ(t) - b ′ h (t) b h (t) + b h (t)u 2 (t, x -h) µ(t) -b h (t)µ(t + √ h) .
It follows from the denition of b h (t) (see (3.3.22) above) that w h (t, x) satises

∂ t w h (t, x) ≥ K * w h (t, x) -Kw h (t, x) + w h (t, x)µ(t + √ h) 1 -w h (t, x) -2b h (t)u(t, x -h) .
The Claim 3.3.2 together with b h (0) < σ(h) ensure that w h (0, •) ≥ 0. Then the comparison principle applies and implies that w h (t, x) ≥ 0 for all t ≥ 0, x ∈ R, that rewrites as

u(t + √ h, x) ≥ b h (t)u(t, x -h
) for all t ≥ 0, x ∈ R, for h > 0 small enough. Recalling (3.3.18), for h > 0 suciently small, one has for all t ≥ 0 and x ∈ R,

u(t, x -h) -u(t, x) ≤ 1 b h (t) -1 u(t + √ h, x) + M √ h ≤ 1 b h (t) -1 + M √ h. (3.3.23)
Since for h > 0 small enough one has

min x∈[-h,A-h] R K(y)v 0 (x -y)dy ≥ ε,
then one can similarly prove that for suciently small h > 0, there exists

σ(h) = 1-2K √ h such that u( √ h, x) ≥ σ(h)v 0 (x + h), ∀x ∈ R.
This rewrites as u(

√ h, x -h) ≥ σ(h)v 0 (x), ∀x ∈ R.
Then as above one can choose a suitable function b h (t) and obtain that

u(t + √ h, x -h) ≥ b h (t)u(t, x), ∀t ≥ 0, x ∈ R.
Recalling (3.3.18), for h > 0 suciently small, one obtains for all t ≥ 0 and x ∈ R,

u(t, x) -u(t, x -h) ≤ 1 b h (t) -1 u(t + √ h, x -h) + M √ h ≤ 1 b h (t) -1 + M √ h. (3.3.24)
Since estimates (3.3.23) and (3.3.24) are uniform with respect to the spatial variable x ∈ R, one also obtains a similar estimates for u(t, x) -u(t, x + h) and u(t, x + h) -u(t, x).

From these estimates one has reached that u = u(t, x) is uniformly continuous for all t ≥ 0, x ∈ R, which completes the proof of the lemma.

In the following we derive regularity estimates for the solutions to (3.1.12) coming from an initial data with a prescribed exponential decay rate of the right, that for x ≫ 1.

To do this, we show that such solutions to (3.1.12) decay with the same rate as the initial data, at least in short time.

Let us introduce some function spaces. Recalling that λ * r is dened in Proposition 3.1.7, for λ ∈ (0, λ * r ) let us dene the space BC λ (R) by Recall that BC λ (R) is a Banach space when endowed with the above norm. Dene also the subset E by

BC λ (R) := ϕ ∈ C(R) : sup
E := {ϕ ∈ BC λ (R) : 0 ≤ ϕ ≤ 1} , (3.3.25)
and let us observe that it is a closed subset of BC λ (R).

Using these notations, we turn to the proof of the following lemma. Proof. Fix α > K + 2∥µ∥ ∞ . Let us introduce for each ϕ ∈ E and t ≥ 0, the operator given by

Q t [ϕ](•) := αϕ(•) + R K(y)ϕ(• -y)dy -Kϕ(•) + µ(t)ϕ(•) (1 -ϕ(•)) .
Note that one has Let us observe that R K(y)e λy dy < ∞ due to 0 < λ < λ * r < σ(K). Since 0 ≤ ϕ ≤ 1 then one has

∥Q t [ϕ](•)∥ BC λ ≤ α + R K(y)e λy dy + K + ∥µ∥ ∞ ∥ϕ∥ BC λ < ∞. Thus for each ϕ(•) ∈ E, for all t ≥ 0, Q t [ϕ](•) ∈ BC λ (R).
Next let us observe that Q t [ϕ] is nondecreasing with respect to ϕ ∈ E. Indeed, if for any ϕ, ψ ∈ E and ϕ(x) ≥ ψ(x) for all x ∈ R, then for each given t ≥ 0, x ∈ R

Q t [ϕ](x) -Q t [ψ](x) = α(ϕ(x) -ψ(x)) + R K(y)[ϕ(x -y) -ψ(x -y)]dy -K(ϕ -ψ)(x) + µ(t)ϕ(x)(1 -ϕ(x)) -µ(t)ψ(x)(1 -ψ(x)) ≥ α -K -2∥µ∥ ∞ (ϕ(x) -ψ(x)) ≥ 0.
The last inequality comes from α > K +2∥µ∥ ∞ . So that for any t ≥ 0, the map ϕ

→ Q t [ϕ] is nondecreasing on E.
For each given u 0 ∈ E and any xed h > 0, we dene the following space

W := {t → u(t, •) ∈ C([0, h], BC λ (R)) : 0 ≤ u ≤ 1, u(0, x) = u 0 (x)} .
Let us rewrite (3.1.12) to

∂ t u(t, x) + αu(t, x) = Q t [u(t, •)](x),
then one has

u(t, •) = e -αt u 0 (•) + t 0 e α(s-t) Q s [u(s, •)](•)ds =: T [u](t, •).
Next we show that for each u ∈ W , one has

T [u] ∈ W . Let u ∈ W be given, rstly we show that Q t [u](•) ∈ BC λ (R) uniformly for t ∈ [0, h]. Since t → u(t, •) ∈ C([0, h], BC λ (R)), then one has sup t∈[0,h] ∥u(t, •)∥ BC λ < ∞. Thus sup t∈[0,h] ∥Q t [u(t, •)](•)∥ BC λ ≤ α + R K(y)e λy dy + K + ∥µ∥ ∞ sup t∈[0,h] ∥u(t, •)∥ BC λ < ∞.
Moreover, one can observe that for each t ∈ [0, h],

∥T [u](t, •)∥ BC λ ≤ ∥u 0 ∥ BC λ + 1 α sup t∈[0,h] ∥Q t [u(t, •)]∥ BC λ < ∞. That is T [u](t, •) ∈ BC λ (R), for each t ∈ [0, h].
Then we show that t → T [u](t, •) is continuous. To see this, x t 0 ∈ [0, h] and observe that one has

∥T [u](t, •) -T [u](t 0 , •)∥ BC λ ≤ e -αt -e -αt 0 ∥u 0 ∥ BC λ + sup x∈R e λx t 0 0 e α(s-t) -e α(s-t 0 ) Q s [u(s, •)](x)ds + sup x∈R e λx t t 0 e α(s-t) Q s [u(s, •)](x)ds ≤ e -αt -e -αt 0 ∥u 0 ∥ BC λ + e -αt -e -αt 0 sup s∈[0,h] ∥Q s [u(s, •)]∥ BC λ t 0 0 e αs ds + sup s∈[0,h] ∥Q s [u(s, •)]∥ BC λ 1 -e α(t 0 -t) α . So that t → T [u](t, •) ∈ C([0, h], BC λ (R)) and T [u](0, •) = u 0 (•). Also, note that due to for each t ∈ [0, h], Q t [u(t, •)] is nondecreasing with u(t, •) ∈ E, then we get 0 ≤ T [u](t, •) ≤ e -αt + 1 α (1 -e -αt )α ≤ 1, ∀t ∈ [0, h].
Hence, for each u ∈ W , then T [u] ∈ W .

For each u, v ∈ W and a given γ > 0 large enough, we introduce a metric on W dened by

d(u, v) := sup t∈[0,h] sup x∈R e λx |u(t, x) -v(t, x)|e -γt .
Note that

d(T [u], T [v]) = sup t∈[0,h] sup x∈R e λx t 0 e α(s-t) (Q[u](s, x) -Q[v](s, x)) ds e -γt ≤ sup t∈[0,h] sup x∈R t 0 e (α+γ)(s-t) α + R K(y)e λy dy + K + 3∥µ∥ ∞ e -γs e λx |u(s, x) -v(s, x)|ds ≤ α + R K(y)e λy dy + K + 3∥µ∥ ∞ sup t∈[0,h] t 0 e (α+γ)(s-t) ds • d(u, v) ≤ α + R K(y)e λy dy + K + 3∥µ∥ ∞ α + γ • d(u, v).
So that T [u] is a contraction map on W endowed with the metric d = d(u, v), as long as γ > 0 suciently large such that be the solution of (3.1.12) supplemented with the initial data v 0 satisfying the following properties: assume v 0 is Lipschitz continuous in R, there is A > 0 large enough, α > 0, p ∈ (0, 1) and λ ∈ (0, λ * r ) such that

α + R K(y)e λy dy + K + 3∥µ∥ ∞ α + γ < 1.
v 0 (x) =          increasing function, x ∈ [0, α], β := pe -λA , x ∈ [α, A], pe -λx , x ∈ [A, ∞), 0, x ∈ (-∞, 0]. (3.3.26)
Then the function u = u(t, x) is uniformly continuous on [0, ∞) × R.

Proof. As in the proof of Lemma 3.3.1, u = u(t, x) also satises (3.3.18). Now from the denition of v 0 , for h > 0 small enough, one can observe that there exists m > λ such that v 0 (x) ≥ e -mh v 0 (x -h), ∀x ∈ R.

Indeed, for x ≤ A, due to v 0 is nondecreasing on this interval, then v 0 (x) ≥ v 0 (x -h) for x ≤ A. Note that e -mh < 1, then

v 0 (x) ≥ e -mh v 0 (x -h), ∀x ≤ A. For A ≤ x ≤ A + h, since m > λ, then v 0 (x) ≥ v 0 (A + h) = pe -λ(A+h) ≥ pe -mh e -λA = e -mh v 0 (x -h), ∀x ∈ [A, A + h].
For x ≥ A + h, one has v 0 (x) = pe -λx ≥ pe -mh e -λ(x-h) = e -mh v 0 (x -h), ∀x ≥ A + h.

Thus we have obtained

v 0 (x) ≥ e -mh v 0 (x -h), ∀x ∈ R.
Now, let us show that the function v h (t, x) := e -mh u(t, x -h) (with v h (0, x) = e -mh v 0 (x -h)) is a sub-solution of (3.1.12). To see this, note that v h (t, x) satises

∂ t v h (t, x) = R K(y)v h (t, x -y)dy -Kv h (t, x) + µ(t)v h (t, x) 1 -e mh v h (t, x) ≤ R K(y)v h (t, x -y)dy -Kv h (t, x) + µ(t)v h (t, x) 1 -v h (t, x) .
Hence v h (t, x) becomes a sub-solution of (3.1.12).

Since v h (0, •) ≤ v 0 (•), the comparison principle implies that

u(t, x) ≥ e -mh u(t, x -h), ∀t ≥ 0, x ∈ R.
Similarly as in (3.3.23), one also has, for all h > 0 suciently small,

u(t, x -h) -u(t, x) ≤ 1 -e -mh u(t, x -h) ≤ 1 -e -mh , ∀t ≥ 0, x ∈ R, (3.3.27)
and changing x to x + h yields for all h > 0 suciently small,

u(t, x) -u(t, x + h) ≤ 1 -e -mh u(t, x) ≤ 1 -e -mh , ∀t ≥ 0, x ∈ R. (3.3.28)
Next we show that there exists 0 < α(h) < 1, α(h) → 1 as h → 0 such that for all h > 0 small enough u(

√ h, x) ≥ α(h)v 0 (x + h), ∀x ∈ R.
Since v 0 (x + h) = 0 for x ≤ -h, it is suciently to consider the above inequality for x ≥ -h. As in the proof of Lemma 3.3.1, note that for all h > 0 suciently small and uniformly for x ∈ R, one has

u( √ h, x) ≥ v 0 (x) 1 -K √ h + √ h R K(y)v 0 (x -y)dy + o(1) .
One may now observe that for all 2A ≥ x ≥ -h, there exists ε > 0 such that

R K(y)v 0 (x -y)dy ≥ ε > 0.
As in the proof of Claim 3.3.2, set α

1 (h) = 1 -2K √ h. Then one has u( √ h, x) ≥ α 1 (h)v 0 (x + h), ∀x ≤ 2A.
Let us now prove that there exists 0 < α 2 (h) < 1 and

α 2 (h) → 1, as h → 0 such that u( √ h, x) ≥ α 2 (h)v 0 (x + h) for x ≥ 2A. From Lemma 3.3.3, one has lim h→0 + sup x≥2A e λx |u( √ h, x) -pe -λx | = 0. Set γ(h) := sup x≥2A e λx |u( √ h, x) -pe -λx |,
and observe that, for h suciently small, for all x ≥ 2A, one has

1 - γ(h) p v 0 (x) = -γ(h)e -λx + pe -λx ≤ u( √ h, x) ≤ γ(h)e -λx + pe -λx = γ(h) p + 1 v 0 (x). So that one can set α 2 (h) := 1 -γ(h) p to obtain 0 < α 2 (h) < 1, α 2 (h) → 1 as h → 0 and u( √ h, x) ≥ α 2 (h)v 0 (x), ∀x ≥ 2A.
Then since v 0 is non-increasing for x ≥ A, one has

u( √ h, x) ≥ α 2 (h)v 0 (x) ≥ α 2 (h)v 0 (x + h), ∀x ≥ 2A. Now, set α(h) := min{α 1 (h), α 2 (h)}, so that we get u( √ h, x) ≥ α(h)v 0 (x + h), ∀x ∈ R.
As in the proof of Lemma 3.3.1, one can also construct a function bh (t) → 1 as h → 0 uniformly for t ≥ 0 with 0 < bh (0) < α(h) and such that for all h > 0 small enough one has u(t

+ √ h, x) ≥ bh (t)u(t, x + h), ∀t ≥ 0, x ∈ R.
With such a choice, for all h > 0 small enough, for all t ≥ 0 and x ∈ R, one obtains that

u(t, x + h) -u(t, x) ≤ 1 bh (t) -1 u(t + √ h, x) + M √ h ≤ 1 bh (t) -1 + M √ h. (3.3.29)
As well as, for all t ≥ 0 and x ∈ R, one has

u(t, x) -u(t, x -h) ≤ 1 bh (t) -1 u(t + √ h, x -h) + M √ h ≤ 1 bh (t) -1 + M √ h.
(3.3.30) Combined with (3.3.27) and (3.3.28), this ensures that u is uniformly continuous on [0, ∞) × R and completes the proof of the lemma. Remark 3.3.5. Here we point out Problem (3.1.1) is invariant with respect to spatial translation, so that spatial shift on the initial data v 0 (•), induces the same spatial shift on the solution and does not change the uniform continuity on [0, ∞) × R.

Proof of Theorem 3.1.10

In this subsection, we construct a suitable exponentially decaying super-solution and prove Theorem 3.1.10.

Proof of Theorem 3.1.10. For each given λ > 0 and suciently large A > 0, let us rstly construct the following function

u(t, x) := Ae -λ * r (x-t 0 c(λ * r )(s)ds) , if λ ≥ λ * r , Ae -λ(x-t 0 c(λ)(s)ds) , if 0 < λ < λ * r .
Here we let A > 0 large enough such that u(0, •) ≥ u 0 (•) and recall that the speed function t → c(λ)(t) is dened in (3.1.8).

Since f (t, u) ≤ µ(t) for all t ≥ 0 and u ∈ [0, 1], then one readily obtains that u is super-solution of (3.1.1). So that the comparison principle implies that

lim t→∞ sup x≥ t 0 c + (λ)(s)ds+ηt u(t, x) ≤ lim t→∞ sup x≥ t 0 c + (λ)(s)ds+ηt u(t, x) = 0, ∀η > 0.
This completes the proof of the upper estimate as stated in Theorem 3.1.10.

Proof of Theorem 3.1.11

In this section we rst discuss some properties of the solution of the following autonomous Fisher-KPP equation: Note that c 0 > 0 since k(•) is a symmetric function (see also [START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF] where the sign of the (right and left) wave speed is investigated). Next our rst important result reads as follows.

∂ t u(t, x) = R k(y)u(t, x -y)dy -ku(t, x) + u(t, x)(m -bu(t, x)), t ≥ 0, x ∈ R.
Lemma 3.3.6. Let u = u(t, x) be the solution of (3.3.31) supplemented with a continuous initial data 0 ≤ u 0 (•) ≤ m b and u 0 ̸ ≡ 0 with compact support. Let us furthermore assume that u is uniformly continuous for all t ≥ 0, x ∈ R. Then one has

lim t→∞ sup |x|≤ct m b -u(t, x) = 0, ∀0 < c < c 0 .
Remark 3.3.7. For the kernel function with supp(k) = R and without the uniform continuity assumption, the above propagating behavior is already known. We refer to [START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF]Theorem 3.2]. For the reader convenience, we give a short proof of Lemma 3.3.6, with the help of Theorem 3.3 in [START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF] and the additional regularity assumption of solution.

Proof. Let 0 < c < c 0 be given and xed. To prove the lemma let us argue by contradiction by assuming that there exists a sequence (t n , x n ) and

|x n | ≤ ct n such that lim sup n→∞ u(t n , x n ) < m b .
Denote for n ≥ 0 the sequence of functions u n by u n (t, x) := u(t

+ t n , x + x n ). Since u = u(t, x) is uniformly continuous on [0, ∞) × R and 0 ≤ u ≤ m
b , then Arzelà-Ascoli theorem applies and ensures that as n → ∞ one has u n (t, x) → u ∞ (t, x) locally uniformly for (t, x) ∈ R 2 , for some function u ∞ = u ∞ (t, x) dened in R 2 and such that u ∞ (0, 0) < m b . Now x c ′ ∈ (c, c 0 ). Recall that Theorem 3.3 in [START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF] ensures that there exists some constant

q c ′ ∈ 0, m b such that lim inf t→∞ inf |x|≤c ′ t u(t, x) ≥ q c ′ .
Hence there exists T > 0 such that

inf |x|≤c ′ t u(t, x) ≥ q c ′ 2 , ∀t ≥ T.
This implies that for all n ≥ 0 and t ∈ R such that t + t n ≥ T one has

inf |x+xn|≤c ′ (t+tn) u(t + t n , x + x n ) ≥ q c ′ /2.
Since one has |x n | ≤ ct n for all n ≥ 0, this implies that for all n ≥ 0 and t ∈ R with t + t n ≥ T : inf

|x|≤(c ′ -c)tn+c ′ t u(t + t n , x + x n ) ≥ q c ′ /2.
Finally since c ′ > c and t n → ∞ as n → ∞, so that for all

(t, x) ∈ R 2 , u ∞ (t, x) ≥ q c ′ 2 > 0. Next, we consider U = U (t) with U (0) = q c ′ /2 > 0 the solution of the ODE U ′ (t) = U (t) (m -bU (t)) , ∀t ≥ 0. Since u ∞ (s, x) ≥ q c ′ /2 for all (s, x) ∈ R 2 , then comparison principle implies that u ∞ (t + s, x) ≥ U (t), ∀t ≥ 0, s ∈ R, x ∈ R.

So that

u ∞ (0, 0) ≥ U (t), ∀t ≥ 0.

On the other hand, since U (0) > 0, one gets U (t) → m b as t → ∞. Hence this yields u ∞ (0, 0) ≥ m b , a contradiction with u ∞ (0, 0) < m b , which completes the proof.

Now we apply the key lemma to prove our inner propagation result Theorem 3.1.11.

Proof of Theorem 3.1.11 (i). Here we assume that the initial data u 0 has a fast decay and we aim at proving that

lim t→∞ sup x∈[0,ct] |1 -u(t, x)| = 0, ∀c ∈ (0, c * r ).
One can construct a initial data v 0 alike in Lemma 3.3.1, through choosing proper parameter and spatial shifting (see Remark 3.3.5) such that v 0 (x) ≤ u 0 (x) for all x ∈ R. Let v(t, x) be the solution of (3.1.12) with initial data v 0 , Lemma 3.3.1 ensures that v(t, x) is uniformly continuous for all t ≥ 0, x ∈ R. Since v 0 (•) ≤ u 0 (•), then the comparison principle implies that v(t, x) ≤ u(t, x) for all t ≥ 0, x ∈ R. Note that u(t, x) ≤ 1, it is suciently to prove that

lim t→∞ inf x∈[0,ct] v(t, x) = 1, ∀c ∈ (0, c * r ).
Firstly, let us prove that

lim inf t→∞ inf x∈[0,ct] v(t, x) > 0, ∀c ∈ (0, c * r ).
To do this, for all

B, R > 0, γ ∈ R, we dene c R,B (γ) by c R,B (γ) := 2R π B -B K(z)e γz sin( πz 2R )dz. (3.3.32) 
Note that γ → c R,B (γ) is continuous and recalling (3.1.10) one has

lim γ→λ * r lim R→∞ B→∞ c R,B (γ) = c * r .
So for each c ′ ∈ (c, c * r ), one can choose proper γ close to λ * r such that for R, B > 0 large enough,

c ′ ≤ c R,B (γ) 
.

Then for all c c ′ < k < 1, ct k ≤ X(t) := c R,B (γ)t. 
Now, we apply Lemma 3.2.6 to show that

lim inf t→+∞ inf 0≤x≤kX(t) v(t, x) > 0.
Note that t → X(t) is continuous for t ≥ 0, and Lemma 3.3.1 ensures that v = v(t, x) is uniformly continuous for all t ≥ 0, x ∈ R. We only need to check that v = v(t, x) satises the conditions (H1) -(H3) in Lemma 3.2.6.

To show (H1), recalling (3.1.5) and (3.1.6), one may observe that v = v(t, x) satises

∂ t v(t, x) ≥ R k(y)v(t, x -y)dy -Kv(t, x) + v(t, x) (µ(t) -Cv(t, x)) .
Recalling Assumption 3.1.5 (f 4) and Lemma 3.1.2, there exists a ∈ W 1,∞ (0, ∞) such that µ(t) -K + a ′ (t) ≥ 0 for all t ≥ 0. Set w(t, x) := e a(t) v(t, x) so that w satises

∂ t w(t, x) ≥ R k(y)w(t, x -y)dy -kw(t, x) + w(t, x) k + µ(t) -K + a ′ (t) -Ce -a(t) w(t, x) ≥ R k(y)w(t, x -y)dy -kw(t, x) + w(t, x) m -Ce ∥a∥∞ w(t, x) ,
where m := inf t≥0 k + µ(t) -K + a ′ (t) ≥ k > 0. Now we consider w = w(t, x) the solution of following equation

∂ t w(t, x) = k * w(t, x) -kw(t, x) + w(t, x) m -Ce ∥a∥∞ w(t, x) . (3.3.33)
supplemented with the initial data w(0, x) = e -∥a∥∞ v 0 (x). Thus note that one has w(0, x) ≤ w(0, x) for all x ∈ R and the comparison principle implies that w(t, x) = e a(t) v(t, x) ≥ w(t, x), ∀t ≥ 0, x ∈ R.

Lemma 3.3.6 implies that there exists c > 0 such that

lim t→∞ sup |x|≤ct w(t, x) - m Ce ∥a∥∞ = 0, ∀c ∈ (0, c). (3.3.34) Since a ∈ W 1,∞ (0, ∞), we end-up with lim inf t→∞ v(t, 0) ≥ lim t→∞ e -∥a∥∞ w(t, 0) = m Ce 2∥a∥∞ > 0,
and (H1) is fullled.

Next we verify assumption (H2). Recall that for all ṽ ∈ ω(v) \ {0}, there exist (t n ) with t n → ∞ and (x n ) such that ṽ(t, x) = lim n→∞ v(t + t n , x + x n ) where this limit holds locally uniformly for (t, x) ∈ R 2 . As in the proof of Claim 3.2.5, such a function ṽ satises

∂ t ṽ(t, x) ≥ R k(y)ṽ(t, x -y)dy + ṽ(t, x)(μ(t) -K -C ṽ(t, x)), ∀(t, x) ∈ R 2 ,
where k(y) is dened in (3.1.5) and μ = μ(t) ∈ L ∞ (R) is a weak star limit of some shifted function µ(t n + •). Similar to Denition 3.1.1 and Lemma 3.1.2, one can dene the least mean of μ over R as ⌊μ⌋ = lim

T →∞ inf s∈R 1 T T 0 μ(t + s)dt.
Also, the least mean of μ satises

⌊μ⌋ = sup a∈W 1,∞ (R) inf t∈R (a ′ + μ)(t).
Assumption 3.1.5 (f 4) implies that ⌊μ(•)⌋ ≥ K and the same argument as above yields

lim inf t→∞ ṽ(t, 0) ≥ m Ce 2∥b∥∞ > 0, where b ∈ W 1,∞ (R) such that μ(t) -K + b ′ (t) ≥ 0 for all t ∈ R. Hence the condition (H2) is satised.
Before proving (H3), we state a lemma related to a compactly supported sub-solution of (3.1.1). Since (3.1.12) is a special case of (3.1.1), one can construct the similar subsolution of (3.1.12). The following lemma can be proved similarly to Lemma 6.1 in [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF]. So that the proof is omitted. Lemma 3.3.8. Let Assumption 3.1.3, 3.1.5 and 3.1.9 be satised. Let γ ∈ (0, λ * r ) be given. Then there exist B 0 > 0 large enough and θ 0 > 0 such that for all B > B 0 there exists R 0 = R 0 (B) > 0 large enough enjoying the following properties: for all B > B 0 and R > max(R 0 (B), B), there exists some function a ∈ W 1,∞ (0, ∞) such that the function

u R,B (t, x) = e a(t) e -γx cos( πx 2R ) if t ≥ 0 and x ∈ [-R, R], 0 else,
satises, for all θ ≤ θ 0 , for all x ∈ [-R, R] and for any t ≥ 0,

∂ t u(t, x) -c R,B (γ)∂ x u(t, x) ≤ R K(x -y)u(t, y)dy + µ(t) -θ -K u(t, x).
Herein the speed c R,B (γ) is dened in (3.3.32). Furthermore, let u(t, x) := ηu R,B (t, x -X(t)), where X(t) = c R,B (γ)t and η > 0 small enough, then u(t, x) is the sub-solution of (3.1.1). Now with the help of Lemma 3.3.8 and the comparison principle, one can choose η > 0 small enough such that u(0, x) ≤ v 0 (x) and therefore one has

lim inf t→∞ v(t, X(t)) ≥ lim inf t→∞ u(t, X(t)) = lim inf t→∞ ηu R,B (t, 0) > 0,
which ensures that (H3) is satised.

As a conclusion all the conditions of Lemma 3.2.6 are satised and this yields

lim inf t→∞ inf 0≤x≤kX(t) v(t, x) > 0. So that lim inf t→∞ inf 0≤x≤ct v(t, x) > 0, ∀c ∈ (0, c * r ). (3.3.35) 
Finally, let us prove that

lim inf t→∞ inf 0≤x≤ct v(t, x) = 1, ∀c ∈ (0, c * r ).
To do this, note that combining (3.3.34) and (3.3.35) yields

lim inf t→∞ inf -c 1 t≤x≤ct v(t, x) > 0, ∀0 < c 1 < c, ∀c ∈ (0, c * r ).
By the similar analysis as proof of Lemma 3.3.6, one could show that the above limit is equal to 1. Hence the proof is completed.

Next we prove Theorem 3.1.11 (ii). Firstly, we state a lemma about a sub-solution of (3.1.1), one can also construct the similar sub-solution for (3.1.12). Lemma 3.3.9. Let Assumption 3.1.3, 3.1.5 and 3.1.9 be satised, for each given λ ∈

(0, λ * r ), dene that φ(t, x) = e -λ(x+a(t)) -e -λa(t)+B 0 (t)+B 1 e -(λ+h)x , t ≥ 0, x ∈ R, (3.3.36) 
where a,

B 0 ∈ W 1,∞ (0, ∞), B 1 > 0 and 0 < h < min {λ, σ(K) -λ}. Then ϕ(t, x) := max 0, φ t, x - t 0 c λ,a (s)ds
is the subsolution of (3.1.1).

Remark 3.3.10. Note that φ(t, x) is positive when

x > ∥B 0 (t)∥ ∞ + B 1 h .
We point out this lemma can be proved similarly as [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF]Theorem 2.9]. So we omit the proof.

Proof of Theorem 3.1.11(ii). As proof of Theorem 3.1.11 (i), we can construct v 0 (x) alike in Lemma 3.3.4, through choosing proper parameter and spatial shifting (see Remark 3.3.5) such that v 0 (x) ≤ u 0 (x) for all x ∈ R. Let v(t, x) be the solution of (3.1.12) equipped with initial data v 0 . Lemma 3.3.4 ensures that v(t, x) is uniformly continuous for all t ≥ 0, x ∈ R. Recalling (3.1.8) and (3.1.9), for each given λ ∈ (0, λ * r ) and for all c < c ′ < ⌊c(λ)⌋, one can choose a proper function a ∈ W 1,∞ (0, +∞) such that c ′ < c λ,a (t), ∀t ≥ 0. 

c c ′ < k < 1, ct ≤ kX(t).
Next it is suciently to apply key Lemma 3.2.6 to show that

lim inf t→∞ inf 0≤x≤kX(t) v(t, x) > 0.
Note that for exponential decay initial data v 0 on the right-hand side, that is x ≫ 1, one can construct an initial data v 0 alike in Lemma 3.3.1 with compact support such that v 0 ≤ v 0 . Then comparison principle implies that (H1) and (H2) hold. To verify the condition (H3), by Lemma 3.3.9 and comparison principle, one has

lim inf t→∞ v(t, X(t)) ≥ lim inf t→∞ ϕ(t, X(t)) = lim inf t→∞ φ(t, P ) > 0.
So (H3) is satised. Hence the key Lemma 3.2.6 ensures that

lim inf t→∞ inf 0≤x≤kX(t) v(t, x) > 0.
Then one has lim inf

t→∞ inf 0≤x≤ct v(t, x) > 0, ∀0 < c < ⌊c(λ)⌋.
Similarly to the proof of Theorem 3.1.11 (i), one can show that

lim t→∞ sup x∈[0,ct] |u(t, x) -1| = 0, ∀0 < c < ⌊c(λ)⌋.
The proof is completed.

Finally, we prove Corollary 3.1.12.

Proof of Corollary 3.1.12. Recalling H > 0 given in Remark 3.1.6, let us consider

∂ t v(t, x) = R K(y)v(t, x -y)dy -Kv(t, x) + µ(t)v(t, x) (1 -Hv(t, x)) , t ≥ 0, x ∈ R.
(3.3.37) By the same analysis, one can obtain that the similar result for (3.3.37) as Theorem 3.1.11. For the reader convenience, we state it in the following.

Let v = v(t, x) be the solution of (3.3.37) equipped with a continuous initial data u 0 , with 0 ≤ u 0 ≤ 1 and u 0 ̸ ≡ 0. Then the following inner spreading occurs:

(i) (fast exponential decay) If u 0 (x) = O(e -λx ) as x → ∞ for some λ ≥ λ * r then one has lim t→∞ sup x∈[0,ct] v(t, x) - 1 H = 0, ∀c ∈ (0, c * r ); (ii) (slow exponential decay) If lim inf x→∞ e λx u 0 (x) > 0 for some λ ∈ (0, λ * r ) then lim t→∞ sup x∈[0,ct] v(t, x) - 1 H = 0, ∀c ∈ (0, ⌊c(λ)⌋) .
Denote that u(t, x) is a solution of (3.1.1) equipped with initial data u 0 . Recall (3.1.6) that v(t, x) is the sub-solution of (3.1.1). Then comparison principle implies that u(t, x) ≥ v(t, x) for all t ≥ 0, x ∈ R. Hence the conclusion is proved.

Introduction

In this work, we investigate the spreading speed for a class of reaction-diusion system of prey-predator type in a time heterogeneous environment. First, before introducing the general class of systems considered in this work, let us introduce a typical example. We consider the so-called diusive Lotka-Volterra prey-predator model with time dependent coecients, that reads as follows

∂ t u = d u (t)∂ xx u + r(t)u (1 -u) -p(t)uv, ∂ t v = d v (t)∂ xx v + q(t)uv -ν(t)v. (4.1.1) 
This problem is set for time t > 0 and spatial location x ∈ R and it is supplemented with the continuous, non-negative and compactly supported initial data

u(0, x) = u 0 (x) and v(0, x) = v 0 (x), x ∈ R.
In the above system of equations, u = u(t, x) and v = v(t, x) denote the density of the prey and the predator, respectively. The functions r, p, q, ν are all positive and describe the growth rate of the prey, the predation rate, the conversion rate and the death rate of the predator, respectively; while d u and d v are positive functions which stand for the diusion rates for the prey and the predator populations. Note that uctuating environment modeled by time heterogeneities is important in ecology and in particular for prey-predator systems, see for instance [START_REF] Butler | Periodic solutions of a predator-prey system with periodic coecients[END_REF][START_REF] Cushing | Periodic time-dependent predator-prey systems[END_REF][START_REF] Gatica | Predator-prey models with almost periodic coecients[END_REF] and the references cited therein. Various important factors vary with time as for instance climate variations (temperature, rainfall, wind...), seasonality, species mobility, the availability for food and so on. As mentioned above, the goal of this work is to study the asymptotic speed of spread for a large class of diusive prey-predator systems including (4.1.1) as a typical example. The notion of spreading speed was introduced by Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF] in investigation of homogeneous scalar reaction-diusion equations. As far as homogeneous reactiondiusion systems are concerned, spreading speed has also received a lot of interests. For monotone systems, we refer the reader for instance to [START_REF] Weinberger | Analysis of linear determinacy for spread in cooperative models[END_REF] for cooperation systems and to [START_REF] Lewis | Spreading speed and linear determinacy for two-species competition models[END_REF][START_REF] Carrère | Spreading speeds for a two-species competition-diusion system[END_REF][START_REF] Girardin | Invasion of open space by two competitors: spreading properties of monostable two-species competition-diusion systems[END_REF][START_REF] Lin | Asymptotic spreading of competition diusion systems: the role of interspecic competitions[END_REF]112] for competition systems. We also refer the reader to Liang and Zhao [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] for abstract monotone evolutionary system.

However, due to the asymmetry in prey-predator interactions, the prey-predator systems, as (4.1.1), are no longer monotone. Recently, spreading speed for some preypredator systems (including the diusive Lotka-Volterra system in a homogeneous environment) has been studied using ideas from dynamical system, see [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. We also refer to [START_REF] Choi | Persistence of species in a predator-prey system with climate change and either nonlocal or local dispersal[END_REF] for the spreading speed of prey-predator systems with shifted habitat and to [START_REF] Ducrot | Asymptotic spreading speeds for a predatorprey system with two predators and one prey[END_REF] for the study of the propagation phenomena arising in the interaction between two predators and one prey. We refer the reader to [START_REF] Chen | Spreading speed in a farmers and hunter-gatherers model arising from Neolithic transition in Europe[END_REF][START_REF] Ducrot | Convergence to generalized transition waves for some HollingTanner prey predator reactiondiusion system[END_REF][START_REF] Ducrot | Spatial propagation for a two component reactiondiusion system arising in population dynamics[END_REF][START_REF] Lin | Spreading speeds of a LotkaVolterra predatorprey system: the role of the predator[END_REF][START_REF] Wang | Spreading speeds and traveling wave solutions of diusive vector-borne disease models without monotonicity[END_REF][START_REF] Wang | Spatial propagation in a within-host viral infection model[END_REF] for the study of the large time propagation behaviour of other types of prey-predator systems, for instance when the predator has a positive intrinsic growth rate or when the prey is abundant.

In the last decades, the description of the spreading speed for non-autonomous scalar equations has attracted a lot of interests and has been widely studied. We refer the reader to Shen [START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF] (for time almost periodic and space periodic equation), Nadin and Rossi [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF] (for general time dependence), Berestycki et al. [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF] (for general heterogeneities in time and space) and the references cited therein.

To deal with temporal heterogeneity, we recall the notion of mean value for bounded function which has been used in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF]. We emphasize that periodic functions, almost periodic functions and uniquely ergodic functions have a mean value according to the next denition. In that case the quantity ⟨h⟩ is called the mean value of h.

An equivalent and useful characterization for a function h with a mean value ⟨h⟩ can be rewritten as follows,

⟨h⟩ = sup a∈W 1,∞ (0,∞) ess inf t>0 (a ′ + h) (t) = inf a∈W 1,∞ (0,∞) ess sup t>0 (a ′ + h) (t). (4.1.2) 
For H ∈ L ∞ (R; R), we can also dene the mean value of H and the similar reformulation also holds. We refer the reader to [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF] for more details about mean value, as well as for the denitions of the so-called least mean and upper mean to handle more general time heterogeneous medium. Now observe that, when v ≡ 0, the u-equation in (4.1.1) becomes following KPP-type equation

∂ t u = d u (t)∂ xx u + r(t)u (1 -u) , t > 0, x ∈ R.
Using the above denition, let us recall the spreading speed result for non-autonomous Fisher-KPP equation obtained in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF]. If d u and r have mean value, then by setting c * u = 2 ⟨d u ⟩⟨r⟩, the following spreading property holds true: for nonnegative and nontrivial compactly supported initial data, the corresponding solution u = u(t, x) satises

     lim t→∞ sup |x|≥ct u(t, x) = 0, ∀c > c * u , lim t→∞ inf |x|≤ct u(t, x) = 1, ∀c ∈ [0, c * u ).
However, to the best of our knowledge, the spreading behaviour for non-autonoumous prey-predator systems, such as the Lotka-Volterra system (4.1.1), remains at least theoretically unknown for general time variations and also in the periodic and the almost periodic cases. For the study of the spreading speed of monotone non-autonomous systems, we refer the reader to [START_REF] Liang | Spreading speeds and traveling waves for periodic evolution systems[END_REF][START_REF] Fang | Traveling waves and spreading speeds for timespace periodic monotone systems[END_REF] in periodic medium, to [START_REF] Bao | Spreading speeds and linear determinacy of time dependent diusive cooperative/competitive systems[END_REF] for time almost periodic medium and the reference cited therein. We also mention that [START_REF] Wang | Asymptotic spreading for a time-periodic predator-prey system[END_REF] show some upper and lower bounds of the spreading speeds for a time periodic prey-predator system where the predator has a positive intrinsic growth rate.

As already mentioned above, the spreading speed for prey-predator system in homogeneous medium, including Lotka-Volterra, has been studied in particular in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. While the method provided in this aforementioned paper could probably be extended to study the spreading speed for (4.1.1), here we provide a new approach that somehow allows comparison with Fisher-KPP scalar equation. Roughly speaking, using the strong maximum principle for scalar parabolic equations, we derive pointwise comparisons between u(t, x) and v(t, x) in suitable domains. These estimates ensure that one can compare the solution of prey-predator system with that of a KPP-type scalar equation on suitable spatio-temporal domains, typically where the prey has a low density and where the predator has a low density.

Let us explain the ideas of these estimates for (4.1.1). First the predator will starve without the prey. Hence if the prey has a small density, u ∼ 0, then v becomes a solution of

∂ t v = d v (t)∂ xx v -ν(t)v,
and v decays exponentially to 0. This observation yields our rst estimate: for all δ > 0 small enough, one can nd some constants M δ > 0 and T δ > 0 such that

v(t, x) ≤ δ + M δ u(t, x), ∀t ≥ T δ , x ∈ R.
Another important property of (4.1.1) is the following observation: when there is no predator, v ≡ 0, as noticed above, the density of the prey follows the Fisher-KPP equation and spread with the speed c * u . Through this fact, we show that for xed c ∈ (0, c * u ), for all α > 0, there exists some M α > 0 and T α > 0 such that

1 -u(t, x) ≤ α + M α v(t, x), ∀t ≥ T α , ∀x ∈ [-ct, ct] .
These rough ideas can be applied to a large class of reaction-diusion systems of preypredator type, including (4.1.1) as a special case.

Rather similar estimates have been obtained and used by Wu in [START_REF] Wu | The spreading speed for a predatorprey model with one predator and two preys[END_REF] to study the invasion of a single predator with two abundant preys in the case where the two prey species have the same diusion coecient. This analysis is based on the equation formed by the total density of the two preys coupled with rened estimates of the heat kernel. Here the situation is dierent since we study the co-invasion of the two species, the prey and the predator. We extend the analysis to handle time heterogeneities and propose a new methodology based on suitable applications of the strong comparison principle for scalar parabolic equations. This methodology is rather general and can extended to other problems. Indeed it can be extended to handle predator-prey systems on lattices (see [START_REF] Ducrot | Spreading speeds for time heterogeneous prey-predator systems with nonlocal diusion on lattice[END_REF]) or predator-prey systems in spatially heterogeneous habitats. This latter problem will be studied in a forthcoming work.

Hence, in this paper, we study the spreading speed for the following reaction-diusion system:

∂ t u = d(t)∂ xx u + uf (t, u, v) ∂ t v = ∂ xx v + vg (t, u, v) (4.1.3) 
posed for time t > 0 and spatial x ∈ R. This system is supplemented with suitable compactly supported initial data

u(0, x) = u 0 (x) and v(0, x) = v 0 (x) for x ∈ R. (4.1.4) 
In (4.1.3), as for (4.1.1), u = u(t, x) and v = v(t, x) stand for the density of the prey and the predator. Here we assume, without loss of generality, that the diusion rate for the predator equals one. This can be achieved with a suitable time rescaling τ (t) = t 0 d v (s)ds, see for instance [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF] for more details.

We now turn to the set of assumptions that will be needed along this work for the functions d, f and g arising in (4.1.3). Assumption 4.1.2. We assume that d : [0, ∞) → R is a bounded and uniformly continuous function with a mean value ⟨d⟩ and inf t≥0 d(t) > 0.

Assumption 4.1.3. The function f : [0, ∞) 3 → R satises: (f1) For each given u, v ≥ 0, the function t → f (t, u, v) is bounded and uniformly continuous from [0, ∞) to R, and t → f (t, u, v) has a mean value ⟨f (•, u, v)⟩. The function (u, v) → f (t, u, v) is Lipschitz continuous with respect to u, v ≥ 0, uniformly for t ≥ 0;

(f2) For all t ≥ 0 and u > 0, the map v → f (t, u, v) is strictly decreasing;

(f3) Assume f (t, 1, 0) = 0 for all t ≥ 0 and h(u) := inf t≥0 f (t, u, 0) > 0, ∀u ∈ [0, 1);

(f4) For all t ≥ 0 and v ≥ 0, the map u → f (t, u, v) is nonincreasing;

(f5) For all v > 0, the function f further satises sup t≥0 f (t, 1, v) < 0.

Assumption 4.1.4. The function g : [0, ∞) 3 → R satises:

(g1) For each given u, v ≥ 0, the function t → g(t, u, v) is bounded and uniformly continuous from [0, ∞) to R, and t → g(t, u, v) has a mean value ⟨g(•, u, v)⟩, while the function (u, v) → g(t, u, v) is Lipschitz continuous with respect to u, v ≥ 0, uniformly with respect to t ≥ 0;

(g2) For all t ≥ 0 and v ≥ 0, the map u → g(t, u, v) is nondecreasing;

(g3) It satises inf t≥0 g(t, 1, 0) > 0;

(g4) For all t ≥ 0 and u ≥ 0, the map v → g(t, u, v) is nonincreasing;

(g5) Let the mean value of function t → g(t, 0, 0) satisfy ⟨g(•, 0, 0)⟩ < 0.

From now on and for notation simplicity, we set r 1 (t) := f (t, 0, 0) and r 2 (t) := g(t, 1, 0). (4.1.5)

From the monotonicity and regularity of f and g, there exists some constant L > 0 such that for all t ≥ 0, u ∈ [0, 1] and v ≥ 0,

r 1 (t) (1 -Lu -Lv) ≤ f (t, u, v) ≤ r 1 (t), r 2 (t) 1 -L(1 -u) -Lv ≤ g(t, u, v) ≤ r 2 (t). (4.1.6) 
Now we explain Assumption 4.1.3 and 4.1.4 in the ecological context.

• As we mentioned before, the species typically live in a time varying environment. Thus we assume that f and g both depend on time.

• Assumptions (f 2) and (g2) describe predatory behaviour. Condition (f 2) means that more predators reduce the prey density while (g2) implies that more prey lead to an increase for the predator population. Due to this asymmetry, the comparison principle does not apply to (4.1.3).

• When there is no predator, (f 3) ensures that u ≡ 1 is the maximal environmental carrying capacity of the prey. (g3) means that the predator density will increase when the prey is abundant.

• (f 4) and (g4) imply that the growth rate of each species is maximal at low density. By analogy with the Fisher-KPP equation, this indicates that the propagation of two species is driven by the leading edge of the invasion.

• (f 5) is a technical assumption. Note also that (f 2) and f (t, 1, 0) ≡ 0 already ensure that f (t, 1, v) < 0 for all t ≥ 0 and v > 0. (f 5) implies that the prey cannot reach the environmental carrying capacity 1 as long as there exists the predator. (g5) means that the predator cannot survive without the prey. The prey population is the only resource for the predator.

Coming back to (4.1.1), note that it corresponds to (4.1.3) with

f (t, u, v) = r(t) (1 -u) -p(t)v, g(t, u, v) = q(t)u -ν(t).
With the additional smoothness and sign conditions for the coecients, it satises Assumption 4.1.3 and 4.1.4. Next, to state our main results, we dene two speed functions λ → c u (λ) and

γ → c v (γ) from (0, ∞) to L ∞ (0, ∞) given by c u (λ)(t) := d(t)λ + r 1 (t) λ and c v (γ)(t) := γ + r 2 (t) γ , (4.1.7) 
for all t ≥ 0, where r 1 and r 2 are dened in (4.1.5). These two functions corresponds to linear speeds for u and v respectively, around the stationary state (0, 0) (no species) and

(1, 0) (predator free equilibrium) for solution with exponential decay λ and γ. We also introduce the quantities c * u and c * v given by Due to (f 1), (f 3) and (f 4), one can observe that for v ≡ 0, the system (4.1.3) degenerates to following Fisher-KPP type equation satised by u,

c * u := inf λ>0 ⟨c u (λ)⟩ and c * v := inf γ>0 ⟨c v (γ)⟩.
∂ t u(t, x) = d(t)∂ xx u(t, x) + u(t, x)f (t, u(t, x), 0) .
The quantity c * u is the spreading speed of above equation equipped with compactly supported initial data, we refer the reader to [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF].

On the other hand, for u ≡ 1, the solution v of (4.1.3) satises following equation

∂ t v(t, x) = ∂ xx v(t, x) + v(t, x)g (t, 1, v(t, x)) .
Note that we do not assume the existence of nontrivial stationary state solution in above equation. It is not a standard KPP-type equation. However, by the similar argument in [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF], one can show that c * v is the spreading speed of above equation equipped with compactly supported initial data. The main dierence is that v may grow and become unbounded in the large time.

With above notations and assumptions, we state our main results. We assume that the predator is slower than the prey, in the sense that

c * u > c * v .
Let u 0 and v 0 be two given bounded and continuous functions in R with compact support, and 0 ̸ ≡≤ u 0 ≤ 1, 0 ̸ ≡≤ v 0 . Let (u, v) = (u(t, x), v(t, x)) be the solution of (4.1.3) with initial data (u 0 , v 0 ). Assume that (u, v) is bounded.

Then the function pair (u, v) satises:

(i) for all c > c * u , one has lim 

c * u ≤ c * v .
Let u 0 and v 0 be two given bounded and continuous functions in R with compact support, and 0

̸ ≡≤ u 0 ≤ 1, 0 ̸ ≡≤ v 0 . Let (u, v) = (u(t, x), v(t, x
)) be the solution of (4.1.3) with initial data (u 0 , v 0 ). Assume that (u, v) is bounded. Then (u, v) satises: Remark 4.1.7. In the situation of all coecients in (4.1.3) are independent of t, that is

d(t) ≡ d > 0, f (t, u, v) ≡ f (u, v
) and g(t, u, v) ≡ g(u, v), the above two theorems have been proved in Theorem 2.1 and 2.2 in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. In this note, we provide a new method that allows 1)

to recover this result in the homogeneous case, 2) to extend them for non-autonomous preypredator systems, 3) to provide a shorter proof as in [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF] for the homogeneous problem.

Remark 4.1.8. Note that in above two theorems, we require that the solution (u, v) is bounded. We emphasize that this assumption is satised for a large classes of systems.

Recall that the comparison principle does not hold for system (4.1.3). However we can apply it for each equation separately to obtain 0 ≤ u(t, x) ≤ 1 and v(t, x) ≥ 0 for all t ≥ 0 and x ∈ R. The boundedness of the solutions can be obtained if we assume that lim sup t→∞ g(t, 1, ∞) < 0, which is satised for the prey-predator problems with intraspecic competition for the predator, for example g(t, u, v) := q(t)u -v -ν(t). When the above condition is not satised, that is when lim sup t→∞ g(t, 1, ∞) ≥ 0, the situation is more complicated and some results are discussed in the next proposition.

Next we show that the solution (u, v) is bounded in case when inf t≥0 g(t, 0, ∞) > -∞, which includes the case of lim sup t→∞ g(t, 1, ∞) ≥ 0. For technical requirement, we add the assumption that: there exists M 0 > 0 such that the mean value ⟨f (•, 0, M )⟩ < 0 for all M ≥ M 0 .

(4.1.10) Recall that f (t, 0, v) ≥ f (t, u, v) for all u, v ≥ 0 and t ≥ 0. Hence (4.1.10) means that even if the prey grows fast at low density, the suciently large density of the predator will cause reduction of the prey. Proposition 4.1.9 (Boundedness). Let Assumption 4.1.2, 4.1.3 and 4.1.4 be satised.

Assume that (4.1.10) and inf t≥0 g(t, 0, ∞) > -∞ hold. Let (u, v) = (u, v) (t, x) be the solution of (4.1.3) supplemented with nonnegative and uniformly continuous initial function

(u 0 , v 0 ). If 0 ≤ u 0 ≤ 1 and v 0 ≥ 0 is bounded, then the function (u, v) = (u, v)(t, x) is bounded on [0, ∞) × R.
The rest of this paper is organized as follows. In Section 4.2, we construct proper super-solutions to obtain an upper estimate of the speed of propagation for each species. We show that the spreading speed of the prey cannot exceed c * u and the predator cannot spread faster than c * v and c * u . In Section 4.3.1, we discuss time and space shift argument of the equations that are used at several places in the sequel. Then we prove some key lemmas about our local pointwise estimates between u and v. With the help of the rst key lemma (see Lemma 4.3.2), in Section 4.3.3 we prove the propagation in the intermediate zone in the case of slow predator. In Section 4.3.4, we use the other key lemma (see Lemma 4.3.4) to derive a Fisher-KPP type dierential inequality satised by v in a moving domain. Through constructing a sub-solution with compact support, we obtain that v is persistent at x = ct for suitable c > 0 and t ≫ 1. Moreover, we complete the proof of Theorem 4.1.5 and 4.1.6. Lastly, for sake of completeness, we prove Proposition 4.1.9.

Upper estimates on the spreading speeds

In this section we prove Theorem 4.1.5 (i), half of Theorem 4.1.5 (ii) and Theorem 4.1.6 (i). In the proof we only focus on x ≥ 0, for x ≤ 0 which can be dealt with a similar symmetric argument. Recalling (4.1.7), (4.1.8) and (4.1.9), the property of mean value (see (4.1.2)) ensures that for all c > c ′ > c * u , there exists a function a ∈ W 1,∞ (0, ∞) such that for all t > 0

c ′ ≥ d(t)λ * + r 1 (t) λ * + a ′ (t). Then for A > 0 the function u given by u(t, x) := Ae -λ * a(t) e -λ * (x-c ′ t) satises ∂ t u(t, x) -d(t)u xx (t, x) -r 1 (t)u(t, x) = u(t, x) λ * c ′ -λ * a ′ (t) -d(t)(λ * ) 2 -r 1 (t) ≥ 0.
Let A > 0 be large enough such that u(0, x) ≥ u 0 (x) for all x ∈ R. Note that we have f (t, u, v) ≤ r 1 (t) for all t ≥ 0, u ∈ [0, 1] and v ≥ 0 from (4.1.6). Hence the comparison principle applies and yields for all c > c ′ > c * u ,

lim t→∞ sup x≥ct u(t, x) ≤ lim t→∞ sup x≥ct u(t, x) ≤ lim t→∞ Ae -λ * a(t) e -λ * (c-c ′ )t = 0.
Since u is nonnegative, this already proves statement (i) in Theorem 4.1.5 and the half of statement (i) in Theorem 4.1.6.

Similarly, for all c > c > c * v , there exists ã ∈ W 1,∞ (0, ∞) such that for all t > 0 c ≥ γ * + r 2 (t) γ * + ã′ (t).

Then the function v 1 (t, x) := Ae -γ * ã(t) e -γ * (x-ct)

satises following dierential inequality

∂ t v 1 (t, x) -∂ xx v 1 (t, x) -r 2 (t)v 1 (t, x) ≥ 0.
Choosing A > 0 large enough such that v 1 (0, x) ≥ v 0 (x) for all x ∈ R, through (4.1.6) and the comparison principle one obtains that for all c > c > c * v ,

lim t→∞ sup x≥ct v(t, x) ≤ lim t→∞ sup x≥ct v 1 (t, x) ≤ lim t→∞ Ae -γ * ã(t) e -γ * (c-c)t = 0.
Since v is nonnegative, then we have already proved the half of statement (ii) in Theorem 4.1.5.

Next we show that v cannot spread faster than c * u . Note that we have already obtained

lim t→∞ sup |x|≥ct u(t, x) = 0, ∀c > c * u .
Thus, xing any c > c * u and ε > 0 small enough, there exists T > 0 such that

sup t≥T sup |x|≥ct u(t, x) ≤ ε.
Recalling that ⟨g(•, 0, 0)⟩ < 0 in Assumption 4.1.4 and observing that the map u → ⟨g(•, u, 0)⟩ is continuous, one has ⟨g(•, ε, 0)⟩ < 0 for all ε > 0 suciently small. From (4.1.2), one can choose b ∈ W 1,∞ (0, ∞) such that

sup t>0 {g(t, ε, 0) + b ′ (t)} < 0.
For some B > 0 and γ ′ > 0 which will be chosen below, for c > c ′′ > c * u , we dene v 2 (t, x) := Be -γ ′ (x-c ′′ t) e -b(t) . Now choose γ ′ > 0 small enough so that v 2 (t, x) satises for all t ≥ 0 and x ∈ R,

∂ t v 2 (t, x) -∂ xx v 2 (t, x) -g(t, ε, 0)v 2 (t, x) = v 2 (t, x) -b ′ (t) + γ ′ c ′′ -(γ ′ ) 2 -g(t, ε, 0) ≥ 0. Since g(t, u, v) ≤ g(t, ε, 0) for all t ≥ 0, v ≥ 0 and 0 ≤ u ≤ ε, then v 2 (t, x) is a super- solution of v-equation in (4.1.
3) for all t ≥ T and x ≥ c ′′ t with c ′′ > c * u . Lastly, let us focus on the region {(t, x) : t ≥ T, x ≥ c ′′ t}. Since v is assumed to be bounded, one can choose B > 0 large enough such that Be -∥b∥∞ ≥ v(t, x) for all t ≥ T and x ∈ R. So for all t ≥ T and x = c ′′ t, one has

v(t, c ′′ t) ≤ Be -∥b∥∞ ≤ v 2 (t, c ′′ t).
Recalling that v(t, x) ≤ v 1 (t, x) for all t ≥ 0 and x ∈ R and that γ ′ ∈ (0, γ * ) is suciently small, one can choose larger B > 0 if necessary such that at t = T and for all x ≥ c ′′ T > 0,

v(T, x) ≤ v 1 (T, x) = Ae -γ * ã(T ) e -γ * (x-cT ) ≤ Be -γ ′ (x-c ′′ T ) e -b(T ) = v 2 (T, x).
Thus we obtain that v(t, x) ≤ v 2 (t, x) on the boundary set {(t, x) : t ≥ T, x = c ′′ t} and {(t, x) : t = T, x ≥ c ′′ T }. Applying the comparison principle on domain

{(t, x) : t ≥ T, x ≥ c ′′ t} , one has lim t→∞ sup x≥ct v(t, x) ≤ lim t→∞ sup x≥ct v 2 (t, x) ≤ lim t→∞ Be -γ ′ (c-c ′′ )t e -b(t) = 0, ∀c > c ′′ > c * u .
This completes the proof of statement (i) in Theorem 4.1.6.

Lower estimates on the spreading speeds

In this section, we rst introduce some notations and derive the equation satised by the limit of shifted solutions. Then we derive local estimates between u and v, that reect the relationship between prey and predator. Lastly we apply these lemmas to complete the proof of Theorem 4.1.5 and 4.1.6. For brevity, troughout this section we assume that Asumption 4.1.2, 4.1.3 and 4.1.4 are satised. Let (u, v) = (u(t, x), v(t, x)) be the bounded solution of (4.1.3) with initial data (u 0 , v 0 ) where u 0 and v 0 are bounded and continuous functions in R with compact support, as well as 0 ̸ ≡≤ u 0 ≤ 1 and 0 ̸ ≡≤ v 0 .

Limit problem

In this section we discuss time and space shift of the solution (u, v). Fix a sequence (τ n ) n≥0 such that τ n → ∞. Then we claim that Claim 4.3.1. There exist f : R × [0, ∞) 2 → R and g : R × [0, ∞) 2 → R two bounded and uniformly continuous functions and a subsequence, still denoted (τ n ) such that f (t + τ n , u, v) → f (t, u, v) and g(t + τ n , u, v) → g(t, u, v) as n → ∞, locally uniformly for t ∈ R and (u, v) ∈ [0, ∞) 2 . Note also that due to (f2), (f4) and (g2), (g4), f = f (t, u, v) is nonincreasing in both u and v while g = g(t, u, v) is nondeacreasing with respect to u and nonincreasing in the v-variable.

Assumptions 4.1.3 and 4.1.4 for f and g ensure that both functions are bounded and uniformly continuous on [0, ∞) 3 and the claim follows. Now we dene for t ≥ 0:

σ(t) := d(t), f (t, •, •), g(t, •, •) ∈ R × BUC [0, ∞) × [0, ∞) 2 .
As d is uniformly continuous and using Claim 4.3.1, we dene the set Σ as follows: σ = ( d, f , g) ∈ Σ if and only if there exist a sequence τ n ≥ 0 such that

d(t + τ n ), f (t + τ n , •, •), g(t + τ n , •, •) → d(t), f (t, •, •), g(t, •, •) ,
locally uniformly for t ∈ R, as n → ∞.

Recall that (u, v) = (u(t, x), v(t, x)) denotes a bounded solution of (4.1.3). Dene the set S by: (ũ, ṽ) ∈ S if there exist sequence

(t n ) n≥0 ⊂ [0, ∞) with t n → ∞ as n → ∞ and (x n ) n≥0 ⊂ R such that (u(t + t n , x + x n ), v(t + t n , x + x n )) → (ũ(t, x), ṽ(t, x)) ,
locally uniformly for (t, x) ∈ R 2 , as n → ∞.

Note that for each sequence of (t n , x n ) ∈ [0, ∞) × R, the function pair (u n , v n )(t, x) := (u, v)(t + t n , x + x n ) dened for t ≥ -t n and x ∈ R satises

∂ t u n (t, x) = d(t + t n )∂ xx u n (t, x) + u n (t, x)f (t + t n , u n (t, x), v n (t, x)) , ∂ t v n (t, x) = ∂ xx v n (t, x) + v n (t, x)g (t + t n , u n (t, x), v n (t, x)) . (4.3.11)
If t n → ∞, from parabolic regularity, up to a subsequence one has (u n , v n )(t, x) → (ũ, ṽ)(t, x) locally uniformly for (t, x) ∈ R 2 as n → ∞ and there exists some σ ∈ Σ with σ(t + t n ) → σ(t) locally uniformly for t ∈ R as n → ∞. In addition, the function pair (ũ, ṽ) satises the system for (t, x) ∈ R 2

(P σ) ∂ t ũ(t, x) = d(t)∂ xx ũ(t, x) + ũ(t, x) f (t, ũ(t, x
), ṽ(t, x)) , ∂ t ṽ(t, x) = ∂ xx ṽ(t, x) + ṽ(t, x)g (t, ũ(t, x), ṽ(t, x)) . (4.3.12)

Key lemmas

Now we construct some important lemmas which play a key role in proving Theorem 4.1.5 and 4.1.6. Roughly speaking, from Assumption 4.1.3 and 4.1.4, we have two important facts: the predator cannot survive without the prey and the prey asymptotically reach its carrying capacity without the predator. We transfer these facts into two important inequalities which are crucial to ensure that one can compare solutions of the system with those of a single KPP-type scalar equations on suitable moving domain.

Our rst lemma reads as follows.

Lemma 4.3.2. For all δ > 0, there exist M δ > 0 and T δ > 0 such that the following estimate holds true v(t, x) ≤ δ + M δ u(t, x), ∀t ≥ T δ , x ∈ R.

Proof. To prove the lemma we argue by contradiction by assuming that there exist δ 0 > 0 and sequences (t n ) n and (x n ) n such that

t n → ∞ as n → ∞ and v(t n , x n ) > δ 0 + nu(t n , x n ), for all n ≥ 0. (4.3.13) Set u n (t, x) := u(t + t n , x + x n ) and v n (t, x) := v(t + t n , x + x n ).
As we discussed in Section 4.3.1, due to parabolic regularity, there exist a subsequence, still denoted with the same indexes n, (u ∞ , v ∞ ) ∈ S and σ ∈ Σ such that

(u n , v n )(t, x) → (u ∞ , v ∞ )(t, x) as n → ∞ locally uniformly for (t, x) ∈ R 2 , the function pair (u ∞ , v ∞ ) satises (P σ) (see (4.3.12)).
Due to the boundedness of v, (4.3.13) implies that u(t n , x n ) → 0 as n → ∞, that is u ∞ (0, 0) = 0. The strong maximum principle for the u ∞ -equation implies that u ∞ ≡ 0 and the limit function v ∞ satises

∂ t v ∞ (t, x) = ∂ xx v ∞ (t, x) + v ∞ (t, x)g (t, 0, v ∞ (t, x)) for (t, x) ∈ R 2 . (4.3.14)
Since v ∞ is bounded, then one can choose B > 0 large enough such that B ≥ v ∞ (t, x) for all (t, x) ∈ R 2 . For each t 0 < 0, we dene v(t; t 0 ) := B exp t t 0 g(s, 0, 0)ds .

From Claim 4.3.1, one has g(t, 0, v) ≤ g(t, 0, 0) for all t ∈ R and v ≥ 0. Hence one can verify that t → v(t; t 0 ) is the super-solution of (4.3.14). The comparison principle implies that v ∞ (t, x) ≤ v(t; t 0 ) for all t 0 < 0, t ≥ t 0 and x ∈ R. As a special case, letting t = 0, we obtain that v ∞ (0, x) ≤ v(0; t 0 ) for all x ∈ R and t 0 < 0.

Since ⟨g(•, 0, 0)⟩ < 0 (see (g5) in Assumption 4.1.4) and the denition of mean value, one has ⟨g(•, 0, 0)⟩ < 0. Let us observe that

lim t 0 →-∞ 0 t 0 g(s, 0, 0)ds = lim t 0 →-∞ (-t 0 ) • 1 0 -t 0 0 t 0 g(s, 0, 0)ds = -∞.
Hence, we conclude that for all x ∈ R,

v ∞ (0, x) ≤ lim t 0 →-∞ v(0; t 0 ) = lim t 0 →-∞ B exp 0 t 0 g(s, 0, 0)ds = 0.
This contradicts the property v ∞ (0, 0) ≥ δ 0 that follows by passing to the limit n → ∞ into the assumption v(t n , x n ) > δ 0 > 0 for all n ≥ 0. The proof is completed.

In the following proposition, we apply above lemma to show that u is persistent on the interval [-ct, ct] with t ≫ 1 for all c ∈ (0, c * u ). Proof. Recalling (4.1.6) and Lemma 4.3.2, for each given δ > 0, there exist M δ > 0 and T δ > 0 such that the solution u(t, x) of (4.1.3) satises following dierential inequality

∂ t u(t, x) ≥ d(t)∂ xx u(t, x)+r 1 (t)u(t, x) 1-Lu(t, x)-L δ+M δ u(t, x) , ∀t ≥ T δ , ∀x ∈ R.
Let u = u(t, x) be the solution of following equation for all t > 0 and x ∈ R,

∂ t u(t, x) = d(t + T δ )∂ xx u(t, x) + r 1 (t + T δ )u(t, x) 1 -Lδ -L(1 + M δ )u(t, x) , (4.3.15) 
equipped with a nontrivial continuous initial data u(0, •) which is compactly supported, bounded and that satises u(0, •) ≤ u(T δ , •). Then the comparison principle implies that

u(t + T δ , x) ≥ u(t, x), ∀t > 0, ∀x ∈ R.
Let us dene the quantity c * u (δ) for all δ ∈ [0, 1 2L ), regarded as the perturbation of c * u , given by c * u (δ) := 2 ⟨d⟩⟨r 1 ⟩(1 -Lδ). From the spreading speed results for scalar equation (4.3.15) (see [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF]), one has for all c ∈ [0, c * u (δ)), lim inf The proof is completed.

Next we prove another important inequality which will be used to compare the solution of the prey-predator system with the one of a suitable Fisher-KPP problem. Lemma 4.3.4. Fix c ∈ [0, c * u ). For each α > 0, there exist M α > 0 and T α > 0 such that the following estimate holds true

1 -u(t, x) ≤ α + M α v(t, x), ∀t ≥ T α , |x| ≤ ct.
Proof. By contradiction, we assume that there exist α 0 > 0, sequences (t n ) n and (x n ) n such that

|x n | ≤ ct n , t n → ∞ as n → ∞, and 1 -u(t n , x n ) > α 0 + nv(t n , x n ), ∀n ≥ 1. (4.3.16) Set u n (t, x) := u(t + t n , x + x n ) and v n (t, x) := v(t + t n , x + x n ).
By parabolic estimates, one can extract the subsequence such that

u n (t, x) → u ∞ (t, x) and v n (t, x) → v ∞ (t, x) as n → ∞ locally uniformly for (t, x) ∈ R 2 with (u ∞ , v ∞ ) ∈ S.
As discussed in Section 4.3.1, there exists σ ∈ Σ such that (u ∞ , v ∞ ) satises (P σ) (see (4.3.12)). Recalling 0 ≤ u ≤ 1 note that assumption (4.3.16) implies that v(t n , x n ) → 0 as n → ∞.

Hence we obtain that v ∞ (0, 0) = 0 and the strong maximum principle for v ∞ -equation implies that v ∞ ≡ 0. As a consequence u ∞ = u ∞ (t, x) satises following Fisher-KPP equation

∂ t u ∞ (t, x) = d(t)∂ xx u ∞ (t, x) + u ∞ (t, x) f (t, u ∞ (t, x), 0) , ∀(t, x) ∈ R 2 . (4.3.17)
Next we claim that the following property holds.

Claim 4.3.5. One has

inf (t,x)∈R 2 u ∞ (t, x) > 0.
Proof of Claim 4.3.5. In Proposition 4.3.3, we obtain that

lim inf t→∞ inf |x|≤c ′ t u(t, x) > 0, ∀c ′ ∈ [0, c * u ).
Fix c ′ ∈ (c, c * u ). Let (t n , x n ) be the sequence (possibly sub-sequence) dened at the beginning of the proof for Lemma 4.3.4. Then there exists T > 0 large enough and m > 0 such that inf

t≥T inf |x|≤c ′ t u(t, x) ≥ m.
This rewrites as for all n ≥ 0, t ≥ T -t n and |x

+ x n | ≤ c ′ (t + t n ), u(t + t n , x + x n ) ≥ m.
Since |x n | ≤ ct n , this also rewrites as for all n ≥ 0, t ≥ T -t n and |x| ≤ (c ′ -c)t n + c ′ t:

u(t + t n , x + x n ) ≥ m.
Since c ′ -c > 0, passing to the limit n → ∞ (possibly along a subsequence) we end-up with

u ∞ (t, x) ≥ m, ∀(t, x) ∈ R 2 ,
which completes the proof of Claim 4.3.5.

We come back to the proof of Lemma 4.3.4. Recall that f (t + t n , u, v) converges to f (t, u, v) locally uniformly for t ∈ R and (u, v) ∈ [0, ∞) 2 . Since f (t, 1, 0) ≡ 0, one has

f (t, 1, 0) = 0. Since inf t≥0 f (t, u, 0) > 0 for each u ∈ [0, 1), then inf t∈R f (t, u, 0) > 0 for each u ∈ [0, 1). Set Θ := inf (t,x)∈R 2 u ∞ (t, x) and h(u) := inf t∈R f (t, u, 0).
Note that Θ > 0 and h(u) > 0 for all u ∈ [0, 1). Next we consider U (t), the solution of

U ′ (t) = U (t) h(U (t)), U (0) = Θ.
Observe that it is a sub-solution of (4.3.17) and since u ∞ (s, x) ≥ Θ for all (s, x) ∈ R 2 , then the comparison principle implies that

1 ≥ u ∞ (t + s, x) ≥ U (t), ∀t ≥ 0, s ∈ R, x ∈ R.
Finally since U (t) → 1 as t → ∞, one has u ∞ (0, 0) = 1, which contradicts the property 1 -u ∞ (0, 0) ≥ α 0 > 0 that follows by passing to the limit n → ∞ into the assumption (4.3.16). The proof is completed. Proof of Theorem 4.1.5 (ii). By contradiction, we x c * v < c 1 < c 2 < c * u and assume that there exist sequences (t n , x n ) n such that (4.3.12)). Note also that one has u ∞ (0, 0) < 1.

t n → ∞ as n → ∞, c 1 t n ≤ |x n | ≤ c 2 t n , ∀n ≥ 0 and lim sup n→∞ u(t n , x n ) < 1. Set u n (t, x) := u(t+t n , x+x n ) and v n (t, x) := v(t+t n , x+x n ). As above (see Section 4.3.1) there exists (u ∞ , v ∞ ) ∈ S and σ ∈ Σ such that u n (t, x) → u ∞ (t, x) and v n (t, x) → v ∞ (t, x) locally uniformly for (t, x) ∈ R 2 as n → ∞ while (u ∞ , v ∞ ) satises (P σ)(see
Now observe that we have proved that for all c

′ 1 > c * v , lim t→∞ sup |x|≥c ′ 1 t v(t, x) = 0.
This ensures that v ∞ (0, 0) = 0 and the strong maximum principle for v ∞ -equation implies that v ∞ ≡ 0. Hence u ∞ becomes a solution of the problem

∂ t u ∞ (t, x) = d(t)∂ xx u ∞ (t, x) + u ∞ (t, x) f (t, u ∞ (t, x), 0) .
Recalling Proposition 4.3.3, one also has, for any 0

< ε < min{c * u -c 2 , c 1 -c * v } small enough, lim inf t→∞ inf (c 1 -ε)t≤|x|≤(c 2 +ε)t u(t, x) > 0.
Then one can proceed similarly as in the proof of Lemma 4.3.4 to obtain that u ∞ (0, 0) = 1, a contradiction with u ∞ (0, 0) < 1. The proof of Theorem 4.1.5 (ii) is over. 4.3.4 Proof of Theorem 4.1.5 (iii) and Theorem 4. 1.6 (ii) In this subsection, we complete the proof of our inner spreading results. In order to prove Theorem 4.1.5 (iii) and Theorem 4.1.6 (ii) simultaneously, we dene

c * := min{c * u , c * v }.
To prove our spreading result, let us rst recall the following well known eigenvalue result. We omit the proof in here.

Lemma 4.3.6. Let c ∈ R and R > 0 be given. Then the principal eigenvalue λ R of the following Dirichlet elliptic problem The proof of these results shall make use of our key Lemma 4.3.4. Roughly speaking, we will derive a dierential inequality satised by v and construct a suitable sub-solution to show that lim inf t→∞ v(t, ±ct) > 0 for all c ∈ [0, c * ).

-ϕ ′′ (x) -cϕ ′ (x) = λ R ϕ(x), x ∈ (-R, R), ϕ(±R) = 0 and ϕ > 0 in (-R, R), is given by λ R = c 2 4 + π 2 4R 2 .

Now observe that in

Finally we will make use a positive constant number as a sub-solution on a moving domain to conclude to our inner spreading result. Our rst lemma reads as follows. Proof. We only show that lim inf t→∞ v(t, ct) > 0. The case of lim inf t→∞ v(t, -ct) > 0 can be proved similarly using a symmetrical argument. Fix c ∈ [0, c * ) and let c ′ ∈ (c, c * ) be given. Since c * ≤ c * u , Lemma 4.3.4 implies that, for any α > 0, there exist M α > 0 and T α > 0 such that One may observe that α → c * v (α) is a continuous and decreasing function on

1 -u(t, x) ≤ α + M α v(t, x), ∀t ≥ T α , |x| ≤ c ′ t. ( 4 
[0, 1 2L ] with c * v (0) = c * v . Recalling that 0 ≤ c < c * ≤ c * v , one can choose some α = α c > 0 suciently small such that c < c * v (α) < c * v .
With such a choice, it rewrites as

c 2 < (c * v (α)) 2 = 4⟨r 2 ⟩(1 -Lα).
The reformulation (4.1.

2) ensures that one can choose some a ∈ W 1,∞ (0, ∞) and some

θ 0 > 0 such that c 2 4 -r 2 (t)(1 -Lα) + a ′ (t) ≤ -2θ 0 , ∀t ≥ 0.
Choose R > 0 large enough such that

π 2 4R 2 + c 2 4 -r 2 (t)(1 -Lα) + a ′ (t) ≤ -θ 0 , ∀t ≥ 0. (4.3.21)
Now for η > 0 to be chosen latter, let ϕ be the eigenfunction corresponding to the principal eigenvalue λ R (see Lemma 4.3.6). Then we dene

v(t, x) := ηϕ(x -ct)e a(t+Tα) , t ≥ 0, x ∈ [-R + ct, R + ct], 0, else.
where T α is dened above for α = α c . Note that one can choose T α large enough such that c ′ T α > R. So one has

[-R + ct, R + ct] ⊂ [-c ′ (t + T α ), c ′ (t + T α )
] for all t ≥ 0.

In addition note that (4.3.21) implies

π 2 4R 2 + c 2 4 -r 2 (t + T α )(1 -Lα) + a ′ (t + T α ) ≤ -θ 0 , ∀t ≥ 0. (4.3.22)
On the other hand, straightforward computations yield for all t ≥ 0 and x ∈

[-R + ct, R + ct], ∂ t v(t, x) -∂ xx v(t, x) -r 2 (t + T α )(1 -Lα)v(t, x) = a ′ (t + T α )v(t, x) -cηϕ ′ (x -ct)e a(t+Tα) -ηϕ ′′ (x -ct)e a(t+Tα) -r 2 (t + T α )(1 -Lα)v(t, x) = a ′ (t + T α ) + c 2 4 + π 2 4R 2 -r 2 (t + T α )(1 -Lα) v(t, x) ≤ -θ 0 v(t, x).
Let us choose η > 0 small enough such that

r 2 (t + T α )L(1 + M α )v(t, x) ≤ η∥r 2 ∥ ∞ L(1 + M α )∥ϕ∥ ∞ e ∥a∥∞ < θ 0 .
So that for all t ≥ 0 and x ∈ [-R + ct, R + ct], one has

-θ 0 v(t, x) ≤ -r 2 (t + T α )L(1 + M α )v 2 (t, x).
Hence v(t, x) is the sub-solution of (4.3.20). One can furthermore choose η > 0 small enough such that w(0, x) = v(T α , x) ≥ v(0, x) for all x ∈ [-R, R]. Since v(t, ±R + ct) = 0 for all t ≥ 0, the comparison principle on domain {(t, x) : t ≥ 0, x ∈ [-R + ct, R + ct]} applies and ensures that

w(t, x) = v(t + T α , x) ≥ v(t, x), ∀t ≥ 0, x ∈ [-R + ct, R + ct].
Thus, we have obtained that 

∂ t v(t, x) ≥ ∂ xx v(t, x) + r 2 (t)v(t, x) 1 -Lα -L(1 + M α )v(t, x) , for (t, x) ∈ Ω.
Wherein we have set

Ω := (t, x) ∈ R 2 : t ≥ T α and |x| ≤ c ′ t .
For some η > 0 small enough, we dene v(t, x) := η for all (t, x) ∈ Ω. One can verify that v is the sub-solution of (4.3.19) provided that η < 1-Lα 2L(1+Mα) . Since v 0 ̸ ≡ 0, then the strong maximum principle for v-equation implies that v(t, x) > 0 for t > 0 and x ∈ R. One can choose η > 0 smaller if necessary such that

v(T α , x) = η ≤ v(T α , x), ∀x ∈ [-c ′ T α , c ′ T α ].
On the other hand, since c ′ < c * , then Lemma 4.3.7 tells that choosing η > 0 even smaller such that v(t, ±c ′ t) ≥ η > 0, ∀t ≥ T α .

Hence one can apply the comparison principle on the moving domain Ω to obtain that v(t, x) ≥ v(t, x) = η > 0 for all (t, x) ∈ Ω. Thus, one has

lim inf t→∞ inf |x|≤ct v(t, x) > 0, ∀c ∈ [0, c * ).
Finally, let us consider the u-component and show that

lim sup t→∞ sup |x|≤ct u(t, x) < 1, ∀c ∈ [0, c * ).
To that aim we proceed by contradiction again. Assume that there exist c ∈ [0, c * ) and sequences (y n ) n and (τ n ) n such that

|y n | ≤ cτ n , ∀n ≥ 0, τ n → ∞ and u(τ n , y n ) → 1, as n → ∞.
Through extracting subsequence, one can obtain that (u(t + τ n , x + y n ), v(t + τ n , x + y n )) converges locally uniformly to (u ∞ , v ∞ ) = (u ∞ (t, x), v ∞ (t, x)) ∈ S which is the entire solution of (P σ) (see (4.3.12)) with suitable σ ∈ Σ. Since u ∞ (0, 0) = 1 and 0 ≤ u ∞ ≤ 1, then the strong maximum principle for u ∞ -equation implies that u ∞ ≡ 1. Hence the rst equation in (P σ) yields

f (t, 1, v ∞ (t, x)) = 0, ∀(t, x) ∈ R 2 .
On the other hand, we have already proved

lim inf t→∞ inf |x|≤c ′ t v(t, x) > 0, ∀c ′ ∈ [0, c * ).
So that using similar arguments as in the proof of Claim 4.3.5, one has

inf (t,x)∈R 2 v ∞ (t, x) > 0.
Recalling Assumption 4.1.3 (f 5) which ensures that sup t∈R f (t, 1, v) < 0 for all v > 0, we have reach a contradiction which completes the proof of the result.

4.4

Proof of Proposition 4.1.9

From Remark 4.1.8 and Proposition 4.1.9, one can show that the solutions are bounded for large classes of systems. In this last section, for sake of completeness, we prove Proposition 4.1.9 in detail. The proof is close to some ideas derived in [START_REF] Ambrosio | Generalized traveling waves for time-dependent reactiondiusion systems[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF].

Proof of Proposition 4.1.9. As already noticed, one knows that 0 ≤ u ≤ 1 and v ≥ 0.

Therefore to prove the proposition, it is sucient to check that v is bounded. To do so, rst note that the function (t, x) → κe ∥r 2 ∥∞t is a super-solution of v-equation, with κ > 0 suciently large so that v 0 ≤ κ. As a consequence, one has v(t, •) ∈ L ∞ (R) for all t ≥ 0.

In order to prove the proposition, we argue by contradiction by assuming that

lim sup t→∞ ∥v(t, •)∥ L ∞ (R) = ∞.
Next for each n ≥ 0 large enough, we choose t n > 0 such that

t n := min {t > 0 : ∥v(t, •)∥ ∞ = n} .
Observe that t n → ∞ as n → ∞. Next pick a sequence (x n ) n such that for all n (large enough)

v(t n , x n ) ∈ n 2 , n ,
and let us dene the sequence of function

ṽn (t, x) = v(t + t n , x + x n ) v(t n , x n ) .
Note that the function (t, x) → ṽn (t, x) satises for t ≥ -t n and x ∈ R the equation

∂ t ṽn (t, x) = ∂ xx ṽn (t, x) + ṽn (t, x)g (t + t n , u (t + t n , x + x n ) , v (t + t n , x + x n )) , (4.4.23) 
together with the normalization condition ṽn (0, 0) = 1.

We claim that sequence ṽn is locally uniformly bounded. Indeed, for t ≤ 0, from the construction of t n , one has for all n ≥ 1:

ṽn (t, x) ≤ ∥v(t + t n , •)∥ ∞ • 2 n ≤ 2, for t ∈ [-t n , 0], x ∈ R.
On the other hand for t > 0, the local uniform boundedness follows from the supersolution (t, x) → 2e ∥r 2 ∥∞t . Then by parabolic estimates, one can extract a converging sub-sequence, still denoted with the same index, such that ṽn (t, x) → ṽ∞ (t, x), locally uniformly for (t, x) ∈ R 2 , as n → ∞.

Note that ∥r 2 ∥ ∞ ≥ g(t, u, v) ≥ g(t, u, ∞) ≥ inf t≥0 g(t, 0, ∞) > -∞ for all t ≥ 0, u ∈ [0, 1]
and v ≥ 0. Hence one has ṽ∞ satises

∂ t ṽ∞ (t, x) = ∂ xx ṽ∞ (t, x) + ṽ∞ (t, x)g ∞ (t, x) , (4.4.24)
where g∞ is the L ∞ loc (R 2 ) weak-⋆ limit of g n (t, x) := g(t+t n , u(t+t n , x+x n ), v(t+t n , x+x n )). From the construction, one has ṽ∞ (0, 0) = 1. The strong maximum principle implies that ṽ∞ (t, x) > 0 for all (t, x) ∈ R 2 . We can conclude that v(t + t n , x + x n ) → ∞, locally uniformly for (t, x) ∈ R 2 as n → ∞.

(4.4.25)

Next we claim that u satises the following limit. To prove this claim, let T > 0 and R > 0 be given. Recall that ⟨f (•, 0, M )⟩ < 0 for all M ≥ M 0 (see assumption (4.1.10)). Let M > M 0 be given. We consider u n T,R = u n T,R (t, x) which satises

     ∂ t u n T,R = d(t + t n )∂ xx u n T,R + u n T,R f t + t n , u n T,R , M , |t| < T, |x| ≤ R, u n T,R (-T, x) = 1, |x| ≤ R, u n T,R (t, ±R) = 1, |t| < T.
From (4.4.25), one can choose N 0 > 0 (which may depend on T, R and M ) large enough such that v(t

+ t n , x + x n ) ≥ M, for |t| ≤ T, |x| ≤ R and n ≥ N 0 . Since v → f (•, •, v) is decreasing (see Assumption 4.1.
3), then the comparison principle implies that

u(t + t n , x + x n ) ≤ u n T,R (t, x), for |t| ≤ T, |x| ≤ R and n ≥ N 0 .
For B > 0, T > 0, |t| ≤ T and n ≥ N 0 , we dene

u n (t; -T ) := B exp t -T f (s + t n , 0, M )ds ,
Since f (t, u, v) ≤ f (t, 0, v) for all t ≥ 0, u ∈ [0, 1] and v ≥ 0, then one can verify that u n (t; -T ) satises

∂ t u n (t; -T ) ≥ d(t + t n )∂ xx u n (t; -T ) + u n (t; -T )f (t + t n , u n (t; -T ), M ) .
Let B > max 1, e 2T ∥f (•,0,M )∥∞ be chosen. Therefore, one gets u n (-T ; -T ) ≥ u n T,R (-T, x) for all |x| ≤ R and u n (t; -T ) ≥ u n T,R (t, ±R) for all |t| < T . Then the comparison principle implies that

u n T,R (t, x) ≤ u n (t; -T ), for |t| ≤ T, |x| ≤ R and n ≥ N 0 .
Due to ⟨f (•, 0, M )⟩ < 0, one has for each |t| < T and n ≥ N 0 , lim

T →∞ t -T f (s + t n , 0, M )ds = lim T →∞ (t + T ) • 1 t + T t -T f (s + t n , 0, M )ds = -∞.
So that for all n ≥ N 0 , one has lim sup Then one can check that for all t 0 > 0 and b > 0, the function

ṽ(t; -t 0 ) := b exp {⟨g(•, 0, 0)⟩(t + t 0 ) -a(t)}
is a super-solution of (4.4.24). Since ṽ∞ (t, x) ≤ 2 for all t ≤ 0 and x ∈ R, then one can choose b > 0 large enough such that for all t 0 > 0 and x ∈ R, ṽ∞ (-t 0 , x) ≤ 2 ≤ be -∥a∥∞ ≤ ṽ(-t 0 ; -t 0 ).

The comparison principle implies that ṽ∞ (0, 0) ≤ ṽ(0; -t 0 ) = b exp {⟨g(•, 0, 0)⟩t 0 -a(0)} .

Letting t 0 → ∞, one has ṽ∞ (0, 0) = 0 due to ⟨g(•, 0, 0)⟩ < 0. This is in contradiction with ṽ∞ (0, 0) = 1 and completes the proof of the proposition.

Chapter 5

Spreading speeds for time heterogeneous prey-predator systems with nonlocal diusion on lattice This is a joint work with Arnaud Ducrot, in preparation.

Abstract

We investigate the spreading behaviour of solutions to a class prey-predator system in lattice with time heterogeneities. These time variations are assumed to enjoy an averaging property including periodicity, almost periodicity and unique ergoidicty as special cases.

The spatial motion of individuals from one site to another site is modeled by a discrete convolution operator. In order to take into account exterior uctuations such as seasonality, daily variation and so on, the convolution kernels and reaction terms are considered to vary with time. In this work, the prey and the predator are assumed to be able to co-invade the empty environment. We prove that the solutions with suitable initial data exhibit denite spreading speed by comparing these solutions with a non-autonomous KPP scalar equation on the lattice.

Introduction

In this paper, we study the large time behaviour for solutions of the following lattice dierential system

         d dt u(t, i) = j∈Z J 1 (t, j) [u(t, i -j) -u(t, i)] + u(t, i)f (t, u(t, i), v(t, i)) , t > 0, i ∈ Z, d dt v(t, i) = j∈Z J 2 (t, j) [v(t, i -j) -v(t, i)] + v(t, i)g (t, u(t, i), v(t, i)) , t > 0, i ∈ Z,
(5.1.1) which is supplemented with bounded and nonnegative initial data

u(0, i) = u 0 (i) and v(0, i) = v 0 (i), i ∈ Z.
Herein the two sets {i ∈ Z; u 0 (i) ̸ = 0} ̸ = ∅ and {i ∈ Z; v 0 (i) ̸ = 0} ̸ = ∅ have nite elements.

On one hand, lattice dierential equations/systems arise in several dierent contexts, for instance modeling species grow over patchy environments, we refer the reader to [START_REF] Bell | Threshold behavior and propagation for nonlinear dierentialdierence systems motivated by modeling myelinated axons[END_REF][START_REF] Keener | Propagation and its failure in coupled systems of discrete excitable cells[END_REF][START_REF] Ma | Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice dierential equation[END_REF] and to [START_REF] Deangelis | Positive feedback in natural systems[END_REF] for a list of ecological scenarios with patched environments. Lattice equations can also be used to describe phase transition, see [START_REF] Bates | A discrete convolution model for phase transitions[END_REF]. On the other hand, lattice equations/systems can also be regarded as a discretization of dierential equations in which the spatial variable are continuous. The propagation phenomena in lattice single equations and systems have attracted a lot of interest. For travelling wave solutions, we refer the reader to [START_REF] Zinner | Traveling wavefronts for the discrete Fisher's equation[END_REF][START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF][START_REF] Chen | Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations[END_REF][START_REF] Guo | Front propagation for discrete periodic monostable equations[END_REF][START_REF] Guo | Traveling wave front for a two-component lattice dynamical system arising in competition models[END_REF] and references cited therein. For spreading speed results, we refer to [START_REF] Cao | Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media[END_REF][START_REF] Fang | Spreading speeds and travelling waves for non-monotone time-delayed lattice equations[END_REF][START_REF] Ma | Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice dierential equation[END_REF][START_REF] Shen | Spreading and generalized propagating speeds of discrete KPP models in time varying environments[END_REF][START_REF] Besse | The logarithmic Bramson correction for Fisher-KPP equations on the lattice Z[END_REF] and references cited therein. In this work, we are interested in the asymptotic speed of spread for solutions to (5.1.1) which stands for a nonlocal diusion lattice system of prey-predator type. To the best of our knowledge, the spreading speed for a single KPP type equation with nonlocal diusion in general time heterogeneous environment is still unknown before this work.

For a better exposition of our work, the detailed assumptions of (5.1.1) are postponed in the next section. Let us rst introduce a typical example of prey-predator system that will be considered in this work: the Lotka-Volterra prey-predator system with nonlocal diusion on lattice Z. It reads as follows:

         d dt u(t, i) = j∈Z J 1 (t, j) [u(t, i -j) -u(t, i)] + u(t, i) (1 -u(t, i)) -p(t)u(t, i)v(t, i), d dt v(t, i) = j∈Z J 2 (t, j) [v(t, i -j) -v(t, i)] + q(t)u(t, i)v(t, i) -ν(t)v(t, i).
(5.1.2) From the point view of biological, in (5.1.2), u(t, i) and v(t, i) denote the density of the prey and the predator at time t and location i respectively. The functions p, q, ν are positive and describe the predation rate, the conversion rate and the death rate of the predator, respectively.

Herein the kernel functions J 1 = J 1 (t, j) and J 2 = J 2 (t, j) are nonnegative and depend on time. The quantities J k (t, i -j), (k = 1, 2) describe the probability of a species to jump from point j to i at time t. In (5.1.2), both the prey and the predator can exhibit long distance dispersal. In the last decades, most work have focused on the time independent diusion kernel, that is J k (t, j) ≡ J k (j). For travelling waves and spreading speed results of such lattice equations, we refer the reader to [START_REF] Bates | A discrete convolution model for phase transitions[END_REF][START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF][START_REF] Ma | Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice dierential equation[END_REF] and references cited therein. Since the seasonality and external inuences varying with time, we consider time dependent dispersal kernel functions in this work. Note that the diusion operator ϕ → j∈Z J(t, j)[ϕ(i -j) -ϕ(i)] considered in here can be seen as a discretization of following convolution operator with spatial variable in continuous space ϕ → R J k (t, y)[ϕ(• -y) -ϕ(•)]dy. The (generalized) travelling wave solution for KPP equations with this time dependent convolution operator has been investigated in [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF].

Species usually live in uctuating environment [START_REF] Jin | Seasonal inuences on population spread and persistence in streams: spreading speeds[END_REF][START_REF] Zhao | Dynamical systems in population biology[END_REF]. Both the biotic factors (for instance the growth rate, the availability for food and the dispersion ability...) and the abiotic factors (such as temperature, wind, rainfall...) are varying with time. In particular, non-autonomous Lotka-Voterra prey-predator systems have attracted a lot of attention, see for example [START_REF] Cushing | Periodic time-dependent predator-prey systems[END_REF][START_REF] Gatica | Predator-prey models with almost periodic coecients[END_REF].

As we mentioned at the beginning, the goal of this work is to investigate the asymptotic speed of spread for (5.1.1). The notion of spreading speed was introduced by Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF]. For the case of discrete scalar equations, we refer to [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF]. The spreading speed for KPP equations with nonlocal diusion also have been studied in [START_REF] Lutscher | The eect of dispersal patterns on stream populations[END_REF][START_REF] Xu | Spatial propagation in nonlocal dispersal Fisher-KPP equations[END_REF]. In the last decades, spreading speed for homogeneous systems has drawn a lot of attention. We refer the reader to [START_REF] Weinberger | Analysis of linear determinacy for spread in cooperative models[END_REF] for cooperative system. For competitive system, we refer to [START_REF] Lewis | Spreading speed and linear determinacy for two-species competition models[END_REF][START_REF] Carrère | Spreading speeds for a two-species competition-diusion system[END_REF][START_REF] Girardin | Invasion of open space by two competitors: spreading properties of monostable two-species competition-diusion systems[END_REF] for random diusion case and to [START_REF] Zhang | Propagation phenomena for a two-species LotkaVolterra strong competition system with nonlocal dispersal[END_REF] for nonlocal diusion case. We also refer the reader to Liang and Zhao [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] for abstract monotone evolutionary system.

However, the prey-predator systems as in (5.1.2), are no longer monotone since this type interaction is not symmetric. Recently, spreading speed for some prey-predator systems in the homogeneous environment including a typical example as follows

u t = d 1 u xx + u(1 -u) -puv, v t = d 2 v xx + quv -νv, (5.1.3) 
has been well studied using ideas from dynamical system, see [START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF]. Note that if we let J k in (5.1.2) be given by

J k (t, j) = d k , j = ±1, 0, j ̸ = ±1, (k = 1, 2),
and all parameters in (5.1.2) be constants, then (5.1.2) can be regarded as a spatially discrete approximation of (5.1.3). We also refer to [START_REF] Choi | Persistence of species in a predator-prey system with climate change and either nonlocal or local dispersal[END_REF] for the persistence of species in a prey-predator system with climate change and either local diusion or nonlocal diusion. The spreading speed for a two predators and one prey system was studied in [START_REF] Ducrot | Asymptotic spreading speeds for a predatorprey system with two predators and one prey[END_REF]. For the large time behaviour of other types of prey-predator systems with random diusion, we refer the reader to [START_REF] Chen | Spreading speed in a farmers and hunter-gatherers model arising from Neolithic transition in Europe[END_REF][START_REF] Ducrot | Spatial propagation for a two component reactiondiusion system arising in population dynamics[END_REF][START_REF] Lin | Spreading speeds of a LotkaVolterra predatorprey system: the role of the predator[END_REF], for instance when the predator has a positive intrinsic growth rate or when the prey is abundant. For nonlocal dispersal prey-predator systems with continuous spatial variable, we refer the reader to [START_REF] Ducrot | The spreading speed and the minimal wave speed of a predatorprey system with nonlocal dispersal[END_REF], wherein spreading speed for the predator invading into the habitat of the aborigine prey has been studied, and to [START_REF] Zhao | Spreading speeds for the predator-prey system with nonlocal dispersal[END_REF] for a study of the prey and the predator co-invading an empty space with large dispersal rate.

In the last decades, spreading speed for non-autonomous scalar equations with local diusion and nonlocal diusion in either continuous space or lattice, has drawn a lot of attention and been widely studied. For the case of local diusion with continuous spatial variable, Nadin and Rossi [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF] studied general time dependence case, Shen [START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF] considered time almost periodic and space periodic coecients, Berestycki and his collaborators [START_REF] Berestycki | Asymptotic spreading in heterogeneous diusive excitable media[END_REF][START_REF] Berestycki | Asymptotic spreading for general heterogeneous Fisher-KPP type equations[END_REF] investigated the case of general heterogeneities in both time and space. For the case of nonlocal diusion in continuous space, we refer to Jin et al. [START_REF] Jin | Seasonal inuences on population spread and persistence in streams: spreading speeds[END_REF][START_REF] Jin | Spatial dynamics of a periodic population model with dispersal[END_REF] (for time periodic) and the references cited therein. For the case of spatially discrete equations, we refer the reader to Shen [START_REF] Shen | Spreading and generalized propagating speeds of discrete KPP models in time varying environments[END_REF] (for time recurrent) and to Liang and Zhou [START_REF] Liang | Spreading speeds of KPP-type lattice systems in heterogeneous media[END_REF] (for spatial heterogeneous). However, it seems that spreading speed result is still unknown for the general time dependent nonlocal diusion lattice equation such as the following one which is derived from (5.1.2) when v ≡ 0,

d dt u(t, i) = j∈Z J 1 (t, j) [u(t, i -j) -u(t, i)] + u(t, i) (1 -u(t, i)) . (5.1.4)
As a by-product, in this work we also provide the spreading speed for (5.1.4).

To overcome the diculty brought by general time heterogeneity, throughout this work, we assume that these time variations exhibit an averaging property. More precisely, we recall the notion of mean value for bounded functions which has been used in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF]. We point out that this framework includes in particular time periodicity, almost periodicity and unique ergodicity according to the next denition. In that case the quantity ⟨h⟩ is called the mean value of h.

With the help of this notion, we can apply similar ideas as developed in [START_REF] Ducrot | Spreading properties for non-autonomous Fisher-KPP equations with nonlocal diusion[END_REF] to derive spreading property for scalar non-autonomous lattice KPP equations with nonlocal disperse (see Section 5.3.4 and 5.3.5 for more details).

However, to the best of our knowledge, there are few results about spreading speed for non-autonomous prey-predator systems such as the Lotka-Volterra system (5.1.2), with general time variations, neither time periodic nor almost periodic. In non-autonomous monotone systems, the periodic case was studied in [START_REF] Fang | Traveling waves and spreading speeds for timespace periodic monotone systems[END_REF][START_REF] Liang | Spreading speeds and traveling waves for periodic evolution systems[END_REF] and the case of time almost periodic coecients was considered in [START_REF] Bao | Spreading speeds and linear determinacy of time dependent diusive cooperative/competitive systems[END_REF]. We also mention that [START_REF] Wang | Asymptotic spreading for a time-periodic predator-prey system[END_REF] show some estimates for the spreading speeds of a time periodic prey-predator system where the predator has a positive intrinsic growth rate. Recently, the authors of this paper have obtained the exact spreading speed for a class non-autonomous prey-predator systems with local diusion in [START_REF] Ducrot | Spreading speeds for time heterogeneous reaction-diusion systems of the prey-predator type[END_REF].

In this work, we provide a new approach to study spreading speed for prey-predator system. Through some new local and pointwise estimates between u(t, i) and v(t, i), these somehow allow us to compare solutions of systems with those of Fisher-KPP scalar equations on suitable domains. Let us use (5.1.2) to explain the ideas of these estimates. Firstly, one can observe that the predator will starve in the absence of the prey. Hence if there is no prey, u ≡ 0, then v will degenerate to a solution of following equation

d dt v(t, i) = j∈Z J 2 (t, j) [v(t, i -j) -v(t, i)] -ν(t)v(t, i),
and v decays exponentially to 0. This observation yields our rst estimate: for all δ > 0 small enough, one can nd some constants M δ > 0 and T δ > 0 such that

v(t, i) ≤ δ + M δ u(t, i), ∀t ≥ T δ , i ∈ Z.
Another important observation in (5.1.2) is following: when there is no predator, v ≡ 0, as noticed above, the density of the prey satises (5.1.4). If u invades successfully with some speed c > 0, then we can show that for all α > 0, there exist some M α > 0 and

T α > 0 such that 1 -u(t, i) ≤ α + M α v(t, i), ∀t ≥ T α , ∀i ∈ [-ct, ct] .
With these estimates, we can analysis the spreading speed for (5.1.2).

In fact, we can extend these ideas to study the general system (5.1.1) with suitable shape of functions f and g. In the next section, we turn to the precise assumptions that will be needed to deal with (5.1.1) along this work and state our main spreading speed results for this system.

Assumptions and main results

In order to state our assumptions of the kernel function J k = J k (t, i) for (k = 1, 2), let us introduce the following denition, that will be referred along this work as the abscissa of convergence.

Denition 5.2.1. Let (X, ∥ • ∥ X ) be a Banach space and f ∈ l 1 (Z; X). We dene the quantity, denoted by abs(f ) and called the abscissa of convergence of f , as follows

abs(f ) = sup λ ≥ 0 : the series ∞ j=-∞ e λj f (j) converges in X .
With the above notations, we rst give the assumption of nonlocal diusion kernel function

J k = J k (t, i), (k = 1, 2). Assumption 5.2.2 (Kernel J k = J k (t, i)). The kernel function J k : [0, ∞) × Z → [0, ∞)
for each k = 1, 2 satises the following set of assumptions: (J1) The function J k is nonnegative and J k (•, i) ∈ L ∞ (0, ∞) has a mean value for each i ∈ Z;

(J2) The function Ĵk : i → J k (•, i) from Z to L ∞ (0, ∞) whose series is absolutely convergent, that is Ĵk ∈ l 1 (Z, L ∞ (0, ∞)). And we assume that its abscissa of convergence satises abs( Ĵk ) > 0.

In the following, for simplicity of notation, we use abs(J k ) instead of abs( Ĵk );

(J3) Assume that J k (•, i) = J k (•, -i) for all i ∈ Z (symmetric); (J4) The function J k satises inf t≥0 J k (t, ±1) > 0;
(J5) Let the following limits hold true lim sup

λ→abs(J 1 ) - λ -1 j∈Z ⟨J 1 (•, j)⟩ e λj = lim sup γ→abs(J 2 ) - γ -1 j∈Z ⟨J 2 (•, j)⟩ e γj = ∞,
(5.2.5) where ⟨J k (•, j)⟩, (k = 1, 2) is the mean value of function t → J k (t, j), (k = 1, 2) for each j ∈ Z.

Next we state the assumptions for reaction terms f and g. Assumption 5.2.3. The function f : [0, ∞) 3 → R satises: (f1) For each given u, v ≥ 0, the function t → f (t, u, v) is bounded and uniformly continuous from [0, ∞) to R, and t → f (t, u, v) has a mean value ⟨f (•, u, v)⟩, while the function (u, v) → f (t, u, v) is Lipschitz continuous with respect to u, v ≥ 0, uniformly for t ≥ 0;

(f2) For all t ≥ 0 and u > 0, the map v → f (t, u, v) is strictly decreasing;

(f3) Assume f (t, 0, 0) = 1 and f (t, 1, 0) = 0 for all t ≥ 0 and h(u) := inf t≥0 f (t, u, 0) > 0 for all u ∈ [0, 1);

(f4) For all t ≥ 0 and v ≥ 0, the map u → f (t, u, v) is nonincreasing;

(f5) For all v > 0, it further satises sup t≥0 f (t, 1, v) < 0. (g4) For all t ≥ 0 and u ≥ 0, the map v → g(t, u, v) is nonincreasing;

(g5) Assume that the mean value of function t → g(t, 0, 0) satises ⟨g(•, 0, 0)⟩ < 0.

Remark 5.2.5. Note that in Assumption 5.2.3 (f 3), for simplicity, we assume that f (t, 0, 0) ≡ 1. Indeed, this can be relaxed through the time variable transformation to consider a more general assumption f (t, 0, 0) = m(t) for t ≥ 0. We refer the reader to [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF]Remark 2.5] for more details about the transformation.

Remark 5.2.6. From the monotonicity and Lipschitz regularity of f and g, recalling that (f 3) and (g3), one can choose some constant L > 0 such that for all t ≥ 0, u ∈ [0, 1] and v ≥ 0,

1 -Lu -Lv ≤ f (t, u, v) ≤ 1, r(t) 1 -L(1 -u) -Lv ≤ g(t, u, v) ≤ r(t). ( 5 

.2.6)

As explained for the typical example (5.1.2) in previous, here the function u and v stand for the prey and the predator density, respectively. Note that the Lotka-Volterra model (5.1.2) corresponds to (5.1.1) with

f (t, u, v) = 1 -u -p(t)v, g(t, u, v) = q(t)u -ν(t).
It satises Assumption 5.2.3 and 5.2.4 provided satisfying additional smoothness and sign conditions.

In order to state our main results, we introduce some notations. Dene two functions c u : (0, abs(J 1 )) → L ∞ (0, ∞) and c v : (0, abs(J

2 )) → L ∞ (0, ∞) by c u (λ)(•) := λ -1 j∈Z J 1 (•, j)[e λj -1] + 1 , ∀λ ∈ (0, abs(J 1 )), c v (γ)(•) := γ -1 j∈Z J 2 (•, j)[e γj -1] + r(•) , ∀γ ∈ (0, abs(J 2 )).
(5.2.7)

Herein J 1 and J 2 satisfy Assumption 5.2.2 and r is given in Assumption 5.2.4 (g3). For each λ ∈ (0, abs(J 1 )), γ ∈ (0, abs(J 2 )) and a

∈ W 1,∞ (0, ∞), we dene c u,a (λ) ∈ L ∞ (0, ∞) and c v,a (γ) ∈ L ∞ (0, ∞) respectively by c u,a (λ)(•) := c u (λ)(•) + a ′ (•) and c v,a (γ)(•) := c v (γ)(•) + a ′ (•).
From the denition of mean value, one can observe that ⟨c u ⟩ = ⟨c u,a ⟩ and ⟨c v ⟩ = ⟨c v,a ⟩.

The following two important quantities c * u and c * v related to speed, are dened by

c * u := inf λ∈(0,abs(J 1 )) ⟨c u (λ)(•)⟩ and c * v := inf γ∈(0,abs(J 2 )) ⟨c v (γ)(•)⟩ . (5.2.8)
Next, we state some properties of the speed functions c u (λ) and c v (γ) as follows.

Proposition 5.2.7. Let Assumption 5.2.2 be satised and assume function r ∈ L ∞ (0, ∞) has a mean value. Then the following properties hold:

(i) Two functions λ → ⟨c u (λ)(•)⟩ from (0, abs(J 1 )) to R and γ → ⟨c v (γ)(•)⟩ from (0, abs(J 2 )) to R are of class C 1 .
(ii) There exist λ * ∈ (0, abs(J 1 )) and γ * ∈ (0, abs(J 2 )) such that

⟨c u (λ * )(•)⟩ = c * u and ⟨c v (γ * )(•)⟩ = c * v .
Moreover, the map λ → ⟨c u (λ)(•)⟩ is decreasing on (0, λ * ) and the map γ → ⟨c v (γ)(•)⟩ is decreasing on (0, γ * ). (iv) One has c * u > 0 and c * v > 0.

Remark 5.2.8. From the denition of mean value, one can observe that

⟨c u (λ)(•)⟩ = λ -1 j∈Z ⟨J 1 (•, j)⟩ [e λj -1] + 1 , ⟨c v (γ)(•)⟩ = γ -1 j∈Z ⟨J 2 (•, j)⟩ [e γj -1] + ⟨r(•)⟩ . Note that ⟨c u (λ)(•)⟩ ∼ 1 λ → ∞ as λ → 0 + and ⟨c v (γ)(•)⟩ ∼ ⟨r⟩ γ → ∞ as γ → 0 + . The Assumption 5.2.2 (J5) yields ⟨c u (λ)(•)⟩ → ∞ as λ → abs(J 1 ) -and ⟨c v (γ)(•)⟩ → ∞ as γ → abs(J 2 ) -.
From the above limits, one can rewrite (5.2.8) as c * u := min λ∈(0,abs(J 1 ))

⟨c u (λ)(•)⟩ and c * v := min γ∈(0,abs(J 2 )) ⟨c v (γ)(•)⟩.
With these observations, one can verify Proposition 5.2.7 (i)-(iii) directly. Proposition 5.2.7 (iv) follows from the symmetry of the kernel functions J k , (k = 1, 2). Hence we omit the detail of proof.

In order to prove the hair trigger eect of scalar KPP lattice equations with nonlocal diusion, for some technical reasons (see Section 5.3.4 for more details), we impose following assumption. Assumption 5.2.9. Set J k (t) = j∈Z J k (t, j) for k = 1, 2. Assume that ⟨f (t, 0, 0)⟩ > ⟨J 1 (t)⟩ and ⟨g(t, 1, 0)⟩ > ⟨J 2 (t)⟩.

With the above notations and assumptions, we now describe the prey and the predator propagation behaviours in which two populations co-invade an empty space. Theorem 5.2.10 (Slow predator). Let Assumption 5.2.2, 5.2.3, 5.2.4 and 5.2.9 be satised. Assume that the predator is slower than the prey, in the sense that c * v < c * u .

Let 1 ≥ u 0 ≥ 0 and v 0 ≥ 0 be two given bounded functions in Z. Assume that two sets {i ∈ Z; u 0 (i)

̸ = 0} ̸ = ∅ and {i ∈ Z; v 0 (i) ̸ = 0} ̸ = ∅ have nite elements. Let (u, v) = (u(t, i), v(t, i
)) be the solution of (5.1.1) with initial data (u 0 , v 0 ). Assume that (u, v) is bounded. Then the function pair (u, v) satises: In the next theorem, we consider the case of the predator faster than the prey. 

c * v ≥ c * u .
Let 1 ≥ u 0 ≥ 0 and v 0 ≥ 0 be two given bounded functions in Z. Assume that two sets {i ∈ Z; u 0 (i) ̸ = 0} ̸ = ∅ and {i ∈ Z; v 0 (i) ̸ = 0} ̸ = ∅ have nite elements. Let (u, v) = (u(t, i), v(t, i)) be the solution of (5.1.1) with initial data (u 0 , v 0 ). Remark 5.2.12. In the above two theorems, we require that the solution (u, v) is bounded.

This assumption can be satised for some systems under certain additional conditions. We will show this in the next proposition.

To ensure the boundedness of solutions, we impose following assumption.

Assumption 5.2.13. Assume that there exist some constants ε > 0, η > 0 and M > 0

such that for all 0 ≤ u ≤ 1, v ≥ 0 and t ≥ 0,

uf (t, u, v) + εvg(t, u, v) ≤ M -ηv.
Remark 5.2.14. Let us show that the typical example (5.1.2) satises Assumption 5.2.13.

Let us choose 0 < ε < inf t≥0 p(t)/ sup t≥0 q(t). Assume that inf t≥0 ν(t) > 0. Note that for all 0 ≤ u ≤ 1, v ≥ 0 and t ≥ 0,

uf (t, u, v) + εvg(t, u, v) = u(1 -u) -p(t)uv + εq(t)uv -εν(t)v ≤ 1 -ε inf t≥0 ν(t)v.
Hence (5.1.2) satises Assumption 5.2.13 with some given 0 < ε < inf t≥0 p(t)/ sup t≥0 q(t), M = 1 and η = ε inf t≥0 ν(t).

Let ε > 0, η > 0 and M > 0 be given in Assumption 5.2.13. Set J k (

•) = j∈Z J k (•, j) for k = 1, 2. Note that J k ∈ L ∞ (0, ∞) for k = 1, 2.
Proposition 5.2.15. Let Assumption 5.2.2, 5.2.3, 5.2.4 and 5.2.13 be satised. Let (u, v) = (u, v)(t, i) be the solution of (5.1.1) supplemented with initial data (u 0 , v 0 ). If 0 ≤ u 0 ≤ 1 and v 0 ≥ 0 is bounded, then the solution (u, v) is bounded. Remark 5.2.16. Note that u ≡ 0 is a solution of u-equation in (5.1.1) and v ≡ 0 is a solution of v-equation in (5.1.1). Assumption 5.2.3 yields that f (t, 1, v) ≤ f (t, 1, 0) ≡ 0 for all t ≥ 0 and v ≥ 0. Hence, u ≡ 1 is the super-solution of u-equation with v ≡ 0. Since initial data satises 0 ≤ u 0 ≤ 1 and v 0 ≥ 0, then the partial comparison principle (which will be shown in Proposition 5.3.3) applies and ensures that 0 ≤ u(t, i) ≤ 1 and v(t, i) ≥ 0 for all t ≥ 0 and i ∈ Z.

The rest of this paper is organized as follows. In Section 5.3, we state some propositions which will be used often in proving our main results, for instance maximum principles and spreading property for scalar lattice KPP equations. In Section 5.4, we construct proper super-solutions to obtain upper estimates for the speed of propagation for each species. In the main part of this work, Section 5.5, we rst prove two key lemmas about our local pointwise estimates between u and v. Then, with the help of two key lemmas, we compare the solutions of systems with those of a scalar KPP type equations in a suitable domain. Combining some dynamical system ideas, we complete the proof of Theorem 5.2.10 and 5.2.11. In the last section, we show that the solution (u, v) is bounded under certain conditions. For the sake of completeness, the proof of some preliminary results in Section 5.3 are given in Appendix Section 5.7 and 5.8.

Preliminary

In this preliminary section, we rst recall the property of mean value. Then we show the comparison principles and strong maximum principles for scalar nonlocal dispersal lattice equations. Next, we discuss the time and space shift argument of the equations that are used throughout this paper. Lastly, the spreading speed for scalar nonlocal diusion KPP equations in a lattice is shown. For independent interest, we also state a persistence lemma which plays a key role to prove spreading speed for the scalar nonlocal diusion equations.

Property of mean value

Let us rst recall the property of mean value (see Denition 5.1.1) in the following lemma which has been proved in [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF]. Hence we omit the proof of following lemma. 

ess inf t≥0 (a ′ + h) (t) = inf a∈W 1,∞ (0,∞) ess sup t≥0 (a ′ + h) (t),
and in that case, the mean value corresponds to this common value. In other words the mean value is given by ⟨h⟩ = sup

a∈W 1,∞ (0,∞) ess inf t≥0 (a ′ + h) (t) = inf a∈W 1,∞ (0,∞) ess sup t≥0 (a ′ + h) (t). (5.3.10) 
Remark 5.3.2. For H ∈ L ∞ (R; R), the mean value of H can be dened similarly to Denition 5.1.1 except herein required the limit exists uniformly for s ∈ R. And the quantity ⟨H⟩ also has an equivalent characterization as follows

⟨H⟩ = sup a∈W 1,∞ (R) ess inf t∈R (a ′ + H) (t) = inf a∈W 1,∞ (R)
ess sup t∈R (a ′ + H) (t).

We refer the reader to [START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction diusion equations[END_REF][START_REF] Nadin | Transition waves for FisherKPP equations with general timeheterogeneous and space-periodic coecients[END_REF] for more details about mean value, as well as for the denitions of the so-called least mean and upper mean to solve more general time heterogeneous media.

Maximum principles

Now, we state various maximum principles for scalar lattice equations. For the paper readable, we postpone the proof of Proposition 5.3.3, 5.3.5 and 5.3.7 to Appendix section 5.7.

Let us rst show the maximum principle of scalar equation with more general assumptions on the whole space, that is i ∈ Z. The proof is close to Proposition 3.1 in [START_REF] Ducrot | Generalized travelling fronts for non-autonomous sher-kpp equations with nonlocal diusion[END_REF] and Proposition 2.1 in [START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] for nonlocal diusion equations in continuous spatial space. Proposition 5.3.3. For any t 0 ∈ R, let T > t 0 be given. Let J :

[t 0 , T ] × Z → [0, ∞) be the kernel function with j∈Z ∥J(•, j)∥ ∞ < ∞. Assume that a = a(t, i) is a bounded function dened in [t 0 , T ] × Z. Let u be a bounded function in [t 0 , T ] × Z and u(•, i) ∈ W 1,1 (t 0 , T ) for each i ∈ Z. If u satises      d dt u(t, i) ≥ j∈Z J(t, j)[u(t, i -j) -u(t, i)] + a(t, i)u(t, i), ∀t ∈ (t 0 , T ], ∀i ∈ Z, u(t 0 , i) ≥ 0, ∀i ∈ Z, then u(t, i) ≥ 0 for all t ∈ [t 0 , T ] and i ∈ Z.
Next we state the following strong maximum principle.

Proposition 5.3.7 (Strong maximum principle). For any given t 0 ∈ R, let J :

[t 0 , ∞) × Z → [0, ∞) be the kernel function satisfying j∈Z ∥J(•, j)∥ ∞ < ∞ and inf t≥t 0 J(t, ±1) > 0. Assume that a = a(t, i) is a bounded function dened in [t 0 , ∞) × Z. Let u be a bounded function in [t 0 , ∞) × Z and u(•, i) ∈ W 1,1 (t 0 , ∞) for each i ∈ Z. If u satises      d dt u(t, i) ≥ j∈Z J(t, j)[u(t, i -j) -u(t, i)] + a(t, i)u(t, i), ∀t ∈ (t 0 , ∞), ∀i ∈ Z, u(t 0 , i) ≥ 0 and ̸ ≡ 0, ∀i ∈ Z,
then u(t, i) > 0 for all t ∈ (t 0 , ∞) and i ∈ Z.

Limit problem

In this subsection, we discuss time and space shift for bounded solution (u, v) to (5.1.1).

Choose sequence

(τ n ) n≥0 ⊂ [0, ∞) such that τ n → ∞ as n → ∞.
We can claim as follows.

Claim 5.3.8. There exist two bounded and uniformly continuous functions f : R ×

[0, ∞) 2 → R and g : R × [0, ∞) 2 → R, two function sequences j → J1 (t, j) ∈ l 1 (Z, L ∞ (R)) and j → J2 (t, j) ∈ l 1 (Z, L ∞ (R)) and a subsequence (τ n ) n (still denoted by the same index) such that f (t + τ n , u, v), g(t + τ n , u, v) → f (t, u, u), g(t, u, v) , (5.3.12) 
in local uniform topology as n → ∞. Also, one has (J 1 (t + τ n , j), J 2 (t + τ n , j)) → J1 (t, j), J2 (t, j) , (5.3.13) in weak-⋆ topology of L ∞ loc (R) 2 as n → ∞, for all j ∈ Z. Moreover, due to Assumption 5.2.3 (f 2), (f 4) and Assumption 5.2.4 (g2), (g4), the function f = f (t, u, v) is nonincreasing in both u and v while g = g(t, u, v) is nondecreasing in u and nonincreasing in v.

Assumption 5.2.3 and 5.2.4 ensure that f and g are bounded and uniformly continuous functions on [0, ∞) 3 while Assumption 5.2.2 implies that j∈Z ∥J k (•, j)∥ ∞ < ∞, (k = 1, 2). The above claim holds. Now, let BUC([0, ∞) × [0, ∞)) denote the Banach space of bounded and uniformly continuous functions on

[0, ∞) × [0, ∞). For t ∈ [0, ∞), we dene σ(t) := f (t, •, •), g(t, •, •), J 1 (t, •), J 2 (t, •) ∈ BUC([0, ∞) × [0, ∞)) 2 × l 1 (Z) 2 .
According to Claim 5.3.8, we dene the limit set Σ as follows: σ = f , g, J1 , J2 ∈ Σ, there exists sequence τ n → ∞ as n → ∞ such that (5.3.12) and (5.3.13) hold.

Recall that (u, v) = (u(t, i), v(t, i)) is a bounded solution to (5.1.1). Let us dene the set S by: (ũ, ṽ) ∈ S if there exist sequence

(t n ) n ⊂ [0, ∞) and (i n ) n ⊂ Z such that (u(t + t n , i + i n ), v(t + t n , i + i n )) → (ũ(t, i), ṽ(t, i)),
locally uniformly for (t, i) ∈ R × Z, as n → ∞. Note that for each pair of t n ≥ 0 and i n ∈ Z, the function pair

(u n , v n )(t, i) := (u, v)(t + t n , i + i n ) dened for t ≥ -t n and i ∈ Z satises          d dt u n (t, i) = j∈Z J 1 (t + t n , j) [u n (t, i -j) -u n (t, i)] + u n (t, i)f (t + t n , u n (t, i), v n (t, i)) , d dt v n (t, i) = j∈Z J 2 (t + t n , j) [v n (t, i -j) -v n (t, i)] + v n (t, i)g (t + t n , u n (t, i), v n (t, i)) .
Due to (u, v) is assumed to be bounded, there exists some constant C > 0 such that for all i ∈ Z

d dt u n (•, i) L ∞ (R) ≤ 2 j∈Z ∥J 1 (•, j)∥ ∞ + 1 < ∞, d dt v n (•, i) L ∞ (R) ≤ C 2 j∈Z ∥J 2 (•, j)∥ ∞ + ∥g(•, 1, 0)∥ ∞ < ∞.
( 

J k (t + τ n , j) → j∈Z Jk (t, j), (k = 1, 2), (5.3.15) in weak-⋆ topology of L ∞ loc (R), as n → ∞. That means for all T > 0 and ϕ ∈ L 1 (-T, T ), lim n→∞ T -T j∈Z J k (t + τ n , j)ϕ(t) dt = T -T j∈Z Jk (t, j)ϕ(t) dt, (k = 1, 2).
To show this property, note that

j∈Z ∥J k (•, j)∥ ∞ < ∞ since i → J k (•, i) ∈ l 1 (Z, L ∞ (R)).
Next, for each j ∈ Z, we have

T -T |J k (t + τ n , j)ϕ(t)| dt ≤ ∥J k (•, j)∥ ∞ ∥ϕ∥ 1 , (k = 1, 2), and j∈Z ∥J k (•, j)∥ ∞ ∥ϕ∥ 1 < ∞, (k = 1, 2).
Hence, the Lebesgue dominated convergence theorem ensures that

lim n→∞ j∈Z T -T |J k (t + τ n , j)ϕ(t)| dt = j∈Z lim n→∞ T -T |J k (t + τ n , j)ϕ(t)| dt = j∈Z T -T Jk (t, j)ϕ(t) dt, (k = 1, 2).
From Fubini-Tonelli theorem and the above equality, one can observe that (5.3.15) holds.

Combining with (5.3.15) and (ũ, ṽ) ∈ S, one has for all i ∈ Z, 5.3.16) in the weak-⋆ topology of L ∞ loc (R) as n → ∞. Then let us prove following claim.

     u n (t, i) j∈Z J 1 (t + t n , j) → ũ(t, i) j∈Z J1 (t, j), v n (t, i) j∈Z J 2 (t + t n , j) → ṽ(t, i) j∈Z J2 (t, j), ( 
Claim 5.3.9. One has for all i ∈ Z, 5.3.17) in the weak-⋆ topology of L ∞ loc (R) as n → ∞.

     j∈Z J 1 (t + t n , j)u n (t, i -j) → j∈Z J1 (t, j)ũ(t, i -j), j∈Z J 2 (t + t n , j)v n (t, i -j) → j∈Z J2 (t, j)ṽ(t, i -j), ( 
Proof. We only show the rst convergence result. The second one can be proved similarly. Note that we have

j∈Z J 1 (t + t n , j)u n (t, i -j) - j∈Z J1 (t, j)ũ(t, i -j) = j∈Z J 1 (t + t n , j) [u n (t, i -j) -ũ(t, i -j)] + j∈Z J 1 (t + t n , j) -J1 (t, j) ũ(t, i -j).
Recalling (5.3.15) and 0 ≤ ũ ≤ 1, it is suciently to show that for all i ∈ Z,

j∈Z J 1 (t + t n , j) [u n (t, i -j) -ũ(t, i -j)] → 0, in the weak-⋆ topology of L ∞ loc (R) as n → ∞.
To do this, let us observe that for any B > 0, for each t ≥ -t n and i ∈ Z,

j∈Z J 1 (t + t n , j) [u n (t, i -j) -ũ(t, i -j)] = |j|≥B J 1 (t + t n , j) [u n (t, i -j) -ũ(t, i -j)] + |j|≤B J 1 (t + t n , j) [u n (t, i -j) -ũ(t, i -j)] ≤ 2 |j|≥B ∥J 1 (•, j)∥ ∞ + |j|≤B ∥J 1 (•, j)∥ ∞ sup |j|≤B |u n (t, i -j) -ũ(t, i -j)|. Next since u n (t, i) → ũ(t, i) locally uniformly for (t, i) ∈ R × Z as n → ∞, then for all A > 0 and B > 0, lim n→∞ sup t∈[-A,A] i∈[-A,A]∩Z j∈Z J 1 (t + t n , j) [u n (t, i -j) -ũ(t, i -j)] ≤ 2 |j|≥B ∥J 1 (•, j)∥ ∞ . Due to j → J 1 (•, j) ∈ l 1 (Z, L ∞ (0, ∞))
, letting B → ∞, we obtain that the rst convergence result in (5.3.17). The second one in (5.3.17) can be proved similarly. The proof of this claim is completed.

Note that

f (t + t n , u n , v n ) -f (t, ũ, ṽ) ≤ |f (t + t n , u n , v n ) -f (t + t n , ũ, ṽ)| + f (t + t n , ũ, ṽ) -f (t, ũ, ṽ) .
Recalling (5.3.12) and Assumption 5.2.3 (f 1), one can observe that

lim n→∞ f (t + t n , u n , v n ) = f (t, ũ, ṽ), in local uniform topology.
Let us dene U (t, i) = e A(t) w(t, i). Note that U = U (t, i) satises for all t ≥ 0 and i ∈ Z,

d dt U (t, i) ≥ d U (t, i + 1) + U (t, i -1) -2U (t, i) + 2dU (t, i) -J(t)U (t, i) + A ′ (t)U (t, i) + m(t)U (t, i) 1 -le -A(t) U (t, i) ≥ d[U (t, i + 1) + U (t, i -1) -2U (t, i)] + U (t, i) β -l∥m∥ ∞ e ∥A∥∞ U (t, i) ,
where

β := 2d + inf t≥0 m(t) -J(t) + A ′ (t) > 0.
Let us dene U = U (t, i) as the solution of following Cauchy problem for t > 0 and i ∈ Z,

∂ t U (t, i) = d[U (t, i + 1) + U (t, i -1) -2U (t, i)] + U (t, i) β -l∥m∥ ∞ e ∥A∥∞ U (t, i) , (5.3.20)
supplemented with initial data U (0, i) = e -∥A∥∞ w(0, i) for i ∈ Z. Since w(0, i) ̸ ≡ 0, then one has U (0, i) ̸ ≡ 0. The spreading speed results for (5.3.20) (see [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF]) implies that there exists some speed c 0 > 0 such that

lim t→∞ inf |i|≤ct U (t, i) = β l∥m∥ ∞ e ∥A∥∞ , ∀c ∈ [0, c 0 ).
Note that U is the super-solution of (5.3.20). The comparison principle implies that for all t > 0 and i ∈ Z, U (t, i) ≥ U (t, i).

Hence, one has

lim t→∞ U (t, 0) ≥ β l∥m∥ ∞ e ∥A∥∞ . Moreover, one has lim t→∞ w(t, 0) ≥ lim t→∞ e -∥A∥∞ U (t, 0) ≥ β l∥m∥ ∞ e 2∥A∥∞ ≥ 2d l∥m∥ ∞ e 2∥A∥∞ =: ε0 .
The proof of this lemma is completed.

In order to study spreading speed for (5.3.19), more conditions on the kernel function J should be given, for instance, J is exponentially bounded. We state assumptions satised by J and m as follows: Assumption 5.3.13. The kernel function J satises Assumption 5.2.2. Assume the function m : [0, ∞) → R is bounded and uniformly continuous with inf t≥0 m(t) > 0.

Assume that m has a mean value, denoted by ⟨m⟩, which satises ⟨m⟩ > ⟨J⟩.

Before stating the spreading speed result for (5. Similarly to Proposition 5.2.7, one can observe that µ → ⟨c w (µ)⟩ is of class C 1 in (0, abs(J)) and there exists µ * ∈ (0, abs(J)) such that ⟨c w (µ * )⟩ = c * w . With above notations, we state the following proposition.

Lemma 5.3.18 (Persistence lemma). Let w and H(w) be dened as in Denition 5.3.16.

Let t → X(t) from [0, ∞) to [0, ∞) be a given continuous function. Assume that the following set of hypothesis is satised, (H1) there exists ε 1 > 0 such that lim inf t→∞ w(t, 0) ≥ ε 1 ;

(5.3.23) (H2) there exists ε 2 > 0 such that for all w ∈ H(w) \ {0} one has lim inf t→∞ w(t, 0) ≥ ε 2 ;

(5. where [X(t)] means taking maximal integer less than or equal to X(t) for each t ≥ 0.

Then for any k ∈ (0, 1), one has lim inf t→∞ inf i∈[0,[kX(t)]]∩Z w(t, i) > 0.

The proof of this lemma is given in Subsection 5.8.

Upper estimates on the spreading speeds

Now we give the proof of Theorem 5.2.10 (i), half of Theorem 5.2.10 (ii) and Theorem 5.2.11 (i). In the proof, we only focus on i ≥ 0, for i ≤ 0 which can be dealt similarly by a symmetric argument.

Recalling that the denition of c u (λ) in (5.2.7) and c * u = ⟨c u (λ * )⟩ in Proposition 5.2.7, the property of mean value (see (5.3.10)) ensures that there exists a ∈ W 1,∞ (0, ∞) such that for all c > c ′ > c * u and for all t ≥ 0, c ′ ≥ j∈Z J 1 (t, j)[e λ * j -1] + 1

λ * + a ′ (t).
Then for all A > 0, the function u given by u(t, i) := Ae -λ * a(t) e -λ * (i-c ′ t) , satises for all i ∈ Z and t ≥ 0, d dt u(t, i) -j∈Z J 1 (t, j)[u(t, i -j) -u(t, i)] -u(t, i) = u(t, i) λ * c ′ -λ * a ′ (t) -j∈Z J 1 (t, j) e λ * j -1 -1 ≥ 0.

Let A > 0 be large enough such that u(0, i) ≥ u 0 (i) for all i ∈ Z. Note that f (t, u, v) ≤ 1 for all t ≥ 0, u ∈ [0, 1] and v ≥ 0 from (5. Ae -λ * a(t) e -λ * (c-c ′ )t = 0.

Since u is nonnegative, then we obtain the statement (i) in Theorem 5.2.10 and the half of statement (i) in Theorem 5.2.11.

Similarly, for all c > c > c * v , there exists ã ∈ W 1,∞ (0, ∞) such that for all t ≥ 0, c ≥ j∈Z J 2 (t, j)[e γ * j -1] + r(t) γ * + ã′ (t).

Then the function v 1 (t, i) := Ãe -γ * ã(t) e -γ * (i-ct) , satises following dierential inequality

d dt v 1 (t, i) - j∈Z J 2 (t, j)[v 1 (t, i -j) -v 1 (t, i)] -r(t)v 1 (t, i) ≥ 0.
Choosing à > 0 large enough such that v 1 (0, i) ≥ v 0 (i) for all i ∈ Z, from (5. Note that the map u → ⟨g(•, u, 0)⟩ is continuous and recall that ⟨g(•, 0, 0)⟩ < 0 in Assumption 5.2.4. Hence, one has ⟨g(•, ε, 0)⟩ < 0 for all ε > 0 suciently small. From the property of mean value, one can choose b ∈ W 1,∞ (0, ∞) such that sup t≥0 {g(t, ε, 0) + b ′ (t)} < 0.

On the other hand, since j∈Z ∥J 2 (•, j)∥ ∞ e γj < ∞ for all γ ∈ (0, abs(J 2 )), then for all c ′′ ∈ (c * u , c), one has lim γ→0 + γc ′′ -j∈Z J 2 (t, j)[e γj -1] = 0, uniformly for t ≥ 0.

Thus one can choose some γ ′ > 0 small enough such that γ ′ c ′′ -j∈Z J 2 (t, j)[e γ ′ j -1] -g(t, ε, 0) -b ′ (t) ≥ 0, ∀t ≥ 0.

Note that solution (u, v) is assumed to be bounded. One can choose B > 0 large enough such that Be -∥b∥∞ ≥ v(t, i) for all t ≥ 0 and i ∈ Z. For c ′′ ∈ (c * u , c), we dene v 2 (t, i) := Be -γ ′ (i-c ′′ t) e -b(t) , ∀t ≥ 0, i ∈ Z.

Next we show another important estimate.

Lemma 5.5.3. Let c ∈ [0, c * u ) be given. For all α > 0, there exist M α > 0 and T α > 0 such that the following estimate holds true 1 -u(t, i) ≤ α + M α v(t, i), ∀t ≥ T α , |i| ≤ ct.

Proof. By contradiction, we assume that there exist α 0 > 0 and sequences (t n ) n and (i n ) n such that |i n | ≤ ct n , t n → ∞ as n → ∞, and 1 -u(t n , i n ) > α 0 + nv(t n , i n ), ∀n ≥ 1.

(5.5.32) Set u n (t, i) := u(t + t n , i + i n ) and v n (t, i) := v(t + t n , i + i n ).

By the same analysis in Section 5.3.3, one can extract subsequence such that u n (t, i) → u ∞ (t, i) and v n (t, i) → v ∞ (t, i) as n → ∞ locally uniformly for (t, i) ∈ R × Z. As well as, there exists σ ∈ Σ such that (u ∞ , v ∞ ) satises (P σ) (see (5.3.18)). Recalling 0 ≤ u ≤ 1, the assumption (5.5.32) yields that v(t n , i n ) → 0 as n → ∞.

Hence one has v ∞ (0, 0) = 0 and the strong maximum principle for v ∞ -equation in (P σ) implies that v ∞ ≡ 0. Therefore u ∞ = u ∞ (t, i) satises following Fisher-KPP equation Fix c ∈ (c, c * u ). Let (t n ) n and (i n ) n be the same sequences (possibly up to sub-sequence) chosen in (5.5.32). Then there exist T > 0 large enough and some constant m > 0 such that inf This can be rewritten as for all n ≥ 0, Since c -c > 0, letting n → ∞, then one has

d dt u ∞ (t, i) = j∈Z J1 (t, j) [u ∞ (t, i -j) -u ∞ (t, i)] + u ∞ (t, i) f (t, u ∞ (t, i), 0) . ( 5 
u ∞ (t, i) ≥ m, ∀(t, i) ∈ R × Z.
This completes the proof of Claim 5.5.4.

We come back to the proof of Lemma 5.5.3. From (5.3.12) and f (t, 1, 0) ≡ 0, one has f (t, 1, 0) = 0. Since inf t≥0 f (t, u, 0) > 0 for each u ∈ [0, 1), then inf t∈R f (t, u, 0) > 0 for each u ∈ [0, 1). Set Θ := inf (t,i)∈R×Z u ∞ (t, i) and h(u) := inf t∈R f (t, u, 0).

Note that Θ > 0 and h(u) > 0 for all u ∈ [0, 1). Next we consider U (t) which is the solution of U ′ (t) = U (t) h(U (t)), U (0) = Θ.

Thus U (t) is a sub-solution of (5.5.33). Since u ∞ (s, i) ≥ Θ for all (s, i) ∈ R × Z, then the comparison principle implies that 1 ≥ u ∞ (t + s, i) ≥ U (t), ∀t ≥ 0, s ∈ R, i ∈ Z.

Observe that U (t) → 1 as t → ∞. Thus, one has u ∞ (0, 0) = 1. This contradicts with the property 1 -u ∞ (0, 0) ≥ α 0 > 0 that follows by passing to the limit n → ∞ into (5.5.32). The proof is completed. Set u n (t, i) := u(t + t n , i + i n ) and v n (t, i) := v(t + t n , i + i n ). As discussed in Section 5.3.3, there exists (u ∞ , v ∞ ) ∈ S and σ ∈ Σ such that u n (t, i) → u ∞ (t, i) and v n (t, i) → v ∞ (t, i) as n → ∞ locally uniformly for (t, i) ∈ R × Z. And (u ∞ , v ∞ ) satises (P σ)(see (5.3.18)). Note that u ∞ (0, 0) < 1.

Recall that we have proved that for all c ′ 1 > c * v ,

lim t→∞ sup |i|≥c ′ 1 t v(t, i) = 0.
This yields that v ∞ (0, 0) = 0. The strong maximum principle for v ∞ -equation implies that v ∞ ≡ 0. Hence u ∞ satises the following problem

d dt u ∞ (t, i) = j∈Z J 1 (t, j) [u ∞ (t, i -j) -u ∞ (t, i)] + u ∞ (t, i) f (t, u ∞ (t, i), 0) .
On the other hand, from Proposition 5.5.2, one has, for all 0 < ε < min{c * u -c 2 , c 1 -c * v } small enough, lim inf t→∞ inf (c 1 -ε)t≤|i|≤(c 2 +ε)t u(t, i) > 0.

Next one can proceed similarly to the proof of Lemma 5.5.3 to obtain u ∞ ≡ 1. This is contradicted with assumption u ∞ (0, 0) < 1. We complete the proof of Theorem 5.2.10 (ii). To do this, we will use the key Lemma 5.5.3 to derive a dierential inequality satised by v. With this help, we construct proper sub-solutions to show that v does not converge to 0 at some points (see Step 1 and Step 2 in below). Then we use some ideas in uniform persistence theory to show that the spreading is in fact uniformly on the whole interval (see Step 3 and Step 4), which somehow close to those developed in [START_REF] Ducrot | Asymptotic spreading speeds for a predatorprey system with two predators and one prey[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF][START_REF] Ducrot | Spreading properties for non-autonomous Fisher-KPP equations with nonlocal diusion[END_REF]. Finally, we show that the limit of u is strictly less than 1 (see Step 5). + r(t + T α )v(t + T α , i) 1 -Lα -L(1 + M α )v(t + T α , i) .

(5.5.36)

Step 1: Prove that there exists ε 0 > 0 such that lim inf t→∞ v(t, 0) > ε 0 .

To do this, we construct a continuous sub-solution of (5.5.36) in the following lemma. For better exposition, we postpone the proof of the following lemma.

Lemma 5.5.5. For some B 0 > 0 large enough, for all B > B 0 , there exists R 0 (B) > 0 large enough enjoying the following properties:

For all B > B 0 and R > max(R 0 (B), B + 1), for some η > 0 small enough, we dene v 1 (t, x) := η cos πx 2R , x ∈ [-R, R], t ≥ 0, 0, else. (5.5.37) Then one can choose T α > 0 large enough such that [-R, R] ⊂ [-c ′ (t + T α ), c ′ (t + T α )] and v 1 is the sub-solution of (5.5.36).

Let v 1 be dened in above lemma. Let η > 0 be suciently small such that

v(T α , i) -sup x∈[-R,R] v 1 (0, x) ≥ 0, ∀i ∈ [-R, R] ∩ Z.
From Lemma 5.5.5 and the maximum principle (see Proposition 5.3.5), one can obtain that v(t

+ T α , i) -v 1 (t, x) ≥ 0, ∀t ≥ 0, x ∈ [-R, R], i ∈ [-R, R] ∩ Z.
This implies that

v(t + T α , i) ≥ v 1 (t, i), ∀t ≥ 0, i ∈ [-R, R] ∩ Z.
Recalling the denition of v 1 , there exists some ε 0 > 0 such that lim inf t→∞ v (t + T α , 0) ≥ lim inf t→∞ v 1 (t, 0) ≥ 2ε 0 > 0.

Since t → ∞, then one can get rid of T α in the above limit. Thus, one obtains that lim inf t→∞ v (t, 0) > ε 0 .

The proof of Step 1 is completed. Before stating Step 2, we introduce some notations. For each given B > 0, set J 2,B = J 2,B (t, i) by Herein γ * is given in Proposition 5.2.7 and I(t) is dened in (5.5.40) with choosing γ = γ.

Proof of Claim 5.5.6. Recalling (5.5.39) and j → J 2 (•, j) ∈ l 1 (Z, L ∞ (0, ∞)), the Lebesgue dominated convergence theorem ensures that for each given γ ≥ 0, lim B→∞ R→∞ c R,B (γ)(t) = j∈Z J 2 (t, j)e γj j, uniformly for t ≥ 0.

(5.5.41)

Observe that the function γ → j∈Z ⟨J 2 (•, j)⟩e γj j is continuous and increasing for γ ∈ [0, ∞). Herein ⟨J 2 (•, j)⟩ is the mean value of J 2 (•, j). The symmetric of J 2 implies that j∈Z ⟨J 2 (•, j)⟩j = 0.

Since c * v = j∈Z ⟨J 2 (•, j)⟩ e γ * j j from Proposition 5.2.7, then for all γ ∈ [0, γ * ) one has j∈Z ⟨J 2 (•, j)⟩ e γj j < c * v .

For some constant m 0 > 0 small enough, one can choose some γ ∈ (0, γ * ) such that c ′ -j∈Z ⟨J 2 (•, j)⟩ e γj j ≥ 2m 0 .

(5.5.42)

Recalling the limit in (5.5.41), the above estimate ensures that for some R 0 > 0 and B 0 > 0 large enough, for all B > B 0 and R > max(R 0 , B), one has

c ′ -⟨c R,B (γ)(•)⟩ ≥ m 0 > 0.
Due to the property of mean value, there exists some b ∈ W 1,∞ (0, ∞) such that c R,B (γ)(t) + b ′ (t) < c ′ , ∀t > 0.

Thus, it can be rewritten as c R,B (γ)(s + T α ) + b ′ (s + T α ) < c ′ , ∀s > -T α .

This implies that t 0 c R,B (γ)(s + T α ) + b ′ (s + T α )ds < c ′ t.

One can also observe that inf t≥0 c R,B (γ)(t) > 0. This is due to Assumption 5.2.2 (J4) and R > B. Recalling the denition of I(t) in (5.5.40), one can choose C γ > 0 such that I(t) > 0 for all t > 0. Note that

I(t) ≤ c ′ t + 2∥b∥ ∞ + C γ , ∀t > 0.
One can choose T α > 0 large enough such that c ′ T α > R + 2∥b∥ ∞ + C γ . Hence, we obtain that [-R + I(t), R + I(t)] ⊂ [-c ′ (t + T α ), c ′ (t + T α )] .

The claim is proved.

Step 2: Let I(t) be chosen in Claim 5.5.6. Prove that there exists ε 1 > 0 such that

lim inf t→∞ v(t, [I(t)]) > ε 1 ,
where [I(t)] is the maximal integer not larger than I(t) for t > 0.

To prove this, similarly as the proof of Step 1, we rst construct a proper sub-solution of (5.5.36) in the following lemma. For a better exposition, we also postpone its proof.

Lemma 5.5.7. For all c ∈ [0, c * ), for the given c ′ ∈ (c, c * ). For some B 0 > 0 large enough, for all B > B 0 , there exists R 0 (B) > 0 large enough enjoying following properties: For all B > B 0 and R > max(R 0 (B), B + 1), let γ ∈ (0, γ * ) be chosen in Claim 5.5.6. Let T α > 0 large enough and I(t) be chosen in Claim 5.5.6. For some η > 0 small enough, for some a ∈ W 1,∞ (0, ∞), we dene the function v 2 by v 2 (t, x) := ηe a(t) e -γ(x-I(t)) cos π(x-I(t))

2R

, x ∈ [-R + I(t), R + I(t)], t ≥ 0, 0, else.

(5.5.43)

Then v 2 is the sub-solution of (5.5.36).

Let v 2 be dened in the above lemma. Let η > 0 be suciently small such that Since t → ∞, then one can get rid of T α in the above limit and obtain that lim inf t→∞ v (t, [I(t)]) > ε 1 .

v(T α , i) -sup x∈[-R,R]
The proof of Step 2 is completed.

Step 3: Show that lim inf t→∞ inf i∈[0,[kI(t)]]∩Z v(t, i) > 0, ∀k ∈ (0, 1).

In this step, we apply a similar idea in the proof of Lemma 2.6 in [START_REF] Ducrot | Spreading properties for non-autonomous Fisher-KPP equations with nonlocal diusion[END_REF], as well Lemma 5.3.18 in this paper.

By contradiction we assume that there exist k ∈ (0, 1), k n ∈ [0, k] and sequence (t n ) n satisfying t n → ∞ as n → ∞ such that v(t n , [k n I(t n )]) → 0 as n → ∞.

(5.5.44)

Firstly, let us observe that [k n I(t n )] → ∞ as n → ∞. If not, then [k n I(t n )] → l ∈ Z which may happen when k n → 0. As discussed in Section 5.3.3, one can extract sub-sequence such that v(t + t n , i) → v ∞ (t, i), locally uniformly for (t, i) ∈ R × Z as n → ∞.

As we discussed in above, for each given c ′′ ∈ (c, c ′ ), one can choose γ ∈ (0, γ * ) (for notation simplicity, still denote by γ) such that c ′′ < ⟨c R,B (γ)⟩ < c ′ .

The property of mean value implies that there exists some b ∈ W 1,∞ (0, ∞) such that c R,B (γ)(t) + b′ (t) > c ′′ , ∀t > 0.

Recalling the denition of I(t) in (5. Set k 0 = c c ′′ ∈ (0, 1). Note that

k 0 I(t) ≥ k 0 c ′′ t = ct, ∀t > 0.
Hence, one has kI(t) ≥ ct, ∀k ∈ (k 0 , 1), ∀t > 0. To do this, we proceed by contradiction argument. Assume that there exist c ∈ [0, c * ) and sequences (t n ) n and (i n ) n such that

|i n | ≤ ct n , t n → ∞ and u(t n , i n ) → 1, as n → ∞.
As analysis in Section 5.3.3, one can extract sub-sequence such that (u(t + t n , i + i n ), v(t + t n , i + i n )) converges to (u ∞ (t, i), v ∞ (t, i)) which satises (P σ) (see (5.3.18)) with suitable σ ∈ Σ. Note that u ∞ (0, 0) = 1 and 0 ≤ u ∞ ≤ 1. We can apply the strong maximum principle to obtain that u ∞ ≡ 1. One can observe that the rst equation in (P σ) implies that f (t, 1, v) = 0, ∀t ∈ R.

Also, we have proved that

lim inf t→∞ inf |i|≤ĉt v(t, i) > 0, ∀ĉ ∈ [0, c * ).
Similar as proof of Claim 5.5.4, one can show that inf (t,i)∈R×Z v ∞ (t, i) > 0.

From Assumption 5.2.3 (f 5), one has sup t∈R f (t, 1, v ∞ ) < 0 for all v ∞ > 0. This is a contradiction. We complete the proof of Step 5.

Thus, the proof of Theorem 5.2.10 (iii) and 5.2.11 (ii) is completed. Now we show that the proof of Lemma 5.5.5 and 5.5.7.

Proof of Lemma 5.5.5. Let c ′ ∈ (0, c * ) be given. For each xed R > 0, one can choose T α > 0 large enough such that c ′ T α > R. Hence, one has

[-R, R] ⊂ [-c ′ (t + T α ), c ′ (t + T α )] .
We dene x r := x -[x], where [x] means taking the maximal integer not larger than x.

Let us observe that for x ∈ [-R, R],

j∈Z J 2 (t + T α , j)v 1 (t, x -j) = j∈Z J 2 (t + T α , j)v 1 (t, x r + [x] -j) (5.5.50)

For easy of writing, we set J 2 (t + T α ) := j∈Z J 2 (t + T α , j) and dene the operator L given by L ϕ(t, x) := d dt ϕ(t, x) -j∈Z J 2 (t + T α , j)ϕ(t, x -j) + J 2 (t + T α )ϕ(t, x)

-r(t + T α )(1 -Lα)ϕ(t, x).

(5.5.51) From (5.5.49) and (5.5.50), one can observe that for all t ≥ 0 and x ∈ [-R, R],

L Hence for all t ≥ 0 and x ∈ [-R, R] one has

L v 1 (t, x) ≤ -θ 0 η cos πx 2R = -θ 0 v 1 (t, x).
Let us choose η > 0 small enough such that

r(t + T α )L(1 + M α )v 1 (t, x) ≤ η∥r∥ ∞ L(1 + M α ) < θ 0 , ∀t ≥ 0, x ∈ [-R, R].
So that for all t ≥ 0 and x ∈ [-R, R], one has -θ 0 v 1 (t, x) ≤ -r(t + T α )L(1 + M α )v 2 1 (t, x).

Hence we obtain that L v 1 (t, x) ≤ -r(t + T α )L(1 + M α )v 2 1 (t, x), namely, v 1 (t, x) is a sub-solution of (5.5.36). This completes the proof of Lemma 5.5.5.

Next we prove that Lemma 5.5.7.

Proof of Lemma 5.5.7. By the same analysis in (5.5.49), one can obtain that for all x ∈ [-R + I(t), R + I(t)] and t ≥ 0, j∈Z J 2 (t + T α , j)v 2 (t, x -j) ≥ j∈Z J 2,B (t + T α , j)ηe a(t) e -γ(x-j-I(t)) cos π(x -j -I(t)) 2R .

Recalling operator L dened in (5.5.51), through direct computation, one can observe that for all t ≥ 0 and x ∈ [-R + I(t), R + I(t)],

L v 2 (t, x) ≤ ηe a(t) e -γ(x-I(t)) cos π (x -I(t)) 2R (a ′ (t) + γI ′ (t)) + π 2R I ′ (t)ηe a(t) e -γ(x-I(t)) sin π (x -I(t)) 2R

-ηe a(t) e -γ(x-I(t)) j∈Z J 2,B (t + T α , j)e γj cos π (x -I(t)) 2R cos πj 2R

-ηe a(t) e -γ(x-I(t)) j∈Z J 2,B (t + T α , j)e γj sin π (x -I(t)) 2R sin πj 2R + J 2 (t + T α )ηe a(t) e -γ(x-I(t)) cos π(x -I(t)) 2R

-r(t + T α )(1 -Lα)ηe a(t) e -γ(x-I(t)) cos π(x -I(t)) 2R

= ηe a(t) e -γ(x-I(t)) cos π Thus, for some θ 0 > 0, there exist some α > 0 small enough such that γ j∈Z J 2 (•, j)e γj j -j∈Z J 2 (•, j)e γj + J 2 (•) -r(•) + ∥r∥ ∞ Lα < -2θ 0 .

The e -γx < θ 0 .

This means that -θ 0 v 2 (t, x) ≤ -r(t + T α )L(1 + M α )v 2 2 (t, x), ∀t ≥ 0, x ∈ [-R + I(t), R + I(t)]. Hence, we obtain that v 2 is the sub-solution of (5.5.36). The proof is completed.

5.6

Proof of Proposition 5.2.15

In this section, we show that the solution of (5. 

+ ∥J 1 ∥ ∞ + ∥J 2 ∥ ∞ + M -η W (t, i) -u(t, i) ε , ≤ j∈Z J 2 (t, j)[W (t, i -j) -W (t, i)] + ∥J 1 ∥ ∞ + ∥J 2 ∥ ∞ + M + η ε - η ε W (t, i),
where η and M are given in Assumption 5.2.13. Let K 0 > 0 be a constant such that K 0 ≥ u 0 (i) + εv 0 (i) for all i ∈ Z. This is due to u 0 and v 0 are bounded. One can observe that

W (t) := ε η ∥J 1 ∥ ∞ + ∥J 2 ∥ ∞ + M + η ε (1 -e -η ε t ) + K 0 e -η ε t , ∀t ≥ 0, satises d dt W (t) = ∥J 1 ∥ ∞ + ∥J 2 ∥ ∞ + M + η ε - η ε W (t, i), W (0) = K 0 .
The comparison principle implies that W (t, i) = u(t, i) + εv(t, i) ≤ W (t), ∀t ≥ 0, i ∈ Z.

Since W is bounded, then we obtain that v is bounded for t ≥ 0 and i ∈ Z.

5.7

Appendix A: Maximum principles 5.7.1 Proof of Proposition 5.3.3

Proof of Proposition 5.3.3. For notation simplicity, we assume that t 0 = 0. Since a(t, i) is bounded and J(t) := j∈Z J(t, j) ∈ L ∞ (0, T ), then one can choose K > 0 large enough such that K -J(t) + a(t, i) ≥ 1 for all t ∈ [0, T ] and i ∈ Z. Set v(t, i) := e Kt u(t, i). Note that v(t, i) satises

     d dt v(t, i) ≥
j∈Z J(t, j)v(t, i -j) + K -J(t) + a(t, i) v(t, i), ∀t ∈ (0, T ], ∀i ∈ Z, v(0, i) ≥ 0, ∀i ∈ Z.

(5.7.53) Due to u(t, i) is bounded, so v(t, i) is bounded for all t ∈ [0, T ] and i ∈ Z.

It is suciently to show that v(t, i) ≥ 0 for all t ∈ [0, T ] and i ∈ Z. Let us denote M := sup We rst claim that v(t, i) ≥ 0 for all t ∈ [0, τ ] and i ∈ Z. By contradiction argument, we assume that there exists some point in (0, τ ]×Z such that v < 0. Set w(t) := inf i∈Z v(t, i).

One can assume there exists some t * ∈ (0, τ ] such that w(t * ) = inf t∈(0,τ ] w(t) < 0. Let us observe that for all (t, i) ∈ [0, T ] × Z, K -J(t) + a(t, i) v(t, i) ≥ K -J(t) + a(t, i) w(t) ≥ G(t)w(t),

where G(t) is dened by G(t) := K -J(t) + inf i∈Z a(t, i), w(t) ≥ 0, K -J(t) + sup i∈Z a(t, i), w(t) < 0.

Since K -J(t) + a(t, i) ≥ 1 for all (t, i) ∈ [0, T ] × Z, then inf t∈[0,T ] G(t) > 0. This contradicts w(t * ) < 0. Hence v(t, i) ≥ 0 for all t ∈ [0, τ ] and i ∈ Z. The same argument can be repeated for t ∈ [τ, T ], we obtain the result.

Integrating
By the same analysis in (5.5.49), one can observe that for all x ∈ [-R + X(t), R + X(t)] and t ≥ 0, j∈Z J(t, j)w(t, x -j) ≥ j∈Z J B (t, j)ηe b(t) e -µ(x-j-X(t)) cos π(x -j -X(t)) 2R .

Let L be the operator dened as Lϕ(t, x) := d dt ϕ(t, x) -j∈Z J(t, j)ϕ(t, x -j) + J(t)ϕ(t, x) -m(t)ϕ(t, x).

Through computation, for t ≥ 0 and x ∈ [-R + X(t), R + X(t)], one has Lw(t, x) ≤ ηe b(t) e -µ(x-X( e -µx < θ0 .

Hence, one has m(t)lw 2 (t, x) ≤ θ0 w(t, x), ∀t ≥ 0 and i ∈ [-R + X(t), R + X(t)] ∩ Z.

So that one obtains Lw(t, x) ≤ -m(t)lw 2 (t, x) for all x ∈ [-R + X(t), R + X(t)] ∩ Z and t ≥ 0 . This means that w(t, x) is the sub-solution of (5.3.19). The proof is completed. Now we complete the proof of Proposition 5.3.14.

Proof of Proposition 5.3.14. Firstly, similar to Section 5.4, for all c > c ′ > c * w , one can construct a super-solution w by w(t, i) := Ae -µ * a(t) e -µ * (i-c ′ t) , where A > 0 is suciently large and a ∈ W 1,∞ (0, ∞) satises c ′ ≥ j∈Z J(t, j)[e µ * j -1] + m(t) µ * + a ′ (t), ∀t ≥ 0.

One can verify that w is a super-solution of (5.3.19). Let A > 0 be large enough such that w(0, •) ≥ w 0 (•). Then the comparison principle ensures that for all c > c ′ > c * Ae -µ * a(t) e -µ * (ct-c ′ t) = 0.

Figure 1 . 1 :

 11 Figure 1.1: A typical example of KPP type function.

Figure 1 . 2 :

 12 Figure 1.2: A right moving travelling wave solutions in (1.1.2).

  (t, x)| = 0, for c ∈ [0, w * ).

  .

  3. 

Figure 1 . 3 :

 13 Figure 1.3: The invasion of muskrat in Eastern Europe. This gure is taken from [149].

  (i) If u 0 (x) = O(e -λx ) as x → +∞ for some given λ ≥ λ * , then c * is the spreading speed to the right, namely, the following property holds (t, x)| = 0, for c ∈ [0, c * ).(ii) If u 0 (x) ∼ e -λx as x → +∞ for some given λ ∈ (0, λ * ), then c(λ) is the spreading speed to the right, namely, , x) = 0, for c > c(λ),lim t→∞ sup x∈[0,ct]

Figure 1 . 4 :

 14 Figure 1.4: Dierent reaction terms.

(

  ii) Almost periodic function: g(z) = sin z + sin( √ 2z) for z ∈ R.(iii) Uniquely ergodic function: A trivial example is a bounded continuous function f satises f (z) → C as |z| → ∞ for some constant C. A classical example is a bounded uniformly continuous function on R 2 whose level sets exhibit the Penrose tiling pattern, see Figure 1.5.For more examples and properties, we refer to[START_REF] Matano | Large time behavior of disturbed planar fronts in the AllenCahn equation[END_REF].
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 15 Figure 1.5: Penrose tiling. Source from Wikipedia.

Figure 1 . 6 :

 16 Figure 1.6: The red solid line is an example of the thin-tailed kernel function: J(x) = e -|x| 2 , while the blue dashed line is an example of the fat-tailed kernel function: J(x) = (1 + |x|) -3 .

Figure 1 . 8 :

 18 Figure 1.8: A solution (u, v) of (1.1.11) at t = 50 and with parameter d = 1, r = 1, p = 2, q = 1.5 and ν = 1.

  then the function pair (u, v) satises: (i) for all c > c * u , one has lim t→∞ sup |x|≥ct u(t, x) = 0; (ii) for all c * v < c 1 < c 2 < c * u and for all c > c * v one has: lim t→∞ sup c 1 t≤|x|≤c 2 t |1 -u(t, x)| + lim t→∞ sup |x|≥ct v(t, x) = 0; (iii) for all c ∈ [0, c * v ) one has: lim inf t→∞ inf |x|≤ct v(t, x) > 0, lim inf t→∞ inf |x|≤ct u(t, x) > 0 and lim sup t→∞ sup |x|≤ct u(t, x) < 1.

Figure 1 . 9 :

 19 Figure1.9: Slow predator case. This gure is taken from[START_REF] Ducrot | Spreading speeds for multidimensional reaction diusion systems of the preypredator type[END_REF].

  then the function pair (u, v) satises: (i) for all c > c * u , one has lim t→∞ sup |x|≥ct [u(t, x) + v(t, x)] = 0; (ii) for all c ∈ [0, c * u ) one has: , x) > 0 and lim sup t→∞ sup |x|≤ct u(t, x) < 1.

Figure 1 . 10 :

 110 Figure 1.10: Fast predator. This gure is taken from [55].

Denition 1 . 2 . 1 .

 121 The least mean (resp. the upper mean) of a function g ∈ L ∞ (R) is dened as follows ⌊g⌋ := sup + s)ds, resp. ⌈g⌉ := inf + s)ds .

90 Figure 1 . 11 :

 90111 Figure 1.11: The solution (u, v) at dierent given times of (1.2.37) associated with compact support initial data where parameters satisfy d ≡ 5, ν = r ≡ 1, q ≡ 2 and p(t) = 2 + sin t.

  (a) t = 30 (b) t = 60 (c) t = 90

Figure 1 . 12 :

 112 Figure 1.12: The solution (u, v) at dierent given times of (1.2.37) associated with compact support initial data where parameters satisfy d ≡ 0.3, ν = r ≡ 1, q ≡ 2 and p(t) = 2+sin t.

  be the solution of (1.2.46) equipped with initial data (u 0 , v 0 ). Assume that (u, v) is bounded. Then the function pair (u, v) satises: (i) for all c > c * u , one has lim t→∞ sup |i|≥ct u(t, i) = 0; (ii) for all c * v < c 1 < c 2 < c * u and for all c > c * v , one has

Denition 2 . 2 . 6 .

 226 The least mean (resp. the upper mean) value of a function g ∈ L ∞ (R) + s)ds, resp.⌈g⌉ := inf + s)ds .

Denition 2 . 2 . 7 .

 227 A function g ∈ L ∞ (R) is said to be uniquely ergodic if the least and the upper mean values coincide, namely ⌊g⌋ = ⌈g⌉.This means that some constant [g] ∈ R such that lim + s)ds = [g] exists uniformorly for t ∈ R.

Lemma 2 . 4 . 1 .

 241 The least mean and upper mean operators are continuous from L ∞ (R) into R.

.5. 20 )

 20 Now let us determined b 1 large enough such that φ is a subsolution for (2.1.2) with c(t) = c λ,a (t) on O. Recalling the denition of C > 0 in (2.2.4), choose b 1 large enough such that e -λ k (b 0 (t)+b 1 +ka(t)) ≤ 1, ∀t ∈ R.

  6.38), let us rst show that for all B > B 0 and any R > max(B, R 0 (B)) (where R 0 (B) is dened in Lemma 2.6.1 as well) one has⌈c R,B (γ)(•) -c(•)⌉ ≤ 0.(2.6.44)

Denition 3 . 1 . 1 .

 311 Along this work, for any given function h ∈ L ∞ (0, ∞; R), we dene ⌊h⌋ :

Assumption (f 4 )

 4 is imposed for some technical reasons. It will be used when we prove the hair trigger eect property in (3.1.1).

  e λ * r y ydy.(3.1.10)

1

 1 and u 0 (•) ̸ ≡ 0. Then the following propagation occurs: (i) (Fast exponential decay case) If u 0 (x) = O(e -λx ) as x → ∞ for some λ ≥ λ * r then one has lim t→∞ sup x∈[0,ct] |1 -u(t, x)| = 0, ∀c ∈ (0, c * r ); (ii) (Slow exponential decay case) If lim inf x→∞ e λx u 0 (x) > 0 for some λ ∈ (0, λ * r ) then it holds that lim t→∞ sup x∈[0,ct]

1 t t 0 c 1 t t 0 ct t 0 c

 10100 Let u = u(t, x) denote the solution of (3.1.1) supplemented with a continuous initial data u 0 , with 0 ≤ u 0 (•) ≤ 1 and u 0 (•) ̸ ≡ 0. Then the following propagation result holds true:(i) (Fast exponential decay case) If u 0 (x) = O(e -λx ) as x → ∞ for some λ ≥ λ * r then one has lim t→∞ inf x∈[0,ct] u(t, x) > 0, ∀c ∈ (0, c * r ); (ii) (Slow exponential decay case) If lim inf x→∞ e λx u 0 (x) > 0 for some λ ∈ (0, λ * r ) x) > 0, ∀c ∈ (0, ⌊c(λ)⌋) .Remark 3.1.13. If lim t→∞ + (λ)(s)ds = ⌊c + (λ)⌋, then Theorem 3.1.10 and Corollary 3.1.12 provide the exact spreading speed ⌊c + (λ)⌋. This condition holds for instance if µ(•) has a mean value. If one has ⌊c + (λ)⌋ < lim inf t→∞ + (λ)(s)ds, then behavior of u(t, βt) for t ≫ 1 with ⌊c + (λ)⌋ < β < lim inf t→∞ 1 + (λ)(s)ds, is unknown. This open problem is similar to the Fisher-KPP equation with local diusion [124].

Proposition 3 . 2 . 1 .

 321 (See [58, Proposition 3.1])[Comparison principle] Let t 0 ∈ R and

x∈Re

  λx |ϕ(x)| < ∞ , equipped with the weighted norm ∥ϕ∥ BC λ := sup x∈R e λx |ϕ(x)|.

Lemma 3 . 3 . 3 .

 333 Let Assumption 3.1.3 and 3.1.9 and (3.1.13) be satised. Let λ ∈ (0, λ * r ) and u 0 ∈ E be given. Then the solution of (3.1.12) with initial data u 0 , denoted by u = u(t, x), satises lim t→0 + sup x∈R e λx |u(t, x) -u 0 (x)| = 0.

R

  K(y)ϕ(• -y)dyBC λ = sup x∈R R K(y)e λy e λ(x-y) ϕ(x -y)dy ≤ R K(y)e λy dy ∥ϕ∥ BC λ .

Finally

  since (W, d) is a complete metric space, by Banach xed point theorem ensures that T [u] has a unique xed point in W which is the solution of (3.1.12) with u(0, •) = u 0 (•). Since t → u(t, •) ∈ C([0, h], BC λ (R)), then one has obtained lim t→0 + sup x∈R e λx |u(t, x) -u 0 (x)| = 0, that completes the proof of the lemma. Lemma 3.3.4. Let Assumption 3.1.3 and 3.1.9 and (3.1.13) be satised. Let u = u(t, x)

( 3 . 3 . 31 )

 3331 Here k(•) is a given symmetric kernel as dened in Remark 3.1.4, k = R k(y)dy > 0 while m and b are given positive constants. Dene c 0 := inf λ>0 R k(y)e λy dy -k + m λ .

  a (s)ds + P, where P > ∥B 0 (t)∥∞+B 1 h > 0 and B 0 (•), B 1 and h are given in Lemma 3.3.9. Note that for all

Denition 4 .

 4 1.1. A function h ∈ L ∞ (0, ∞; R) is said to have a mean value if the following limit exists, + s)dt, uniformly for s ≥ 0.

Setting λ * := ⟨r 1

 1 ⟩ ⟨d⟩ and γ * := ⟨r 2 ⟩, (4.1.8) one has c * u = ⟨c u (λ * )⟩ = 2 ⟨d⟩⟨r 1 ⟩ and c * v = ⟨c v (γ * )⟩ = 2 ⟨r 2 ⟩. (4.1.9)

Theorem 4 . 1 . 5 (

 415 Slow predator case). Let Assumption 4.1.2, 4.1.3 and 4.1.4 be satised.

1 .

 1 for all c * v < c 1 < c 2 < c * u and for all c > c * v one has: lim t→∞ sup c 1 t≤|x|≤c 2 t |1 -u(t, x)| = 0 and lim t→∞ sup |x|≥ct v(t, x) = 0; (iii) for all c ∈ [0, c * v ) one has: Theorem 4.1.6 (Fast predator case). Let Assumption 4.1.2, 4.1.3 and 4.1.4 be satised and assume that the predator is faster than the prey, in the sense that

  (i) for all c > c * u , one has lim t→∞ sup |x|≥ct [u(t, x) + v(t, x)] = 0; (ii) for all c ∈ [0, c * u ) one has: , x) > 0 and lim sup t→∞ sup |x|≤ct u(t, x) < 1.

Proposition 4 . 3 . 3 .

 433 For all c ∈ [0, c * u ), one has lim inf t→∞ inf |x|≤ct u(t, x) > 0.

  t→∞ inf |x|≤ct u(t + T δ , x) ≥ lim t→∞ inf |x|≤ct u(t, x) = 1 -Lδ L + LM δ > 0.Due to the arbitrariness of c ∈ [0, c * u (δ)), one can get rid of T δ . So one haslim inf t→∞ inf |x|≤ct u(t, x) > 0, ∀c ∈ [0, c * u (δ)).

  δ → c * u (δ) is a continuous and decreasing function dened in 0, 1 2L . Obviously one has c * u (0) = c * u and c * u (δ) < c * u for all δ ∈ 0, 1 2L . Thus, for 0 ≤ c < c * u , there exists δ ′ > 0 small enough such that c < c * u (δ ′ ) < c * u . Combining with the above limit, one has lim inf t→∞ inf |x|≤ct u(t, x) > 0, ∀c ∈ [0, c * u ).

4. 3 . 3

 33 Proof of Theorem 4.1.5 (ii) Now we complete the proof of Theorem 4.1.5 (ii).

  Proposition 4.3.3 we already obtain that for all c ∈ [0, c * u ), lim inf t→∞ inf |x|≤ct u(t, x) > 0. Since c * ≤ c * u , one has lim inf t→∞ inf |x|≤ct u(t, x) > 0, ∀c ∈ [0, c * ). Therefore it remains to show that lim inf t→∞ inf |x|≤ct v(t, x) > 0 and lim sup t→∞ sup |x|≤ct u(t, x) < 1, ∀c ∈ [0, c * ).

Lemma 4 . 3 . 7 .

 437 The solution v satises lim inf t→∞ v(t, ±ct) > 0, ∀c ∈ [0, c * ).

  lim inf t→∞ v (t + T α , ct) ≥ lim inf t→∞ v(t, ct) > 0.Due to the arbitrariness of c ∈ [0, c * ), we obtain thatlim inf t→∞ v(t, ct) > 0, ∀c ∈ [0, c * ).The proof is completed.Next we complete the proof of Theorem 4.1.5 and 4.1.6.

Lemma 4 . 3 . 8 .

 438 The solution of (4.1.3) satises:lim inf t→∞ inf |x|≤ct v(t, x) > 0, ∀c ∈ [0, c * ),and lim sup t→∞ sup |x|≤ct u(t, x) < 1, ∀c ∈ [0, c * ).

  Proof. Fix c ∈ [0, c * ) and let c ′ ∈ (c, c * ) be given. As in the proof of Lemma 4.3.7, the function v satises (4.3.19) which is written as follows

Claim 4 . 4 . 1 .

 441 One has lim n→∞ u(t + t n , x + x n ) = 0, locally uniformly for (t, x) ∈ R 2 . (4.4.26) Proof of claim 4.4.1 .

Denition 5 .

 5 1.1. A function h ∈ L ∞ (0, ∞; R) issaid to have a mean value if the following limit exists, ⟨h⟩ := lim T →∞ 1 T T 0 h(t + s)dt, uniformly for s ≥ 0.

⟨J 1

 1 (•, j)⟩ e λ * j j and c * v = j∈Z ⟨J 2 (•, j)⟩ e γ * j j.

  (i) for all c > c * u , one has lim t→∞ sup |i|≥ct u(t, i) = 0; (ii) for all c * v < c 1 < c 2 < c * u and for all c > c * v , one has lim t→∞ sup c 1 t≤|i|≤c 2 t |1 -u(t, i)| = 0 and lim t→∞ sup |i|≥ct v(t, i) = 0; (iii) for all c ∈ [0, c * v ), one has lim inf

  3.19), let us introduce the speed function µ → c w (µ) dened in (0, abs(J)) given byc w (µ)(•) := µ -1 j∈Z J(•, j)[e µj -1] + m(•) .Dene c * w as c * w := inf 0<µ<abs(J) ⟨c w (µ)⟩ = inf 0<µ<abs(J) µ -1 j∈Z ⟨J(•, j)⟩ [e µj -1] + ⟨m(•)⟩ . (5.3.21)

3 . 24 )(

 324 H3) there exists ε 3 > 0 such that lim inf t→∞ w(t, [X(t)]) ≥ ε 3 , (5.3.25)

  2.6). The comparison principle applies and ensures that for all c > c ′ > c * u , lim t→∞ sup i≥ct u(t, i) ≤ lim t→∞ sup i≥ct u(t, i) ≤ lim t→∞

  2.6) and comparison principle, one obtains that for allc > c > c * v , lim t→∞ sup i≥ct v(t, i) ≤ lim t→∞ sup i≥ct v 1 (t, i) ≤ lim t→∞ Ãe -γ * ã(t) e -γ * (c-c)t = 0.Since v is nonnegative, then this proves the half of statement (ii) in Theorem 5.2.10.Next we show that v cannot spread faster than c * u . Note that we have already obtainedlim t→∞ sup |i|≥ct u(t, i) = 0, ∀c > c * u .Thus, xing any c > c * u and ε > 0 small enough, there exists T > 0 such that sup t≥T sup |i|≥ct u(t, i) ≤ ε.

.5. 33 )

 33 Next, we claim that following property holds true. Claim 5.5.4. One has inf (t,i)∈R×Z u ∞ (t, i) > 0. Proof of Claim 5.5.4. Recalling Proposition 5.5.2, one has lim inf t→∞ inf |i|≤ct u(t, i) > 0, ∀c ∈ [0, c * u ).

5. 5 . 2

 52 Proof of Theorem 5.2.10 (ii) Now we apply Proposition 5.5.2 to complete the proof of Theorem 5.2.10 (ii). Proof of Theorem 5.2.10 (ii). By contradiction argument, let us x c * v < c 1 < c 2 < c * u and assume that there exist sequences (t n ) n and (i n ) n such that t n → ∞ as n → ∞, c 1 t n ≤ |i n | ≤ c 2 t n , and lim sup n→∞ u(t n , i n ) < 1.

5. 5 . 3

 53 Proof of Theorem 5.2.10 (iii) andTheorem 5.2.11 (ii) In this subsection, we complete the proof of our inner spreading results. In order to prove Theorem 5.2.10 (iii) and Theorem 5.2.11 (ii) simultaneously, we denec * := min{c * u , c * v }. i) > 0, ∀c ∈ [0, c * u ).Since c * ≤ c * u , then one haslim inf t→∞ inf |i|≤ct u(t, i) > 0, ∀c ∈ [0, c * ).Hence, it remains to show that lim inf t→∞ inf |i|≤ct v(t, i) > 0 and lim sup t→∞ sup |i|≤ct u(t, i) < 1, ∀c ∈ [0, c * ).

J 2 ,

 2 B (t, i) := J 2 (t, i), ∀t ≥ 0, i ∈ [-B, B] ∩ Z, 0, else.(5.5.38)For each given B > 0, R > 0 and γ ≥ 0, we dene functiont → c R,B (γ)(t) ∈ L ∞ (0, ∞) given by c R,B (γ)(t) := 2R π j∈Z J 2,B (t, j)e γj sin πj 2R . (5.5.39)Let C γ > 0 (which will be chosen in Step 4) and T α > 0 be given. We deneI(t) := t 0 c R,B (γ)(s + T α )ds + C γ . (5.5.40) Next we claim that following property for above notations holds true. Claim 5.5.6. Fix c ∈ [0, c * ) and c ′ ∈ (c, c * ). Let B 0 > 1 and R 0 > 0 large enough be given. For all B > B 0 , for all R > max(R 0 , B), one can choose some γ = γ ∈ (0, γ * ) and T α > 0 large enough such that [-R + I(t), R + I(t)] ⊂ [-c ′ (t + T α ), c ′ (t + T α )] .

v 2 (

 2 0, x) ≥ 0, ∀i ∈ [-R, R] ∩ Z.From Lemma 5.5.7 and the maximum principle (see Proposition 5.3.5), one can obtain thatv(t + T α , i) -v 2 (t, x) ≥ 0, ∀t ≥ 0, x ∈ [-R + I(t), R + I(t)], i ∈ [-R + I(t), R + I(t)] ∩ Z. This means v(t + T α , i) ≥ v 2 (t, i), ∀t ≥ 0, i ∈ [-R + I(t), R + I(t)] ∩ Z. Note that 0 ≤ I(t) -[I(t)] < 1. Letting R ≥ 2 be large enough, there exists ε 1 > 0 such thatlim inf t→∞ v (t + T α , [I(t)]) ≥ lim inf t→∞ v 2 (t, [I(t)]) = lim inf t→∞ ηe a(t) e -γ([I(t)]-I(t)) cos π ([I(t)] -I(t)) 2R > 2ε 1 .

  5.40), let us choose C γ large enough such that C γ ≥ 2∥ b∥ ∞ ≥ b(t + T α ) -b(T α ) for all t > -T α . One can observe thatI(t) = t 0 c R,B (γ)(s + T α )ds + C γ ≥ t 0 c R,B (γ)(s + T α ) + b′ (s + T α )ds ≥ c ′′ t, ∀t > 0.

  ct]∩Z v (t, i) > 0, ∀c ∈ [0, c * ).By a symmetric argument, one haslim inf t→∞ inf |i|≤ct v (t, i) > 0, ∀c ∈ [0, c * ).The proof of Step 4 is completed.Step 5: Prove thatlim sup t→∞ sup |i|≤ct u (t, i) < 1, ∀c ∈ [0, c * ).

= j∈Z J 2

 2 (t + T α , [x] -j)v 1 (t, x r + j) = j∈[-R-xr,R-xr]∩Z J 2 (t + T α , [x] -j)η cos π(x r + j) 2R ≥ j∈[-R-xr,R-xr]∩Z J 2,B (t + T α , [x] -j)η cos π(x r + j) 2R ≥ j∈Z J 2,B (t + T α , [x] -j)η cos π(x r + j) 2R .(5.5.49)Herein J 2,B is dened in(5.5.38). In (5.5.49), the rst inequality is ensured byJ 2 ≥ J 2,B and cos π(xr+j) 2R ≥ 0 for all x r +j ∈ [-R, R]. Note that cos π(xr+j)2R≤ 0 for all R ≤ |x r +j| ≤ 2R. And one can observe that if the integer[x] ∈ [-R, R] ∩ Z and |x r + j| ≥ 2R, then |[x] -j| ≥ R -1 > B andJ 2,B (t + T α , [x] -j) = 0. So the second inequality holds. The last term in (5.5.49) can rewrite as j∈Z J 2,B (t + T α , [x] -j)η cos π(x r + j) 2R = j∈Z J 2,B (t + T α , j)η cos π(x r + [x] -j) 2R = j∈Z J 2,B (t + T α , j)η cos πx

J 2 ,

 2 B (t + T α , j) cos πj 2R = j∈Z J 2 (t + T α , j) = J 2 (t + T α ), uniformly for t ≥ 0.Note that Assumption 5.2.4 (g3) yields inf t≥0 r(t + T α ) > 0. Then one can choose R > 0 and B > 0 large enough such that for some θ 0 > 0, the following inequality holds truesup t≥0 -j∈Z J 2,B (t + T α , j) cos πj 2R + J 2 (t + T α ) -r(t + T α )(1 -Lα) ≤ -θ 0 .

  (x -I(t)) 2R a ′ (t) + γc R,B (γ)(t + T α ) -j∈Z J 2,B (t + T α , j)e γj cos πj 2R + J 2 (t + T α ) -r(t + T α )(1 -Lα) + ηe a(t) e -γ(x-I(t)) sin π(x -I(t)) 2R π 2R c R,B (γ)(t + T α ) -j∈Z J 2,B (t + T α , j)e γj sin πj 2R .Recalling that the denition of c R,B (γ) in (5.5.39), the last term in above equation disappear. Next, let us consider the remain term in above equation. Due to γ ∈ (0, γ * ), Proposition 5.2.7 (ii) ensures thatd⟨c v (γ)⟩ dγ γ=γ = γ j∈Z J 2 (•, j)e γj j -j∈Z J 2 (•, j)e γj + J 2 (•) -r(•)

  (t,i)∈[0,T ]×Z {K + a(t, i)} and τ := min T, 12M.

  , i) ≤ lim t→∞ sup i≥ct w(t, i) ≤ lim t→∞

  If (1.1.13) is equipped with initial data u 0 where 1 ≥ u 0 ≥ 0, u 0 ̸ ≡ 0 and u 0 (j) = 0 for all |j| ≥ k with k ∈ Z. Then c * dened in (1.1.14) is spreading speed of (1.1.13) supplemented with u 0 .

	The next theorem about spreading speed for (1.1.13) was obtained in [162].	
	Theorem 1.1.28.			
	λ>0	e λ -2 + e -λ + f ′ (0) λ	.	(1.1.14)

Theorem 1.1.27. There exists a travelling wave solution u(t, i) = U (i -ct) with speed c in (1.1.13) if and only if c ≥ c * , where c * := min

  ], and f is Lipschitz continuous with respect to u ∈ [0, 1], uniformly with respect to t ∈ R; f3) For almost every t ∈ R, the function u → f (t, u) is nonincreasing on [0, 1].

	(f2) Let f (t, 0) = 1, f (t, 1) = 0 for a.e. t ∈ R and
	h(u) := inf

t∈R f (t, u) > 0 for all u ∈ [0, 1);

(

  1,∞ (R) ⊂ C .

	Recalling the denition of c(λ) in (1.2.19) and Proposition 1.2.10, one also obtains that
	lim λ→λ * ⌊c(λ)⌋, ∞ ⊂ ⌊C ⌋ := {⌊c⌋ , c ∈ C } .	(1.2.21)
	Sketch the proof of Theorem 1.2.12	
	Now we give the sketch of proof for above Theorem 1.2.12. It is a standard argument.
	Generally speaking, we rst construct proper super-solutions and sub-solutions, then we
	consider the Cauchy problem with a suitable initial data at time t = -n, for some integer
	n ≥ 1. By a limiting argument, letting n → ∞, we obtain a generalized travelling wave
	solution. It is unlike the classical diusion case that one can use parabolic regularity
	results and Arzelà-Ascoli theorem to obtain the limit function. Due to the nonlocal
	diusion operator, such regularity results are not available, as discussed in the previous
	section. This is the main technical diculty in nonlocal diusion problem. Here we will
	provide Lipschitz regularity estimates for the solution of Cauchy problem at t = -n.

  2.22. Let Assumption 1.2.16, 1.2.17 and 1.2.20 be satised. Let u = u(t, x) denote the solution of (1.2.28) equipped with a continuous initial data u 0 , where 0 ≤ u 0 (•) ≤ 1 and u 0 (•) ̸ ≡ 0. Then the following propagation occurs: (i) (Fast exponential decay case) If u 0 (x) = O(e -λx ) as x → ∞ for some λ ≥ λ *

						r ,
	then one has				
	lim t→∞	x∈[0,ct] sup	|1 -u(t, x)| = 0, ∀c ∈ (0, c * r );
	(ii) (Slow exponential decay case) If lim inf x→∞	e λx u 0 (x) > 0 for some λ ∈ (0, λ * r ), then
	it holds that				
	lim t→∞	x∈[0,ct] sup	|1 -u(t, x)| = 0, ∀c ∈ (0, ⌊c(λ)⌋) .
	Remark 1.2.23. If lim t→∞ 1.2.22 provide the exact spreading speed ⌊c + (λ)⌋. This condition holds for instance if µ(•) t 1 c + (λ)(s)ds = ⌊c + (λ)⌋, then Theorem 1.2.21 and Theorem t 0
	has a mean value. If one has ⌊c + (λ)⌋ < lim inf t→∞	1 t	0	t	c + (λ)(s)ds, then behaviour of u(t, βt) for t ≫ 1 is
	unknown when				

  1.2.4 Summary of Chapter 5: Spreading speeds for time heterogeneous prey-predator systems with nonlocal diusion on lattice This joint work with Arnaud Ducrot is in preparation.

  is bounded and uniformly continuous with inf t≥0 m(t) > 0. Assume that m and J have mean value, denoted by ⟨m⟩ and ⟨J⟩ respectively, which are satisfying ⟨m⟩ > ⟨J⟩. Let w(t, i) be the solution of (1.2.48) equipped with initial data w 0 . If w 0 ≥ 0 and w 0 ̸ ≡ 0, then there exists a constant ε0 > 0 which is independent of w 0 ,

	such that
	lim inf

t→∞ w(t, 0) ≥ ε0 .

Remark 1.2.44. Due to the technical reason, we assume that ⟨m⟩ > ⟨J⟩. The idea of proof this lemma is similar to stated in the proof of Theorem 1.2.22 in Subsection 1.2.2.

We will try to prove the hair trigger eect property without this technical condition in the forthcoming work.

  Theorem 1.2.47 (Slow predator). Let Assumption 1.2.33, 1.2.34, 1.2.41 and 1.2.42 be satised. Assume that the predator is slower than the prey, in the sense that

  ).

	Proposition 1.2.51. Let Assumption 1.2.41, 1.2.33, 1.2.34 and 1.2.49 be satised. Let

  .2.4) Remark 2.2.5. In the above set of hypotheses (see Assumption 2.2.3), we have assumed, for simplicity, that f (t, 0) ≡ 1. This assumption can be relaxed by using a change of variable in time to take into account more general KPP nonlinearity function

  .2.10) Our next result provides further properties for the set of admissible wave speed function, C . This result reads as follows. Theorem 2.2.10 (Wave speed lower estimate). Let Assumption 2.2.2 and 2.2.3 be satised. Dene for

  Let us consider w(t, x) := v(t + T α , x) which satises for all t ≥ 0 and |x| ≤ c ′ (t + T α ) the problem∂ t w(t, x) ≥ ∂ xx w(t, x) + r 2 (t + T α )w(t, x) 1 -Lα -L(1 + M α )w(t, x) .

		.3.18)
	Combining this estimate with (4.1.6), one gets that v = v(t, x) satises for all t ≥ T α and
	x ∈ [-c ′ t, c ′ t],	
	∂ t v(t, x) ≥ ∂ xx v(t, x) + r 2 (t)v(t, x) 1 -Lα -L(1 + M α )v(t, x) .	(4.3.19)
		(4.3.20)
	Next for each α ∈ [0, 1 2L ], we dene c * v (α) given by	
	c * v (α) := 2 ⟨r 2 ⟩(1 -Lα).	

  Now we come back to(4.4.23). Recalling Assumption 4.1.4, one can note that for all v ≥ 0 and t ≥ 0, g(t, 0, v) ≤ g(t, 0, 0). + t n , 0, v(t+ t n , x + x n )) in L ∞ loc (R 2 ) weak-⋆ topology.

	Recalling (4.4.24) and (4.4.26), one has
	g∞ (t, x) = lim n→∞ g(t Since one has			
		g(t + t n , 0, v(t + t n , x + x n )) ≤ g(t + t n , 0, 0),
	then for all t ∈ R, one gets			
				sup	g∞ (t, x) ≤ g(t, 0, 0),
				x∈R	
	where g(t, 0, 0) is the limit of g(t + t n , 0, 0) in local uniform topology. So one has
		⟨sup	g∞ (•, x)⟩ ≤ ⟨g(•, 0, 0)⟩ = ⟨g(•, 0, 0)⟩,
		x∈R		
	and one can choose a ∈ W 1,∞ (R) such that
		sup	g∞ (t, x) + a ′ (t) ≤ ⟨g(•, 0, 0)⟩ , ∀t ∈ R.
		x∈R			
						t
	T →∞,R→∞	u n T,R (t, x) ≤ lim sup T →∞	B exp	-T	f (s + t n , 0, M )ds = 0,
	locally uniformly for (t, x) ∈ R 2 . We end-up with
	lim				

n→∞ u(t + t n , x + x n ) = 0, locally uniformly for (t, x) ∈ R 2 ,

and the claim is proved.

  Assumption 5.2.4. The function g : [0, ∞) 3 → R satises:(g1) For each given u, v ≥ 0, the function t → g(t, u, v) is bounded and uniformly continuous from [0, ∞) to R, and t → g(t, u, v) has a mean value ⟨g(•, u, v)⟩. The function (u, v) → g(t, u, v) is Lipschitz continuous with respect to u, v ≥ 0, uniformly for t ≥ 0;(g2) For all t ≥ 0 and v ≥ 0, the map u → g(t, u, v) is nondecreasing;

(g3) Set r(t) := g(t, 1, 0). It satises inf t≥0 r(t) > 0;

  Assume that (u, v) is bounded. Then the function pair (u, v) satises:

	(i) for all c > c * u , one has lim t→∞	|i|≥ct sup	[u(t, i) + v(t, i)] = 0;
	(ii) for all c ∈ [0, c * u ), one has			
				lim inf t→∞	|i|≤ct inf	v(t, i) > 0,
	lim inf t→∞	|i|≤ct inf	t→∞ u(t, i) > 0 and lim sup	|i|≤ct sup	u(t, i) < 1.

  Lemma 5.3.1. Let h ∈ L ∞ (0, ∞; R) be given. Then h has a mean value if and only if

	one has
	sup
	a∈W 1,∞ (0,∞)

  t ≥ T -t n and |i + i n | ≤ c(t + t n ), u(t + t n , i + i n ) ≥ m.Due to |i n | ≤ ct n , it can rewrite as for all n ≥ 0, t ≥ T -t n and |i| ≤ ct + (c -c)t n ,

u(t + t n , i + i n ) ≥ m.

  Now we prove Theorem 5.2.10 (iii) and Theorem 5.2.11 (ii). of Theorem 5.2.10 (iii) and Theorem 5.2.11 (ii). We split into ve steps to prove that lim inf ) be given. Recalling Lemma 5.5.3 and estimate (5.2.6), due to c ′ < c * ≤ c * u , one can choose some M α > 0 and T α > 0 (large enough) such that v(t, i) for all t ≥ T α and |i| ≤ c ′ t satises -v(t, i)]+r(t)v(t, i) 1-Lα-L(1+M α )v(t, i) .(5.5.35) Hence v(t + T α , i) satises for all t ≥ 0 and |i| ≤ c ′ (t + T α ),

	Proof d dt v(t, i) ≥
	d dt	v(t + T α , i) ≥

t→∞ inf |i|≤ct v(t, i) > 0 and lim sup

t→∞

sup |i|≤ct u(t, i) < 1, ∀c ∈ [0, c * ). Fix c ∈ [0, c * ) and let c ′ ∈ (c, c * j∈Z J 2 (t, j) [v(t, i -j) j∈Z J 2 (t + T α , j) [v(t + T α , i -j) -v(t + T α , i)]

  v 1 (t, x) ≤ -(t + T α ) -r(t + T α )(1 -Lα) Due to J 2 ∈ l 1 (Z, L ∞ (R + )), one has

	j∈Z	J 2,B (t + T α , j)η cos	πx 2R	cos	πj 2R	+ sin	πx 2R	sin	πj 2R
	+ J 2 (t + T α )η cos	πx 2R	-r(t + T α )(1 -Lα)η cos	πx 2R
	= η cos + J 2 -η sin πx 2R -j∈Z J 2,B (t + T α , j) cos πj 2R πx 2R j∈Z J 2,B (t + T α , j) sin πj 2R .
	Since J 2 is symmetric, then							
		j∈Z	J 2,B (t + T α , j) sin	πj 2R	= 0.

j∈Z J 2,B (t + T α , j) cos πj 2R ≤ j∈Z ∥J 2 (•, j)∥ ∞ < ∞.

Applying the Lebesgue dominated convergence theorem, one has lim B→∞ R→∞ j∈Z

  (t + T α , j)e γj cos πj 2R = j∈Z J 2 (t + T α , j)e γj , uniformly for t ≥ 0.Hence, for R > 0 and B > 0 large enough, the property of mean value ensures that there exists a ∈ W 1,∞ (0, ∞) such that for all t ≥ 0,J 2,B (t + T α , j)e γj cos πj 2R + J 2 (t + T α ) -r(t + T α )(1 -Lα) ≤ -θ 0 . So one has L v 2 (t, x) ≤ -θ 0 v 2 (t, x) for t ≥ 0 and x ∈ [-R + I(t), R + I(t)]. Let η > 0 be small enough such that r(t + T α )L(1 + M α )v 2 (t, x) ≤ η∥r∥ ∞ L(1 + M α )e ∥a∥∞ sup

	and		
	lim B→∞ R→∞ j∈Z J 2,B a ′ (t) + γ 2R π j∈Z J 2,B (t + T α , j)e γj sin	πj 2R	-
			x∈[-R,R]

Lebesgue dominated convergence theorem ensures that lim B→∞ R→∞ j∈Z J 2,B (t + T α , j)e γj γ 2R π sin πj 2R = γ j∈Z J 2 (t + T α , j)e γj j, uniformly for t ≥ 0, j∈Z

  1.1) is bounded with additional Assumption 5.2.13.

Proof of Proposition 5.2.15. As discussed in Remark 5.2.16, one has 0 ≤ u(t, i) ≤ 1 and v(t, i) ≥ 0 for all t ≥ 0 and i ∈ Z. Now we show that v is bounded. Set W := u + εv. Herein ε > 0 is given in Assumption 5.2.13. Note that W satises

d dt W (t, i) = j∈Z J 2 (t, j)[W (t, i -j) -W (t, i)] + j∈Z [J 1 (t, j) -J 2 (t, j)] [u(t, i -j) -u(t, i)] + u(t, i)f (t, u, v) + εv(t, i)g(t, u, v).

From Assumption 5.2.13 and 0 ≤ u ≤ 1, one can observe that

d dt W (t, i) ≤ j∈Z J 2 (t, j)[W (t, i -j) -W (t, i)]

  Recalling that w(t * ) = inf (t,i)∈[0,τ ]×Z v(t, i), and taking inmum with respect to i ∈ Z in above inequality, one hasw(t * ) ≥ w(0) + w(t * )Recalling the denition of M and G(t), note that sup t∈[0,T ] J(t) + G(t) ≤ M . Since w(t

	t *		t *
		J(t, j)v(t, i -j)dt +	K -J(t) + a(t, i) v(t, i)dt
	0	j∈Z	0
	t *		t *
	≥ v(0, i) +	J(t, j)v(t, i -j)dt +	G(t)w(t)dt.
	0	j∈Z	0
		τ	
		J(t) + G(t) dt
		0	

(5.7.53) 

from t = 0 to t = t * , one has v(t * , i) ≥ v(0, i) + * ) < 0 and w(0) ≥ 0, then w(t * ) ≥ M τ w(t * ) ≥ 1 2 w(t * ).

  t)) cos π(x -X(t)) 2R b ′ (t) + µĉ R,B (µ)(t) -Due to (5.8.55), the last term in the above equation vanished. The inequality (5.8.58) ensures that

				j∈Z	J B (t, j)e µj cos	πj 2R
	+ J(t) -m(t)			
	+ ηe b(t) e -µ(x-X(t)) sin	π(x -X(t)) 2R	π 2R	ĉR,B (µ)(t) -

j∈Z J B (t, j)e µj sin πj 2R

Lw(t, x) ≤ -θ0 w(t, i), ∀t ≥ 0 and i ∈ [-R + I(t), R + I(t)] ∩ Z.

One can choose η > 0 small enough such that

η∥m∥ ∞ le ∥b∥∞ sup x∈[-R,R]
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As a consequence of above proposition, one has following comparison principle. Corollary 5.3.4 (Comparison principle). For any t 0 ∈ R, let T > t 0 be given. Let J : [t 0 , T ] × Z → [0, ∞) be the kernel function with j∈Z ∥J(•, j)∥ ∞ < ∞. Let M > 0 be given. Let F = F (t, u) be a function dened in [0, ∞) × [0, M ] which is Lipschitz continuous with respect to u ∈ [0, M ], uniformly for t ≥ 0. Let u and u be two functions dened from [t 0 , T ] × Z to [0, M ] and u(•, i), u(•, i) ∈ W 1,1 (t 0 , T ) for each i ∈ Z. If u and u satisfy

u(t, i) ≥ j∈Z J(t, j)[u(t, i -j) -u(t, i)] + F (t, u(t, i)) , ∀t ∈ (t 0 , T ], ∀i ∈ Z, d dt u(t, i) ≤ j∈Z J(t, j)[u(t, i -j) -u(t, i)] + F (t, u(t, i)) , ∀t ∈ (t 0 , T ], ∀i ∈ Z, u(t 0 , i) ≥ u(t 0 , i), ∀i ∈ Z.

Then u(t, i) ≥ u(t, i) for all t ∈ [t 0 , T ] and i ∈ Z.

Proof. Let us set v := u -u. Note that the Lipschitz continuity of F ensures that there exists a bounded function a = a(t, i) such that F (t, u(t, i)) -F (t, u(t, i)) = a(t, i)v(t, i) for all i ∈ Z and t ∈ (t 0 , T ]. One can apply Proposition 5.3.3 for equation satised by v.

The proof is completed.

Next by a slight modication, we state the maximum principle on the moving domain as follows. This is inspired by [START_REF] Rizk | Asymptotic speed of spread for a nonlocal evolutionary-epidemic system[END_REF][START_REF] Shen | Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity[END_REF][START_REF] Zhang | Propagation phenomena for a two-species LotkaVolterra strong competition system with nonlocal dispersal[END_REF]. Proposition 5.3.5. For any t 0 ∈ R, let T > t 0 be given. Let J : [t 0 , T ] × Z → [0, ∞) be the kernel function with j∈Z ∥J(•, j)∥ ∞ < ∞. Assume that I 1 and I 2 are two continuous functions dened in [t 0 , T ], satisfying [I 2 (t)]-I 1 (t) ≥ 2 where [I 2 (t)] is the maximal integer less than I 2 (t) for all t ∈ [t 0 , T ]. We dene the set Ω T given by Ω T := {(t, i) ∈ R × Z : t ∈ (t 0 , T ], I 1 (t) < i < I 2 (t)} .

As well as, for each given i ∈ Z, we dene A T (i) by A T (i) := t ∈ [t 0 , T ] : (t, i) ∈ Ω T .

Let a = a(t, i) be a bounded function dened in Ω T . Let u be a bounded function in [t 0 , T ] × Z. For (t, i) ∈ Ω T , we assume that the map t → u(t, i)

∀i ∈ I 1 (t 0 ), I 2 (t 0 ) ∩ Z.

(5.3.11) Then u(t, i) ≥ 0 for all (t, i) ∈ Ω T . Remark 5.3.6. In fact, if we modify I 2 (t) = ∞ (resp. I 1 (t) = -∞) in above proposition, then we can also prove similarly to obtain that u(t, i) ≥ 0 for all t ∈ [t 0 , T ] and i ∈ Similarly, one has lim n→∞ g(t + t n , u n , v n ) = g(t, ũ, ṽ), in local uniform topology.

From (5.3.14), (5.3.16), (5.3.17) and the above two limits, one can obtain that there exists some σ = ( f , g, J1 , J2 ) ∈ Σ such that (ũ, ṽ) satises for all (t, i) ∈ R × Z,

) [ṽ(t, i -j) -ṽ(t, i)] + ṽ(t, i)g (t, ũ(t, i), ṽ(t, i)) .

(5.3.18)

Spreading speed for scalar Fisher-KPP equation

Now we consider the following Cauchy problem of scalar KPP type non-autonomous lattice equation

) where the constant l > 0.

Let us rst show the hair trigger eect property in (5.3.19).

Lemma 5.3.10 (Hair trigger eect). Assume that the kernel function J = J(t, j) is nonnegative and i → J(•, i) ∈ l 1 (Z, L ∞ (0, ∞)). Let inf t≥0 J(t, ±1) > 0 be satised. Assume that m : [0, ∞) → R is a bounded and uniformly continuous function with inf t≥0 m(t) > 0.

Set J(t) := j∈Z J(t, j). Assume that m and J have mean value, denoted by ⟨m⟩ and ⟨J⟩ respectively, which are satisfying ⟨m⟩ > ⟨J⟩. Let w(t, i) be the solution of (5.3.19). If w 0 ≥ 0 and w 0 ̸ ≡ 0. Then there exists a constant ε0 > 0 which is independent of w 0 such that lim inf t→∞ w(t, 0) ≥ ε0 .

Remark 5.3.11. Note that due to the technical reason, the condition ⟨m⟩ > ⟨J⟩ is required. This lemma will be used to prove spreading speed for scalar KPP equation with nonlocal diusion.

Remark 5.3.12. From the proof below, one can notice that ε0 is independent of the time shift limit functions of J and m. The similar idea can also be used to analyze the time-space shift limit equation.

Proof. Let w = w(t, i) be the solution of (5.3.19) which is equipped with initial data w 0 ≥ 0 and w 0 ̸ ≡ 0. Let us set d := min{inf t≥0 J(t, 1), inf t≥0 J(t, -1)}. Since J = J(t, j) is nonnegative and inf t≥0 J(t, ±1) > 0, then one has

Note that ⟨m(•)⟩ > ⟨J(•)⟩ is imposed. The property of mean value ensures that there exists 

Key persistence lemma

For independent interest, we state following persistence lemma which plays a crucial role to prove Proposition 5.3.14. In the following, we will also apply a similar idea to prove the persistence lemma. Let us introduce some notations.

Denition 5.3.16 (Limit orbits set). For each i ∈ Z, let w(t, i) be the solution of (5.3.19) equipped with initial data w 0 , where 0 ≤ w 0 ≤ 1 l and the set {i ∈ Z : w 0 (i) ̸ = 0} ̸ = ∅ has nite elements. We dene H(w) as: w ∈ H(w) if there exist a sequence

One can observe that w n (t, i) := w(t + t n , i + i n ) dened in t ≥ -t n and i ∈ Z satises

By the same analysis in Section 5.3.3, for a given w ∈ H(w), one can derive that w satises

(5.3.22) where

From the strong maximum principle, we can claim that the set H(w) enjoys following property: Claim 5.3.17. Let w ∈ H(w) be given. Then one has:

From the chosen of γ ′ , B and b(t) above, one can verify that v 2 (t, i) satises

Next we dene the set

Recalling the denition of v 2 , one has

for all t ≥ 0 and i ∈ Z which can notice from the above analysis, and γ ′ ∈ (0, γ * ), then one can choose B > 0 larger such that for all i > c ′′ T > 0,

(5.4.26) yields that v 2 (T, i) ≥ v(T, i) for all i ≤ c ′′ T . Thus combing with above inequality, one has v 2 (T, i) ≥ v(T, i) for all i ∈ Z. Now we can conclude that

Recall that 0 ≤ u(t, i) ≤ ε for (t, i) ∈ Ω. Assumption 5.2.4 ensures that g(t, u, v) ≤ g(t, ε, 0) for t ≥ 0, u ∈ [0, ε] and v ≥ 0. Applying the comparison principle (see Remark 5.3.6) on the moving domain Ω, one obtains

For all c ′′ ∈ (c * u , c), one has

This completes the proof of statement (i) in Theorem 5.2.11.

Lower estimates on the spreading speeds

In this section, we rst show some key lemmas about the local pointwise estimates between u and v. Then with the help of these key lemmas, we can compare the solution of system with those of a KPP scalar equations dened in a suitable domain. Lastly, through constructing proper sub-solutions and using some dynamical system arguments, we complete the proof Theorem 5.2.10 and 5.2.11. For brevity, throughout this section we let Assumption 5.2.2, 5.2.3, 5.2.4 and 5.2.9 be satised. Let 1 ≥ u 0 ≥ 0 and v 0 ≥ 0 be two given bounded initial data. Assume that two sets {i ∈ Z; u 0 (i)

)) be the bounded solution of (5.1.1) equipped with initial data (u 0 , v 0 ).

Key lemmas

Now we state our key lemmas. Roughly speaking, from Assumption 5.2.3 and 5.2.4, one has two important facts: the predator will starve in the absence of the prey and the prey asymptotically reach its maximal environmental carrying capacity without the predator.

Our rst key lemma reads as follows.

Lemma 5.5.1. For all δ > 0, there exist M δ > 0 and T δ > 0 such that the following estimate holds true

(5.5.27)

Proof. By contradiction argument, we assume that there exist δ 0 > 0 and sequences

As we discussed in Section 5.3.3, one can choose a subsequence

and the function pair (u ∞ , v ∞ ) satises (P σ) (see (5.3.18)).

Since v is bounded, then assumption (5.5.28) implies that u(t

(5.5.29) Claim 5.3.8 tells that g(t, 0, v) ≤ g(t, 0, 0) for all v ≥ 0 and t ∈ R. Due to the boundedness of v ∞ , one can choose some B > 0 large enough such that B ≥ v ∞ (t, i) for all (t, i) ∈ [0, ∞) × Z. For each t 0 < 0, we dene v(t; t 0 ) := B exp t t 0 g(s, 0, 0)ds .

One can verify that v(t; t 0 ) is the super-solution of (5.5.29). The comparison principle implies that v ∞ (t, i) ≤ v(t; t 0 ) for all t 0 < 0, t ≥ t 0 and i ∈ Z. As a special case, letting t = 0, one has v ∞ (0, i) ≤ v(0; t 0 ) for all i ∈ Z and t 0 < 0.

Recalling ⟨g(t, 0, 0)⟩ < 0 in Assumption 5.2.4 and the denition of mean value, one obtains that ⟨g(t, 0, 0)⟩ < 0. Let us observe that

Hence we obtain that

This contradicts v ∞ (0, 0) > δ 0 > 0 which is obtained by passing to the limit n → ∞ in (5.5.28). The proof is completed.

To state the next proposition, for each δ ∈ [0, 1 2L ), let us dene c * u (δ) given by

where L is Lipschitz constant dened in Remark 5.2.6. Same as Remark 5.2.8, one can rewrite c * u (δ) as

(5.5.30)

Next we apply the above key lemma to prove that u is persistent on the interval [-ct, ct] with t ≫ 1 for all c ∈ (0, c * u ). Proof. Recalling (5.2.6) and Lemma 5.5.1, for each given δ > 0, there exist M δ > 0 and T δ > 0 such that the solution u(t, i) of (5.1.1) satises following dierential inequality, for all t ≥ T δ and i ∈ Z,

Let u(t, i) be the solution of following equation for all t ≥ 0 and i ∈ Z,

(5.5.31) equipped with nontrivial initial data 0 ≤ u(0, •) ≤ 1-Lδ L(1+M δ ) which satises u(0, •) ≤ u(T δ , •) and the set {i ∈ Z : u(0, i) ̸ = 0} has nite elements. Then the comparison principle implies that u(t + T δ , i) ≥ u(t, i), ∀t ≥ 0, ∀i ∈ Z.

From the spreading speeds result for scalar equation (5.5.31) (see Proposition 5.3.14), one has for all c

is arbitrary, then one can get rid of T δ and obtain that

. Thus, for all c ∈ [0, c * u ), there exists some δ ′ > 0 small enough such that c * u (δ ′ ) ∈ (c, c * u ). Combining with the above limit, one has

The proof is completed.

Recalling (5.5.35), one can observe that v(t + t n , i) satises, for all t ≥ -t n + T α and

Similar to Section 5.3.3, one can derive that v ∞ satises for all t ∈ R and i ∈ Z,

where

Note that (5.5.44) implies v ∞ (0, l) = 0. Hence, the strong maximum principle applies and ensures that v ∞ ≡ 0. This contradicts the property lim inf t→∞ v(t, 0) > ε 0 in Step 1. Thus, we obtain that [k n I(t n )] → ∞ as n → ∞. This ensures that one can choose a sub-sequence such that [k n I(t n )] ≥ 2 for all n ≥ 1.

Possibly up to a sub-sequence, (5.5.44) can also be rewritten as

Again, up to a sub-sequence, one may assume that

One can also observe that t ′ n → ∞ as n → ∞. From the chosen of t ′ n , one has

Recalling Step 2, there exists

Let ε0 > 0 be chosen later. We dene

The chosen of t ′ n and (5.5.45) implies that

Then one may assume that for all n ≥ 1 large enough one has

The regularity of v ensures that one can extract sub-sequence such that

From the denition of mean value and I(t), one has

Also, one can observe that

As discussed previously, we obtain that v ∞ (t, i) satises for all

where

One can note that v ∞ (0, 0) = min {ε 1 , ε0 } 2 > 0.

(5.5.47)

Recall that the proof of Lemma 5.3.10 and Remark 5.3.12. Similarly, one can show that there exists a constant ε0 > 0 (which is independent of initial condition v ∞ (0, i) ̸ ≡ 0 and independent of the time shift limit functions J ∞ 2 and r ∞ ) such that lim inf t→∞ v ∞ (t, 0) > ε0 .

(5.5.48)

Due to the assumption

Then the strong maximum principle implies that v ∞ ≡ 0. This contradicts (5.5.47). Hence, we obtain that

This contradicts with (5.5.48). So we complete the proof of Step 3.

Step 4: Prove that

5.7.2 Proof of Proposition 5.3.5

Proof of Proposition 5.3.5. For notation simplicity, we assume that t 0 = 0. Since a(t, i) is bounded in Ω T and J(t) := j∈Z J(t, j) ∈ L ∞ (0, T ), then one can choose K > 0 large enough such that K -J(t) + a(t, i) ≥ 1 for all (t, i) ∈ Ω T . Let v(t, i) = e Kt u(t, i). Note that v(t, i) satises

As well as one can observe that v(t, i) is bounded for all t ∈ [0, T ] and i ∈ Z. This is due to u is bounded.

It is suciently to show that v(t, i) ≥ 0 for all (t, i) ∈ Ω T . Let us denote

We rstly claim that v(t, i) ≥ 0 for all (t, i) ∈ Ω η , namely v(t, i) ≥ 0 for all t ∈ (0, η] and i ∈ (I 1 (t), I 2 (t)) ∩ Z. By contradiction argument, assume that there exists some point in

Integrating the dierential inequality satised by v from t = t1 to t = t * for i = i * , one has

Due to v is non-negative in the outside of Ω T , one can note that

From the denition of M and t * -t1 ≤ η, one has

This contradicts v(t * , i * ) < 0. Hence one has v(t, i) ≥ 0 for (t, i) ∈ Ω η . Repeating the same argument, the result follows.

5.7.3 Proof of Proposition 5.3.7

Proof of Proposition 5.3.7. For notation simplicity, we assume that t 0 = 0. From Proposition 5.3.3, one has u(t, i) ≥ 0 for all t ≥ 0 and i ∈ Z. Similarly to prove Proposition 5.3.3, one can nd K > 0 large enough such that K -J(t) + a(t, i) ≥ 1 for all t ≥ 0 and i ∈ Z. Let us dene v(t, i) := e Kt u(t, i). Note that v(t, i) satises

Set J(j) = inf t≥0 J(t, j) and let ṽ be the solution of

Since K -J(t) + a(t, i) v(t, i) ≥ 0 for all t ≥ 0 and i ∈ Z. Then applying the comparison principle, one has v(t, i) ≥ ṽ(t, i), ∀t ≥ 0, ∀i ∈ Z.

It is suciently to show that ṽ(t, i) > 0 for all t > 0 and i ∈ Z. Through iteration one has

where J * n * v(0, i) is given by

Note that there exists i 0 ∈ Z such that v(0, i 0 ) > 0 due to v(0, i) ̸ ≡ 0. Recalling the assumption inf t≥0 J(t, ±1) > 0, this can rewrite as J(±1) > 0. Then one has J * v(0, i) > 0 for all i ∈ {i 0 -1, i 0 + 1}.

By induction, one also has for all n ≥ 1

we obtain that ṽ(t, i) > 0 for all t > 0 and i ∈ Z. Hence we end-up with u(t, i) > 0 for all t > 0 and i ∈ Z, which completes the proof.

5.8

Appendix B: Spreading speed for Fisher-KPP equations 5.8.1 Proof of Proposition 5.3.14

We will apply the key persistence Lemma 5.3.18 to prove Proposition 5.3.14. To do this, we rst introduce some notations. For each B > 0, we dene J B := J B (t, i) given by We state the following lemma about the sub-solution dened in [0, ∞) × R.

Lemma 5.8.1. Let assumptions in Proposition 5.3.14 be satised. For some B 0 > 0 large enough, for all B > B 0 , there exist R 0 (B) > 0 large enough enjoying following properties: For some given µ > 0, for all B > B 0 and R > max(R 0 (B), B + 1), for some η > 0 small enough, for some b ∈ W 1,∞ (0, ∞), we dene w(t, x) := ηe b(t) e -µ(x-X(t)) cos π(x-X(t))

2R

, x ∈ [-R + X(t), R + X(t)], t ≥ 0, 0, else.

(5.8.57)

Then w is the sub-solution of (5.3.19), that is w(t, x) satises

for all x ∈ [-R + X(t), R + X(t)] and t ≥ 0.

Indeed, the proof is similar as Lemma 5.5.7. For the reader convenience, we prove it below.

Proof. Since ⟨c w (µ)⟩ takes the minimal value c * w at µ = µ * where µ * ∈ (0, abs(J)), then

where J(•) = j∈Z J( w(t, i) > 0, ∀k ∈ (0, 1).

Similar to

Step 4 in Section 5.5.3, for the given c ∈ [0, c * w ) for some k 0 ∈ (0, 1), for all k ∈ (k 0 , 1), one can choose C µ > 0 in X(t) (see (5.8.56)) large enough such that kX(t) ≥ ct for all t ≥ 0. Hence one obtains

By a symmetric argument, one has

Similarly to the proof of Lemma 5.5. Again, up to a sub-sequence, one may assume that X(0) < [k n X(t n )] -1 < [X(t n )] for all n ≥ 1. From the continuity of X(t), there exists t ′ n < t n such that

One can also observe that t ′ n → ∞ as n → ∞. From the chosen of t ′ n , one has

Due to assumption (H3) (see (5.3.25)), there exists ε 3 > 0 such that

Let ε 2 > 0 be given in assumption (H2) (see (5.3.24)). We dene

The denition of t ′ n and assumption (5.8.60) implies that

Then we assume that for all n large enough

Next we claim that t n -t ′′ n → ∞ as n → ∞. If not, we assume that t n -t ′′ n → τ ∈ R. Set

The regularity of w ensures that one can extract sub-sequence such that w n (t, i) → w ∞ (t, i) locally uniformly for (t, i) ∈ R × Z as n → ∞.

As well as w ∞ ∈ H(w) satises (5. 

Hence the strong maximum principle implies that w ∞ ≡ 0. This is contradicted with

So we obtain t n -t ′′ n → ∞. From the construction, one has w ∞ (t, 0) ≤ min {ε 2 , ε 3 } 2 , ∀t ≥ 0.

Due to w ∞ (0, 0) > 0 and w ∞ ∈ H(w), assumption (H2) yields that lim inf t→∞ w ∞ (t, 0) ≥ ε 2 > 0.

This is a contradiction. The proof of Lemma 5.3.18 is completed.