J. H. Ahn, Y. Choi, S. Kim, Y. M. Kwon, Y. D. Choi et al., Expression of a soybean hydroxyproline-rich glycoprotein gene is correlated with maturation of roots, Plant Physiology, vol.116, pp.671-679, 1998.

J. H. Ahn, Y. Choi, Y. M. Kwon, S. Kim, Y. D. Choi et al., A novel extensin gene encoding a hydroxyproline-rich glycoprotein requires sucrose for its wound-lnducible expression in transgenic plants, The Plant Cell, vol.8, pp.1477-1490, 1996.

A. Attard, M. Gourgues, N. Callemeyn-torre, and H. Keller, The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection, New Phytologist, vol.187, pp.449-460, 2010.

U. Baetz and E. Martinoia, Root exudates: the hidden part of plant defense, Trends in Plant Science, vol.19, pp.90-98, 2014.

V. Balaji and C. D. Smart, Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum), Transgenic Research, vol.21, pp.23-37, 2012.

D. Balmer, D. V. De-papajewski, C. Planchamp, G. Glauser, and B. Mauch-mani, Induced resistance in maize is based on organ-specific defence responses, The Plant Journal, vol.74, pp.213-225, 2013.

N. Baumberger, C. Ringli, and B. Keller, The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana, Genes & development, vol.15, pp.1128-1139, 2001.

N. Baumberger, M. Steiner, U. Ryser, B. Keller, and C. Ringli, Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development, The Plant Journal, vol.35, pp.71-81, 2003.

A. Betekhtin, M. Rojek, A. Milewska-hendel, R. Gawecki, J. Karcz et al.,

, Spatial distribution of selected chemical cell wall components in the embryogenic callus of Brachypodium distachyon, PLoS ONE, vol.11, 167426.

C. Borassi, A. R. Sede, M. A. Mecchia, S. Salter, J. D. Marzol et al.,

, An update on cell surface proteins containing extensin-motifs, Journal of Experimental Botany, vol.67, pp.477-487

M. D. Brownleader, N. Ahmed, M. Trevan, M. F. Chaplin, and P. M. Dey, Purification and partial characterization of tomato extensin peroxidase, Plant Physiology, vol.109, pp.1115-1123, 1995.

A. Attard, M. Gourgues, N. Callemeyn-torre, and H. Keller, The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection, New Phytologist, vol.187, pp.449-460, 2010.

A. Attard, M. Gourgues, E. Galiana, F. Panabières, M. Ponchet et al., Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan), Journal of Plant Physiology, vol.165, pp.83-94, 2008.

U. Baetz and E. Martinoia, Root exudates: the hidden part of plant defense, Trends in Plant Science, vol.19, pp.90-98, 2014.

D. Balmer and B. Mauch-mani, More beneath the surface? Root versus shoot antifungal plant defenses, Frontiers in Plant Science, vol.4, p.256, 2013.

D. Balmer, D. V. De-papajewski, C. Planchamp, G. Glauser, and B. Mauch-mani, Induced resistance in maize is based on organ-specific defence responses, The Plant Journal, vol.74, p.213, 2013.

M. Battaglia, R. M. Solórzano, M. Hernández, S. Cuéllar-ortiz, B. García-gómez et al., Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings, Planta, vol.225, pp.1121-1133, 2007.

N. Baumberger, C. Ringli, and B. Keller, The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana, Genes & development, vol.15, pp.1128-1139, 2001.

N. Baumberger, M. Steiner, U. Ryser, B. Keller, and C. Ringli, Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development, The Plant Journal, vol.35, pp.71-81, 2003.

P. B. Beauregard, Y. Chai, H. Vlamakis, R. Losick, and R. Kolter, Bacillus subtilis biofilm induction by plant polysaccharides, Proceedings of the National Academy of Sciences, vol.110, pp.1621-1630, 2013.

M. L. Berens, H. M. Berry, A. Mine, C. T. Argueso, and K. Tsuda,

L. V. Bindschedler, J. Dewdney, K. A. Blee, J. M. Stone, T. Asai et al., Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance, The Plant Journal, vol.47, pp.851-863, 2006.

T. Boller and G. Felix, A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors, Annual Review of Plant Biology, vol.60, 2009.

D. J. Bradley, P. Kjellbom, and C. J. Lamb, Elicitor-and wound-induced oxidative crosslinking of a proline-rich plant cell wall protein: a novel, rapid defense response, Cell, vol.70, p.21, 1992.

L. F. Brisson, R. Tenhaken, and C. Lamb, Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance, The Plant Cell, vol.6, pp.1703-1712, 1994.

M. D. Brownleader, N. Ahmed, M. Trevan, M. F. Chaplin, and P. M. Dey, Purification and partial characterization of tomato extensin peroxidase, Plant Physiology, vol.109, pp.1115-1123, 1995.

K. H. Caffall and D. Mohnen, The structure, function, and biosynthesis of plant cell wall pectic polysaccharides, Carbohydrate Research, vol.344, pp.1879-1900, 2009.

M. A. Cannesan, C. Durand, C. Burel, C. Gangneux, P. Lerouge et al., Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination, Plant Physiology, vol.159, pp.1658-1670, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01848269

M. A. Cannesan, C. Gangneux, A. Lanoue, D. Giron, K. Laval et al., Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches, Annals of Botany, vol.108, pp.459-469, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01848284

M. C. Cannon, K. Terneus, Q. Hall, L. Tan, Y. Wang et al., Self-assembly of the plant cell wall requires an extensin scaffold, Proceedings of the National Academy of Sciences, vol.105, pp.2226-2231, 2008.

R. Castilleux, B. Plancot, B. Gügi, A. Attard, C. Loutelier-bourhis et al., Extensin arabinosylation involvement in root response to elicitors and pathogenic oomycetes

R. Castilleux, B. Plancot, M. Ropitaux, A. Carreras, J. Leprince et al., En préparation. Root defence: how important are cell wall extensins?, The Plant Cell Wall. Methods in Molecular Biology

Y. Chen, W. Dong, L. Tan, M. Held, and M. Kieliszewski, arabinosylation plays a crucial role in extensin cross-linking in vitro, Biochemistry Insights, vol.8, issue.S2, pp.1-13, 2015.

J. Chen, J. Zhao, J. Ning, Y. Liu, J. Xu et al., NtProRP1, a novel proline-rich protein, is an osmotic stress-responsive factor and specifically functions in pollen tube growth and early embryogenesis in Nicotiana tabacum: NtProRP1 modulates pollen tube and embryo growth, Plant, Cell & Environment, vol.37, pp.499-511, 2014.

H. W. Choi and D. F. Klessig, DAMPs, MAMPs, and NAMPs in plant innate immunity, 2016.

D. Chormova and S. C. Fry, Boron bridging of rhamnogalacturonan-II is promoted in vitro by cationic chaperones, including polyhistidine and wall glycoproteins, New Phytologist, vol.209, pp.241-251, 2016.

A. Daudi, Z. Cheng, J. A. O'brien, N. Mammarella, S. Khan et al., The apoplastic oxidative burst peroxidase in arabidopsis is a major component of patterntriggered immunity, The Plant Cell, vol.24, pp.275-287, 2012.

S. Deepak, S. Shailasree, R. K. Kini, A. Muck, A. Mithöfer et al., Hydroxyprolinerich glycoproteins and plant defence, Journal of Phytopathology, vol.158, pp.585-593, 2010.

K. S. Dhugga, Guar seed -mannan synthase is a member of the cellulose synthase super gene family, Science, vol.303, pp.363-366, 2004.

W. Dong, M. Kieliszewski, and M. A. Held, Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reverse-genomics, Phytochemistry, vol.112, pp.151-159, 2015.

C. Draeger, N. Fabrice, T. Gineau, E. Mouille, G. Kuhn et al., Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth, BMC Plant Biology, vol.15, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204198

A. Driouich, C. Durand, M. Cannesan, G. Percoco, and M. Vicre-gibouin, Border cells versus border-like cells: are they alike, Journal of Experimental Botany, vol.61, pp.3827-3831, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01848393

A. Driouich, M. Follet-gueye, M. Vicré-gibouin, and M. Hawes, Root border cells and secretions as critical elements in plant host defense, Current Opinion in Plant Biology, vol.16, p.489, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843945

M. Dumont, A. Lehner, S. Bouton, M. C. Kiefer-meyer, A. Voxeur et al., The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein, Annals of Botany, vol.114, pp.1177-1188, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01805177

J. Egelund, N. Obel, P. Ulvskov, N. Geshi, M. Pauly et al., Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue, Plant Molecular Biology, vol.64, pp.439-451, 2007.

M. Ellis, J. Egelund, C. J. Schultz, and A. Bacic, Arabinogalactan-proteins: key regulators at the cell surface?, Plant Physiology, vol.153, pp.403-419, 2010.

M. Erb, C. Lenk, J. Degenhardt, and T. C. Turlings, The underestimated role of roots in defense against leaf attackers, Trends in plant science, vol.14, pp.653-659, 2009.

S. Fragkostefanakis, K. Sedeek, M. Raad, M. S. Zaki, and P. Kalaitzis, , 2014.

E. Francoz, P. Ranocha, H. Nguyen-kim, E. Jamet, V. Burlat et al., Roles of cell wall peroxidases in plant development, Phytochemistry, vol.112, pp.15-21, 2015.

Y. M. Gaspar, J. Nam, C. J. Schultz, L. Lee, P. R. Gilson et al., Characterization of the Arabidopsis Lysine-Rich Arabinogalactan-Protein AtAGP17 Mutant, 2004.

, That Results in a Decreased Efficiency of Agrobacterium Transformation, Plant Physiology, vol.135, pp.2162-2171

S. Gille, U. Hänsel, M. Ziemann, and M. Pauly, Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases, Proceedings of the National Academy of Sciences, vol.106, pp.14699-14704, 2009.

B. C. Gouveia, I. P. Calil, J. Machado, A. A. Santos, and E. Fontes, Immune receptors and co-receptors in antiviral innate immunity in plants, Frontiers in Microbiology, vol.7, 2017.

Q. Hall and M. C. Cannon, The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis, The Plant Cell, vol.14, pp.1161-1172, 2002.

J. Harholt, A. Suttangkakul, V. Scheller, and H. , Biosynthesis of pectin, Plant Physiology, vol.153, pp.384-395, 2010.

M. C. Hawes, G. Bengough, G. Cassab, and G. Ponce, Root caps and rhizosphere, Journal of Plant Growth Regulation, vol.21, pp.352-367, 2003.

M. C. Hawes, U. Gunawardena, S. Miyasaka, and X. Zhao, The role of root border cells in plant defense, Trends in plant science, vol.5, pp.128-133, 2000.

M. A. Held, L. Tan, A. Kamyab, M. Hare, E. Shpak et al., Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich extensin analogs cross-linked in vitro, Journal of Biological Chemistry, vol.279, pp.55474-55482, 2004.

M. Hermanns, A. J. Slusarenko, and N. L. Schlaich, Organ-specificity in a plant disease is determined independently of R gene signaling, Molecular plant-microbe interactions, vol.16, p.752, 2003.

A. Herrmann, S. Konig, M. Lechtenberg, M. Sehlbach, S. Y. Vakhrushev et al., Proteoglycans from Boswellia serrata Roxb. and B. carteri Birdw. and identification of a proteolytic plant basic secretory protein, Glycobiology, vol.22, pp.1424-1439, 2012.

M. Hijazi, S. M. Velasquez, E. Jamet, J. M. Estevez, and C. Albenne, An update on posttranslational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture, Frontiers in Plant Science, vol.5, p.395, 2014.

J. K. Jensen, S. O. Sørensen, J. Harholt, N. Geshi, Y. Sakuragi et al., Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis, The Plant Cell, vol.20, p.1289, 2008.

J. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

F. Katagiri and K. Tsuda, Understanding the plant immune system, Molecular plant-microbe interactions, vol.23, pp.1531-1536, 2010.

S. Kawasaki, Extensin secreted into the culture medium by tobacco cells I. Purification and some properties, Plant and cell physiology, vol.30, pp.259-265, 1989.

K. Kitazawa, T. Tryfona, Y. Yoshimi, Y. Hayashi, S. Kawauchi et al., ?-galactosyl Yariv reagent binds to the -1,3-galactan of arabinogalactan proteins, Plant Physiology, vol.161, pp.1117-1126, 2013.

M. M. Klepsch, M. Schmitt, P. Knox, J. Jansen, and S. , The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity, AoB Plants, vol.8, p.52, 2016.

E. M. Knee, F. Gong, M. Gao, M. Teplitski, A. R. Jones et al.,

, Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source, Molecular Plant-Microbe Interactions, vol.14, pp.775-784

J. P. Knox, J. Peart, and S. J. Neill, Identification of novel cell surface epitopes using a leaf epidermal strip assay system, Planta, vol.196, pp.266-270, 1995.

P. Kong, J. M. Mcdowell, and C. Hong, Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis, PLoS ONE, vol.12, p.180523, 2017.

A. S. Koroney, C. Plasson, B. Pawlak, R. Sidikou, A. Driouich et al., Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum, Annals of Botany, vol.118, p.797, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01837958

D. Lamport, M. J. Kieliszewski, Y. Chen, and M. C. Cannon, Role of the extensin superfamily in primary cell wall architecture, Plant Physiology, vol.156, pp.11-19, 2011.

A. Lanoue, V. Burlat, U. Schurr, and U. S. Röse, Induced root-secreted phenolic compounds as a belowground plant defense, Plant signaling & behavior, vol.5, pp.1037-1038, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01161927

M. Lechenet, F. Dessaint, G. Py, D. Makowski, and N. Munier-jolain, Reducing pesticide use while preserving crop productivity and profitability on arable farms, Nature Plants, vol.3, p.17008, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608601

P. Lerouge, M. A. O'neill, A. G. Darvill, and P. Albersheim, Structural characterization of endo-glycanase-generated oligoglycosyl side chains of rhamnogalacturonan I, Carbohydrate Research, vol.243, pp.359-371, 1993.

O. Leroux, J. P. Knox, and B. Masschaele,

L. Hoorebeke and R. Viane, An extensin-rich matrix lines the carinal canals in Equisetum ramosissimum, which may function as water-conducting channels, Annals of Botany, vol.108, p.307, 2011.

E. Luna, V. Pastor, J. Robert, V. Flors, B. Mauch-mani et al., Callose deposition: a multifaceted plant defense response, Molecular Plant-Microbe Interactions, vol.24, pp.183-193, 2011.

A. J. Macdougall, G. M. Brett, V. J. Morris, N. M. Rigby, M. J. Ridout et al., The effect of peptide-pectin interactions on the gelation behaviour of a plant cell wall pectin, Carbohydrate Research, vol.335, pp.115-126, 2001.

P. Manosalva, M. Manohar, V. Reuss, S. H. Chen, S. Koch et al., Conserved nematode signalling molecules elicit plant defenses and pathogen resistance, Nature Communications, vol.6, p.7795, 2015.

S. Marcel, R. Sawers, E. Oakeley, H. Angliker, and U. Paszkowski, Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae, The Plant Cell, vol.22, pp.3177-3187, 2010.

Y. Meng, Y. Huang, Q. Wang, Q. Wen, J. Jia et al., Phenotypic and genetic characterization of resistance in Arabidopsis thaliana to the oomycete pathogen Phytophthora parasitica, Frontiers in Plant Science, vol.6, p.378, 2015.

Y. Meng, Q. Zhang, W. Ding, and W. Shan, Phytophthora parasitica : a model oomycete plant pathogen, Mycology, vol.5, pp.43-51, 2014.

G. Merkouropoulos and A. H. Shirsat, The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses, Planta, vol.217, pp.356-366, 2003.

Y. A. Millet, C. H. Danna, N. K. Clay, W. Songnuan, M. D. Simon et al., innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns, The Plant Cell, vol.22, pp.973-990, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508587

S. R. Møller, X. Yi, S. M. Velásquez, S. Gille, P. Hansen et al., Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports, vol.7, p.45341, 2017.

J. Mravec, X. Guo, A. R. Hansen, J. Schückel, S. K. Kra?un et al., Pea border cell maturation and release involve complex cell wall structural dynamics, Plant Physiology, vol.174, pp.1051-1066, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604191

M. Muthamilarasan and M. Prasad, Plant innate immunity: An updated insight into defense mechanism, Journal of Biosciences, vol.38, pp.433-449, 2013.

L. Neumetzler, T. Humphrey, S. Lumba, S. Snyder, T. H. Yeats et al., The FRIABLE1 gene product affects cell adhesion in Arabidopsis, PLoS ONE, vol.7, p.42914, 2012.

E. Nguema-ona, A. Bannigan, L. Chevalier, T. I. Baskin, and A. Driouich, Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana: Arabinogalactan proteins and cortical microtubules, The Plant Journal, vol.52, pp.240-251, 2007.

E. Nguema-ona, S. Coimbra, M. Vicre-gibouin, J. Mollet, and A. Driouich, Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects, Annals of Botany, vol.110, pp.383-404, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01844523

E. Nguema-ona, M. Vicré-gibouin, M. Cannesan, and A. Driouich, Arabinogalactan proteins in root-microbe interactions, Trends in Plant Science, vol.18, pp.440-449, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843944

E. Nguema-ona, M. Vicré-gibouin, M. Gotté, B. Plancot, P. Lerouge et al., Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function, Frontiers in Plant Science, vol.5, p.499, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01842174

A. Nuñez, M. L. Fishman, L. L. Fortis, P. H. Cooke, and A. T. Hotchkiss, Identification of extensin protein associated with sugar beet pectin, Journal of Agricultural and Food Chemistry, vol.57, pp.10951-10958, 2009.

M. Ogawa-ohnishi, W. Matsushita, and Y. Matsubayashi, Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana, Nature Chemical Biology, vol.9, pp.726-730, 2013.

M. A. O'neill, E. S. Albersheim, P. Darvill, and A. G. , requirement of borate crosslinking of cell wall rhamnogalacturonan II for Arabidopsis growth, Science, vol.294, pp.846-849, 2001.

F. Passardi, M. Tognolli, D. Meyer, M. Penel, C. Dunand et al., Two cell wall associated peroxidases from Arabidopsis influence root elongation, Planta, vol.223, pp.965-974, 2006.

A. M. Pereira, L. G. Pereira, and S. Coimbra, Arabinogalactan proteins: rising attention from plant biologists, Plant Reproduction, vol.28, pp.1-15, 2015.

C. S. Pereira, J. M. Ribeiro, A. D. Vatulescu, K. Findlay, A. J. Macdougall et al., Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration, BMC plant biology, vol.11, p.1, 2011.

C. Pieterse, A. Leon-reyes, S. Van-der-ent, V. Wees, and S. , Networking by smallmolecule hormones in plant immunity, Nature Chemical Biology, vol.5, pp.308-316, 2009.

B. Plancot, C. Santaella, R. Jaber, M. C. Kiefer-meyer, M. Follet-gueye et al., Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors, Plant Physiology, vol.163, pp.1584-1597, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843935

N. J. Price, C. Pinheiro, C. M. Soares, D. A. Ashford, C. P. Ricardo et al., A Biochemical and molecular characterization of LEP1, an extensin peroxidase from lupin, Journal of Biological Chemistry, vol.278, pp.41389-41399, 2003.

A. Rashid, Defense responses of plant cell wall non-catalytic proteins against pathogens, Physiological and Molecular Plant Pathology, vol.94, pp.38-46, 2016.

M. Reguera, I. Abreu, N. J. Brewin, I. Bonilla, and L. Bolaños, Borate promotes the formation of a complex between legume AGP-extensin and Rhamnogalacturonan II and enhances root nodules: Boron mediated legume-Rhizobium cell surface interactions, Plant, Cell & Environment, vol.33, pp.2112-2120, 2010.

F. Saito, A. Suyama, T. Oka, Y. -. , T. Matsuoka et al., Identification of novel peptidyl serine ?-galactosyltransferase gene family in plants, Journal of Biological Chemistry, vol.289, pp.20405-20420, 2014.

H. V. Scheller and P. Ulvskov, Hemicelluloses. Annual Review of Plant Biology, vol.61, pp.263-289, 2010.

L. Schena, K. Hughes, and D. Cooke, Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex realtime PCR: Multiplex detection of forest phytophthoras, Molecular Plant Pathology, vol.7, pp.365-379, 2006.

K. Schlink, Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola, Functional & Integrative Genomics, vol.10, pp.253-264, 2010.

L. S. Schnabelrauch, M. Kieliszewski, B. L. Upham, H. Alizedeh, and D. Lamport, Isolation of pl 4.6 extensin peroxidase from tomato cell suspension cultures and identification of ValTyr-Lys as putative intermolecular cross-link site, The Plant Journal, vol.9, pp.477-489, 1996.

R. Schröder, R. G. Atkinson, and R. J. Redgwell, Re-interpreting the role of endo-?, 2009.

G. J. Seifert and K. Roberts, The biology of arabinogalactan proteins, Annual Review of Plant Biology, vol.58, pp.137-161, 2007.

A. M. Showalter, Arabinogalactan-proteins: structure, expression and function, Cellular and Molecular Life Sciences CMLS, vol.58, pp.1399-1417, 2001.

A. M. Showalter, B. D. Keppler, X. Liu, J. Lichtenberg, and L. R. Welch, Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in Populus trichocarpa, BMC Plant Biology, vol.16, p.229, 2016.

M. Smallwood, A. Beven, N. Donovan, S. J. Neill, J. Peart et al., Localization of cell wall proteins in relation to developmental anatomy of the carrot root apex, The Plant Journal, vol.5, pp.237-246, 1994.

M. Smallwood, H. Martin, and J. P. Knox, An epitope of rice threonine-and hydroxyprolinerich glycoprotein is common to cell wall and hydrophobic plasma-membrane glycoproteins, Planta, vol.196, pp.510-522, 1995.

J. J. Smith, E. P. Muldoon, J. J. Willard, and D. T. Lamport, Tomato extensin precursors P1 and P2 are highly periodic structures, Phytochemistry, vol.25, pp.1021-1030, 1986.

C. Somerville, Cellulose synthesis in higher plants, Annual Review of Cell and Developmental Biology, vol.22, pp.53-78, 2006.

A. Souza-c-de, S. Li, A. Z. Lin, F. Boutrot, G. Grossmann et al., Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defenselike responses, Plant Physiology, vol.173, pp.2383-2398, 2017.

M. Sujkowska-rybkowska and W. Borucki, Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress, Micron, vol.67, pp.10-19, 2014.

J. Svetek, M. P. Yadav, and E. A. Nothnagel, Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins, Journal of Biological Chemistry, vol.274, pp.14724-14733, 1999.

T. M. Tran, A. Macintyre, M. Hawes, and C. Allen, Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum, PLOS Pathogens, vol.12, p.1005686, 2016.

R. Valentin, C. Cerclier, N. Geneix, V. Aguié-béghin, C. Gaillard et al.,

S. M. Velasquez, E. Marzol, C. Borassi, L. Pol-fachin, M. M. Ricardi et al., Low sugar is not always good: impact of specific O-glycan defects on tip growth in Arabidopsis, Plant Physiology, vol.168, pp.808-813, 2015.

S. M. Velasquez, M. M. Ricardi, J. G. Dorosz, P. V. Fernandez, A. D. Nadra et al., O-glycosylated cell wall proteins are essential in root hair growth, Science, vol.332, pp.1401-1403, 2011.

M. Velasquez, J. S. Salter, J. G. Dorosz, B. L. Petersen, and J. M. Estevez, 2012. recent advances on the posttranslational modifications of EXTs and their roles in plant cell walls, Frontiers in plant science, vol.3, p.93

M. Vicré, C. Santaella, S. Blanchet, A. Gateau, and A. Driouich, Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with Rhizobacteria, Plant Physiology, vol.138, pp.998-1008, 2005.

C. Voiniciuc, M. Schmidt, A. Berger, B. Yang, B. Ebert et al., MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage, Plant Physiology, vol.169, pp.403-420, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01536508

C. A. Walker and P. Van-west, Zoospore development in the oomycetes, Fungal Biology Reviews, vol.21, pp.10-18, 2007.

M. Wang, S. Heimovaara-dijkstra, R. M. Meulen, J. P. Knox, and S. J. Neill, The monoclonal antibody JIM19 modulates abscisic acid action in barley aleurone protoplasts, Planta, vol.196, p.271, 1995.

Y. Wang, Y. Meng, M. Zhang, X. Tong, Q. Wang et al., Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in Références bibliographiques ~ 204 ~ host specificity: The Arabidopsis-Phytophthora pathosystem, Molecular Plant Pathology, vol.12, pp.187-201, 2011.

F. Wen, H. D. Vanetten, G. Tsaprailis, and M. C. Hawes, Extracellular proteins in pea root tip and border cell exudates, Plant Physiology, vol.143, pp.773-783, 2007.

F. Wen, G. J. White, H. D. Vanetten, Z. Xiong, and M. C. Hawes, Extracellular DNA is required for root tip resistance to fungal infection, Plant Physiology, vol.151, pp.820-829, 2009.

Y. Wu, W. Fan, X. Li, H. Chen, T. Taká? et al., Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and Fusarium oxysporum, Scientific Reports, vol.7, p.42400, 2017.

I. Wyrsch, A. Domínguez-ferreras, N. Geldner, and T. Boller, Tissue-specific FLAGELLIN-SENSING 2 (FLS2) expression in roots restores immune responses in Arabidopsis fls2 mutants, New Phytologist, vol.206, pp.774-784, 2015.

D. Xie, L. Ma, J. ?amaj, and C. Xu, Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincasae infection and fusaric acid treatment, Plant Cell Reports, vol.30, pp.1555-1569, 2011.

F. Xie, A. Williams, A. Edwards, and J. A. Downie, A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum, Molecular Plant-Microbe Interactions, vol.25, pp.250-258, 2012.

J. Yariv, H. Lis, and E. Katchalski, Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes, Biochemical Journal, vol.105, pp.1-2, 1967.

J. J. Youl, A. Bacic, and D. Oxley, Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors, Proceedings of the National Academy of Sciences, vol.95, pp.7921-7926, 1998.

X. Yu, B. Feng, P. He, and L. Shan, From chaos to harmony: responses and signaling upon microbial pattern recognition, Annual Review of Phytopathology, vol.55, pp.109-137, 2017.

L. Yu, Y. Zhou, and J. P. Knox, Ginseng root water-extracted pectic polysaccharides originate from secretory cavities, Planta, vol.234, pp.487-499, 2011.

L. Zagorchev and M. Odjakova, Hydroxyproline rich proteins in salt adapted embryogenic suspension cultures of Dactylis Glomerata L, Biotechnology & Biotechnological Equipment, vol.25, pp.2321-2328, 2011.

C. Zhang, S. Pan, H. Chen, T. Cai, C. Zhuang et al., Characterization of NtREL1, a novel root-specific gene from tobacco, and upstream promoter activity analysis in homologous and heterologous hosts, Plant Cell Reports, vol.35, p.757, 2016.

X. Zhang, Y. Ren, and J. Zhao, Roles of extensins in cotyledon primordium formation and shoot apical meristem activity in Nicotiana tabacum, Journal of Experimental Botany, vol.59, 2008.

T. Scalpel,

, Superfrost diagnostic slides 10-wells 8 mm (Zuzi, ref: 30503101)

. Micropipette,

, Stock solution paraformaldehyde (PFA) 16% (EMS, ref: 15710). Storage at -20°C

, Phosphate-buffered saline (PBS) 0.01 M : NaCl 137 mM, KCl 47 mM, KH2PO4 1.5 mM and Na2HPO4, p.2

, Bovine serum albumine (BSA

, AURION, ref: 900.011) for blocking non-specific binding sites. Storage at +4°C

, Primary monoclonal antibody (PlantProbes, www.plantprobes.net/). Storage at +4°C

, A wet chamber for maintaining air humidity (Fig. 1., see Note 2)

, Secondary antibody: Anti-rat IgG coupled with FITC

. Coverslip,

, Nail polish (EMS, ref: 72180)

, thick" root tips with BCs and mucilage

, Ultrathin tweezers

, Microscope slides 18-wells-Poly-L-Lysine sterile (IBIDI, ref: 81824)

. Micropipette,

, Stock solution paraformaldehyde (PFA) 16% (EMS, ref: 15710). Storage in -20°C

, PIPES (Alfa Aesar, ref: A16090)

. Cacl2,

, Phosphate-buffered saline (PBS) 0.01 M : NaCl 137 mM, KCl 47 mM, KH2PO4 1.5 mM and Na2HPO4, p.2

, Bovine serum albumine (BSA

, AURION, ref: 900.011) for blocking non-specific binding sites. Storage at +4°C

, Primary monoclonal antibody (PlantProbes www.plantprobes.net/). Storage at +4°C

, A wet chamber for maintaining air humidity (Fig. 1.,see Note 2)

, Secondary antibody: Anti-rat IgG coupled with TRITC (Tetramethylrhodamine; SIGMA, ref: T5778). Storage at -20°C

, Citifluor (Agar scientific, ref: AF2 R1320)

, Extraction buffer: 50 mM Tris-base (adjust pH 8 with HCl), 10 mM Na2EDTA(H2O)2, 2 mM Na2S2O5, 1% Triton X-100, vol.15

, Radial gel diffusion :AGPs detection / semi-quantification

, Radial gel diffusion : 1% (w/v) agarose gel containing 0.15 M NaCl, 0.02% (w/v) NaNO3, 10 µg/mL ?-D-GlcY

, Gum Arabic (Gum Acacia, Fisher scientific

, AGPs quantification 1. Rocket gel : 1% (w/v) agarose gel containing 25 mM Tris-base (adjust pH 8.3 with HCl), 200 mM glycine, 20 µg/mL ?-D-GlcY

, Gel tray 18x15 cm (see Note 17)

. Tape,

, Gum Arabic (Gum Acacia, Fisher scientific, ref: G/1050/53)

, 1% (w/v) NaCl

, Running buffer 1: 25 mM Tris-base (adjust pH 8.3 with HCl), 200 mM glycine (see Note 16)

, Isoelectric focusing electrophoresis system (IEF)

, Agarose gel electrophoresis: detection of AGP sub-populations

, Agarose gel : 1% (w/v) agarose gel containing 90 mM Tris-base (adjust pH 8.3 with HCl), 90 mM boric acid, vol.2

, Gel tray 18x15 cm and the comb (see Note 17)

. Tape,

, Agarose gel electrophoresis system

, 8 2D electrophoresis: characterization of AGP sub-populations and quantification

, Agarose gel : 1% (w/v) agarose gel containing 90 mM Tris-base (adjust pH 8.3 with HCl), 90 mM boric acid, vol.2

, Gel tray 18x15 cm and the comb (see Note 17)

. Tape,

, Loading buffer: 32% (v/v) glycerol, 2% (w/v) Bromophenol blue

. Vortex,

, Agarose gel electrophoresis system

, Rocket gel : 1% (w/v) agarose gel containing 25 mM Tris-base (adjust pH 8.3 with HCl), 200 mM glycine, 20 µg/mL ?-D-GlcY

, Running buffer 1: 25 mM Tris-base (adjust pH 8.3 with HCl)

, Isoelectric focusing electrophoresis system (IEF)

, place them onto a 10 wells superfrost diagnostic slide (Fig. 2B.) and fix them by adding 20 µL of 4% PFA (Paraformaldehyde) (Fig. 2C.) for 30 to 40 minutes at room temperature (RT). The liquid is removed gently by placing, Cut root tips using a scalpel (Fig. 2A.)

, Wash briefly at RT with PBS 1X (see Note 5)

, Incubate for 30 to 45 minutes at RT with 3% (w/v) BSA diluted in PBS 1X (see Note 6)

, RT with PBS 1X and then with PBS 1X + 0.1% (v/v) Tween, vol.20

, Incubate overnight (O/N) with primary antibody at +4°C in a wet chamber. Primary antibody is diluted at 1:5 with PBST (see Note 8)

, Wash twice briefly at RT with PBST

, Incubate 2 hours at RT in darkness with the secondary antibody diluted at 1:30 in PBST, in a wet chamber. The second antibody is an Anti-rat IgG coupled with FITC (see Notes, vol.9

, Observe with a confocal laser-scanning microscope (Excitation : 488 nm ; Emission : 500-535 nm). Results are shown in Fig, vol.3

, Pisum sativum) The immunolabeling of "thick" root tips protocol provides a good preservation of BCs and mucilage despite several washing steps (see Note 11), thick" root tips with BCs and mucilage preservation

, Cut root tips using ultrathin tweezers (Fig. 4A.), place it onto a sterile 18-wells microscope slide Poly-L-Lysine (Fig. 4B.), and fix with 20 µL of 4% PFA diluted in 50 mM PIPES, pH 7 and 1 mM CaCl2 (Fig. 4C.)

, Wash 10 minutes 4 times at RT with PBS 1X containing 1% (w/v) BSA (see Notes, vol.5

O. Incubate, N with the primary antibody at +4°C in a wet chamber

, Incubate 2 hours at +25°C in darkness with the secondary antibody diluted at 1:50 in PBS 1X containing 1% (w/v) BSA in a wet chamber. The second antibody is an Antirat IgG coupled with TRITC (see Notes, vol.9

, Finally wash at RT with PBS 1X for 10 minutes

, Observe with a confocal laser-scanning microscope (Excitation : 550 nm ; Emission : 560-600 nm). Results are shown in Fig, vol.5

, Grind 10 g of plant material with liquid nitrogen using a mortar and a pestle

, Freeze the ground material then freeze-dry it (see Note 19)

, Mix 1 g of the freeze-dried material with 40 mL of extraction buffer in 50 mL corning tube and incubate at +4?C O/N under agitation

, Centrifuge for 10 minutes at +4?C, 14000×g

, Centrifuge for 10 minutes at +4?C, 14000×g

, Carefully remove the supernatant and suspend the pellet in 40 mL of 50 mM Tris-base

, Centrifuge for 10 minutes at +4?C, 14000×g

, Collect the supernatant and resuspend the pellet in 20 mL of 50 mM Tris-base previously adjusted to pH 8 with HCl

, Centrifuge for 10 minutes at +4?C, 14000×g

, After dialysis, freeze and freeze-dry the solution

, their structural heterogeneity, binding of AGPs to ?-D-GlcY can vary depending on the sub-populations present in the sample, and therefore impacts purification quality

, Precipitate the AGPs in 2 mL Eppendorf tube by adding an equal volume of 2 mg/mL ?-D-GlcY to the solubilized AGPs solution (see Note 18)

, Incubate at +4?C for 48 hours

, Centrifuge for 90 minutes at RT, 10000×g

, Recover the pellet containing ?-D-GlcY /AGPs complex

, Add 1 mL of 1% (w/v) NaCl to the pellet and vortex

, Centrifuge for 10 minutes at RT, 10000×g

, Centrifuge for 10 minutes at RT, 10000×g

, Dissolve the pellet by adding 500 µL of pure DMSO and vortex (see Note 23)

, Add 10% to 30% (w/v) sodium hydrosulfite and vortex. Then, add ultra-pure water until the color becomes clear yellow (see Note 24)

, Desalt the clear yellow solution with a size exclusion chromatography (PD-10 desalting columns)

G. B. Fincher, B. A. Stone, and A. E. Clarke, Arabinogalactan-proteins: structure, biosynthesis, and function, Annual Review of Plant Physiology, vol.34, pp.47-70, 1983.

J. J. Youl, A. Bacic, and D. Oxley, Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors, Proceedings of the National Academy of Sciences, vol.95, pp.7921-7926, 1998.

J. Svetek, M. P. Yadav, and E. A. Nothnagel, Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins, Journal of biological chemistry, vol.274, pp.14724-14733, 1999.

E. Nguema-ona, M. Vicré-gibouin, and M. Gotté, Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function, Frontiers in Plant Science, vol.5, p.499, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01842174

A. M. Showalter, Arabinogalactan-proteins: structure, expression and function, Cellular and Molecular Life Sciences CMLS, vol.58, pp.1399-1417, 2001.

G. J. Seifert and K. Roberts, The Biology of Arabinogalactan Proteins, Annual Review of Plant Biology, vol.58, pp.137-161, 2007.

M. Ellis, J. Egelund, and C. J. Schultz, Arabinogalactan-Proteins: Key Regulators at the Cell Surface?, Plant Physiology, vol.153, pp.403-419, 2010.

M. Vicré, C. Santaella, and S. Blanchet, Root Border-Like Cells of Arabidopsis. Microscopical Characterization and Role in the Interaction with Rhizobacteria, Plant Physiology, vol.138, pp.998-1008, 2005.

M. A. Cannesan, C. Durand, and C. Burel, Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination, Plant Physiology, vol.159, pp.1658-1670, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01848269

E. Nguema-ona, M. Vicré-gibouin, and M. Cannesan, Arabinogalactan proteins in root-microbe interactions, Trends in Plant Science, vol.18, pp.440-449, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843944

A. Driouich, M. Follet-gueye, and M. Vicré-gibouin, Root border cells and secretions as critical elements in plant host defense, Current Opinion in Plant Biology, vol.16, pp.489-495, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843945

E. M. Knee, F. Gong, and M. Gao, Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source, Molecular Plant-Microbe Interactions, vol.14, pp.775-784, 2001.

A. S. Koroney, C. Plasson, and B. Pawlak, Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum, Annals of Botany. mcw128, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01837958

C. Durand, M. Vicre-gibouin, and M. L. Follet-gueye, The Organization Pattern of Root Border-Like Cells of Arabidopsis Is Dependent on Cell Wall Homogalacturonan, Plant Physiology, vol.150, pp.1411-1421, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00433500

M. Smallwood, E. A. Yates, and W. Willats, Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot, Planta, vol.198, pp.452-459, 1996.

E. A. Yates, J. Valdor, and S. M. Haslam, Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies, Glycobiology, vol.6, pp.131-139, 1996.

I. Moller, S. E. Marcus, and A. Haeger, High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles, Glycoconjugate Journal, vol.25, pp.37-48, 2008.

J. P. Knox, S. Day, and K. Roberts, A set of cell surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of Daucus carota L, Development, vol.106, pp.47-56, 1989.

N. J. Stacey, K. Roberts, and J. P. Knox, Patterns of expression of the JIM4 arabinogalactan-protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L, Planta, vol.180, pp.285-292, 1990.

J. P. Knox, P. J. Linstead, and J. Peart, Developmentally-regulated epitopes of cell surface arabinogalactan-proteins and their relation to root tissue pattern formation, The Plant Journal, vol.1, pp.317-326, 1991.

R. I. Pennell, J. P. Knox, and G. N. Scofield, A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants, The Journal of cell biology, vol.108, pp.1967-1977, 1989.

G. Van-holst and A. E. Clarke, Organ-Specific Arabinogalactan-Proteins of Lycopersicon peruvianum(Mill) Demonstrated by Crossed Electrophoresis, Plant Physiology, vol.80, pp.786-789, 1986.

G. Van-holst and A. E. Clarke, Quantification of Arabinogalactan-Protein in Plant Extracts by Single Radial Gel Diffusion, Analytical Biochemistry, vol.148, pp.446-450, 1985.

A. M. Gane, D. Craik, and S. L. Munro, Structural analysis of the carbohydrate moiety of arabinogalactan-proteins from stigmas and styles of Nicotiana alata, Carbohydrate Research, vol.277, pp.67-85, 1995.

L. Ding and J. Zhu, A role for arabinogalactan-proteins in root epidermal cell expansion, Planta, vol.203, pp.289-294, 1997.

R. Girault, I. His, and C. Andeme-onzighi, Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell walls of flax fibres, Planta, vol.211, pp.256-264, 2000.

Z. A. Popper, Extraction and Detection of Arabinogalactan Proteins, The Plant Cell Wall: Methods and Protocols, pp.245-254, 2011.

J. Yariv, H. Lis, and E. Katchalski, Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes, Biochemical Journal, vol.105, p.1, 1967.

W. G. Willats and J. P. Knox, A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of beta-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana, The Plant Journal, vol.9, pp.919-925, 1996.

K. Kitazawa, T. Tryfona, and Y. Yoshimi, ) ?-Galactosyl Yariv Reagent Binds to the -1,3-Galactan of Arabinogalactan Proteins, Plant Physiology, vol.161, pp.1117-1126, 2013.

, Annexes ~ 222 ~

B. S. Paulsen, D. J. Craik, and D. E. Dunstan, The Yariv reagent: Behaviour in different solvents and interaction with a gum arabic arabinogalactanprotein, Carbohydrate Polymers, vol.106, pp.460-468, 2014.

C. Hervé, S. E. Marcus, and J. P. Knox, Monoclonal Antibodies, CarbohydrateBinding Modules, and the Detection of Polysaccharides in Plant Cell Walls, 2011.

, The Plant Cell Wall: Methods and Protocols, pp.103-113

B. Plancot, C. Santaella, and R. Jaber, Deciphering the Responses of Root Border-Like Cells of Arabidopsis and Flax to Pathogen-Derived Elicitors, Plant Physiology, vol.163, pp.1584-1597, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843935

A. .. Contenu,

J. .. Scientifiques,

!. .. Je, Super photo mais je pourrais l'améliorer avant de leur montrer?

, Ca ne serait pas plus joli en rouge ?

J. .. ,

, Il faudrait que j'arrive à superposer ces 2 images? (overlay)

, Il faudrait que j'arrive à superposer ces 56 images ! (stack)

.. .. Il,

, une partie de l'image qui m'intéresse

Ç. A. En-3d, . Serait-super, and . .. Sympa-a-montrer-a-mes-chefs-!, 17 ? ou une vidéo avec mes images prises à différents temps, encore mieux !

J. Allez and . .. Photo,

C. Quantification and . .. Mesures, Je ne pourrais pas utiliser ces images pour « quantifier » mon marquage ?

, Maintenant je dois mesurer les éléments de mon image?

.. .. Et,

Y. .. Finalement-il,

E. .. ,

B. .. Manuel,

J. Scientifiques, Je dois absolument mettre une échelle ! Insertion de l'échelle avec Image J, calibration d'image et détermination de l'échelle Plusieurs cas se présentent : Cas n° 1 : je dispose de l'image au format

, Réaliser une vidéo ou une animation gif peut paraître très compliqué. Mais ce n'est pas le cas. En fait, avec ImageJ c'est relativement simple

D. Imagej, mettez les images qui vont composer votre vidéo/animation sous forme d'un stack. Pour une vidéo, allez dans File

, Animated Gif? Une fenêtre s'ouvre vous proposant plusieurs options dont voici les plus importantes : ? Name : Nom du fichier ? Set Global Lookup Table Options : Type de coloration pour l'animation. Mettez "Load from Current Image, Pour une animation Gif, allez dans File, Save as

, Set delay in milliseconds : Intervalle de temps entre 2 images définissant ainsi la vitesse de lecture ? Number of loop? : Nombre de répétitions de l'animation

S. Deepak, Journal of Phytopathology, vol.158, pp.585-593, 2010.

M. Velasquez, Frontiers in Plant Science, vol.3, p.93, 2012.

Y. Chen, Biochemistry Insights, vol.8, issue.S2, pp.1-13, 2015.

B. Plancot, Plant Physiology, vol.163, pp.1584-1587, 2013.

J. Egelund, Plant Molecular Biology, vol.64, pp.439-451, 2007.

. Adapted and . Velasquez, , 2012.

S. Gille, , vol.106, pp.14699-14704, 2009.

P. Tiainen, Journal of Biological Chemistry, vol.280, pp.1142-1148, 2005.

M. Velasquez, Frontiers in Plant Science, vol.3, p.93, 2012.

A. Attard, New Phytologist, vol.187, pp.449-460, 2010.

P. Benfey, Les extensines interviennent dans le renforcement de la paroi, un des premiers remparts cellulaires contre les pathogènes, en se liant entre elles de manière intra-et intermoléculaire. Ce « cross-linking » est catalysé par des enzymes peroxydases spécifiques et nécessite une correcte conformation des extensines, laquelle est conférée par leur partie glycosylée. Dans ce projet de thèse, nous avons donc entrepris d'étudier l'impact de la glycosylation des extensines sur la défense racinaire et tenté de caractériser, de manière préliminaire, des peroxydases potentiellement impliquées dans le « cross-linking » chez Arabidopsis thaliana. Des techniques d'immunocytochimie réalisées sur une sélection de mutants affectés dans la glycosylation des extensines ont révélé une modulation de la distribution des extensines dans la racine d'A. thaliana en réponse à une élicitation avec un peptide bactérien, la flagelline 22. L'un des résultats majeurs de cette étude a été de montrer l'importance de l'arabinosylation des extensines dans la colonisation de la racine par l'oomycète pathogène Phytophthora parasitica. Ainsi, l'ensemble de ces résultats nous a permis d'élaborer un modèle proposant d'illustrer l, des HRGPs (Hydroxy prolin-rich glycoproteins) impliquées dans plusieurs fonctions telles que la croissance, le développement et la défense des plantes contre les pathogènes. Toutefois, leur mode d'action dans la réponse immunitaire végétale n'est pas encore bien connu et reste à élucider, vol.61, pp.992-1000, 2010.

, Mots-clés : extensines, arabinosylation, défense, racine, paroi, glycosylation, éliciteur, Arabidopsis thaliana