J. Derksen, B. Knuiman, K. Hoedemaekers, A. Guyon, S. Bonhomme et al., Growth and cellular organization of Arabidopsis pollen tubes in vitro, Sex Plant Reprod, vol.15, pp.133-139, 2002.

B. De-rybel, W. Van-den-berg, A. Lokerse, C. Y. Liao, H. Van-mourik et al., A versatile set of ligation-independent cloning vectors for functional studies in plants, Plant Physiol, vol.156, pp.1292-1299, 2011.

M. Dumont, A. Lehner, S. Bouton, M. C. Kiefer-meyer, A. Voxeur et al., The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein, Ann Bot (Lond), vol.114, pp.1177-1188, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01805177

C. Durand, M. Vicré-gibouin, M. L. Follet-gueye, L. Duponchel, M. Moreau et al., The organization pattern of root borderlike cells of Arabidopsis is dependent on cell wall homogalacturonan, Plant Physiol, vol.150, pp.1411-1421, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00433500

P. Fayant, O. Girlanda, Y. Chebli, C. E. Aubin, I. Villemure et al., Finite element model of polar growth in pollen tubes, Plant Cell, vol.22, pp.2579-2593, 2010.

C. Ferguson, T. T. Teeri, M. Siika-aho, S. M. Read, and A. Bacic, Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum, Planta, vol.206, pp.452-460, 1998.

K. E. Francis, S. Y. Lam, and G. P. Copenhaver, Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene, Plant Physiol, vol.142, pp.1004-1013, 2006.

S. C. Fry, Cell wall polysaccharide composition and covalent crosslinking, Annu Plant Rev, vol.41, pp.1-42, 2011.

L. L. Ge, H. Q. Tian, and S. D. Russell, Calcium function and distribution during fertilization in angiosperms, Am J Bot, vol.94, pp.1046-1060, 2007.

L. L. Ge, C. T. Xie, H. Q. Tian, and S. D. Russell, Distribution of calcium in the stigma and style of tobacco during pollen germination and tube elongation, Sex Plant Reprod, vol.22, pp.87-96, 2009.

W. Ge, Y. Song, C. Zhang, Y. Zhang, A. L. Burlingame et al., Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen, Biochim Biophys Acta, vol.1814, pp.1964-1973, 2011.

A. Geitmann and M. Steer, The architecture and properties of the pollen tube cell wall, The Pollen Tube, vol.3, pp.177-200, 2006.

R. Gnanasambandam and A. Proctor, Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy, Food Chem, vol.68, pp.327-332, 2000.

Z. H. González-carranza, K. A. Elliott, and J. A. Roberts, Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana, J Exp Bot, vol.58, pp.3719-3730, 2007.

A. Gribaa, F. Dardelle, A. Lehner, C. Rihouey, C. Burel et al., Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera 'Deglet nour', Arecales) fruit during development, Plant Cell Environ, vol.36, pp.1056-1070, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805124

Y. Guan, J. Guo, H. Li, and Z. Yang, Signaling in pollen tube growth: crosstalk, feedback, and missing links, Mol Plant, vol.6, pp.1053-1064, 2013.

S. Guénin, A. Mareck, C. Rayon, R. Lamour, A. Ndong et al., Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana, New Phytol, vol.192, pp.114-126, 2011.

L. Gutierrez, J. D. Bussell, D. I. P?curar, J. Schwambach, M. P?curar et al., Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance, Plant Cell, vol.21, pp.3119-3132, 2009.

J. Harholt, A. Suttangkakul, V. Scheller, and H. , Biosynthesis of pectin, Plant Physiol, vol.153, pp.384-395, 2010.

R. P. Hellens, E. A. Edwards, N. R. Leyland, S. Bean, and P. M. Mullineaux, pGreen: a versatile and flexible binary Ti vector for Agrobacteriummediated plant transformation, Plant Mol Biol, vol.42, pp.819-832, 2000.

P. K. Hepler, J. G. Kunkel, C. M. Rounds, and L. J. Winship, Calcium entry into pollen tubes, Trends Plant Sci, vol.17, pp.32-38, 2012.

R. Holmes-davis, C. K. Tanaka, W. H. Vensel, W. J. Hurkman, and S. Mccormick, Proteome mapping of mature pollen of Arabidopsis thaliana, Proteomics, vol.5, pp.4864-4884, 2005.

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, Adv Bioinformatics, p.420747, 2008.

L. Huang, J. Cao, A. Zhang, Y. Ye, Y. Zhang et al., The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development, J Exp Bot, vol.60, pp.301-313, 2009.

M. Iwano, H. Shiba, T. Miwa, F. S. Che, S. Takayama et al., Ca 2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis, Plant Physiol, vol.136, pp.3562-3571, 2004.

G. Y. Jauh and E. M. Lord, Localization of pectins and arabinogalactanproteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination, Planta, vol.199, pp.251-261, 1996.

L. Jiang, S. L. Yang, L. F. Xie, C. S. Puah, X. Q. Zhang et al., VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract, Plant Cell, vol.17, pp.584-596, 2005.

M. A. Johnson and E. M. Lord, Extracellular guidance cues and intracellular signaling pathways that direct pollen tube growth, The Pollen Tube: A Cellular and Molecular Perspective, vol.3, pp.223-242, 2006.

S. A. Johnson-brousseau and S. Mccormick, A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophyticallyexpressed genes, Plant J, vol.39, pp.761-775, 2004.

R. P. Jolie, T. Duvetter, A. M. Van-loey, and M. E. Hendrickx, Pectin methylesterase and its proteinaceous inhibitor: a review, Carbohydr Res, vol.345, pp.2583-2595, 2010.

J. Kim, S. H. Shiu, S. Thoma, W. H. Li, and S. E. Patterson, Patterns of expansion and expression divergence in the plant polygalacturonase gene family, Genome Biol, vol.7, p.87, 2006.

J. A. Klavons and A. D. Bennett, Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins, J Agric Food Chem, vol.34, pp.597-599, 1986.

G. J. Kremers, J. Goedhart, E. B. Van-munster, and T. W. Gadella, Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius, Biochemistry, vol.45, pp.6570-6580, 2006.

K. A. Lennon and E. M. Lord, In vivo pollen tube cell of Arabidopsis thaliana. I. Tube cell cytoplasm and wall, Protoplasma, vol.214, pp.45-56, 2000.

Y. Q. Li, F. Chen, H. F. Linskens, and M. Cresti, Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants, Sex Plant Reprod, vol.7, pp.145-152, 1994.

Y. Q. Li, C. Faleri, A. Geitmann, H. Q. Zhang, and M. Cresti, Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L, Protoplasma, vol.189, pp.26-36, 1995.

R. Louvet, E. Cavel, L. Gutierrez, S. Guénin, D. Roger et al., Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana, Planta, vol.224, pp.782-791, 2006.

A. Macquet, M. C. Ralet, O. Loudet, J. Kronenberger, G. Mouille et al., A naturally occurring mutation in an Arabidopsis accession affects a b-D-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage, Plant Cell, vol.19, pp.3990-4006, 2007.

G. D. Manrique and F. M. Lajolo, FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit, Postharvest Biol Technol, vol.25, pp.99-107, 2002.

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends Plant Sci, vol.6, pp.414-419, 2001.

J. C. Mollet, C. Leroux, F. Dardelle, and A. Lehner, Cell wall composition, biosynthesis and remodeling during pollen tube growth, Plants, vol.2, pp.107-147, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805132

J. C. Mollet, S. Y. Park, E. A. Nothnagel, and E. M. Lord, A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix, Plant Cell, vol.12, pp.1737-1750, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02121618

G. Mouille, M. C. Ralet, C. Cavelier, C. Eland, D. Effroy et al., Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain, Plant J, vol.50, pp.605-614, 2007.

E. Nguema-ona, S. Coimbra, M. Vicré-gibouin, J. C. Mollet, and A. Driouich, Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects, Ann Bot (Lond), vol.110, pp.383-404, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01844523

R. Palanivelu and T. Tsukamoto, Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization, Wiley Interdiscip Rev Dev Biol, vol.1, pp.96-113, 2012.

R. Palin and A. Geitmann, The role of pectin in plant morphogenesis, Biosystems, vol.109, pp.397-402, 2012.

E. Parre and A. Geitmann, Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense, Planta, vol.220, pp.582-592, 2005.

E. Parre and A. Geitmann, More than a leak sealant: the mechanical properties of callose in pollen tubes, Plant Physiol, vol.137, pp.274-286, 2005.

J. C. Mollet, C. Leroux, F. Dardelle, and A. Lehner, Cell wall composition, biosynthesis and remodeling during pollen tube growth, Plants, vol.2, pp.107-147, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805132

C. Leroux, O. Surcouf, A. Schaumann, J. Pelloux, A. Driouich et al., Kiwi fruit PMEI inhibits PME activity, modulates root elongation and induces pollen tube burst in Arabidopsis thaliana. Plant Growth Regulation, Une partie de cet article est présentée dans l'Introduction et dans la partie Résultats. 2. Paynel F, vol.74, pp.285-297, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01838209

, Une partie de cet article est présentée dans la partie Résultats

C. Leroux, S. Bouton, M. C. Kiefer-meyer, N. Fabrice, T. Mareck et al., The mechanisms of pollination and fertilization in plants, Annu. Rev. Cell Dev. Biol, vol.18, pp.81-105, 2002.

M. K. Kandasamy, J. B. Nasrallah, and M. E. Nasrallah, Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis, vol.120, pp.3405-3418, 1994.

K. A. Lennon, S. Roy, P. K. Hepler, and E. M. Lord, The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth, Sex. Plant Reprod, vol.11, pp.49-59, 1998.

R. Palanivelu and D. Preuss, Pollen tube targeting and axon guidance: Parallels in tip growth mechanisms, Trends Cell Biol, vol.10, pp.517-524, 2000.

S. Kim, J. C. Mollet, J. Dong, K. Zhang, S. Y. Park et al., Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism, Proc. Natl. Acad. Sci, vol.100, pp.16125-16130, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02121573

S. Mccormick and H. Yang, Is there more than one way to attract a pollen tube?, Trends Plant Sci, vol.10, pp.260-263, 2005.

L. C. Boavida, A. M. Vieira, J. D. Becker, and J. A. Feijò, Gametophyte interaction and sexual reproduction: How plants make a zygote, Int. J. Dev. Biol, vol.49, pp.615-632, 2005.

M. A. Johnson and E. M. Lord, Extracellular guidance cues and intracellular signaling pathways that direct pollen tube growth, The Pollen Tube: A Cellular and Molecular Perspective

R. Malho and . Ed, , vol.3, pp.223-242, 2006.

J. C. Mollet, C. Faugeron, and H. Morvan, Cell adhesion, separation and guidance in compatible plant reproduction, Annu. Plant Rev, vol.25, pp.69-90, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00698519

H. J. Wang, J. C. Huang, and G. Y. Jauh, Pollen germination and tube growth, Adv. Bot. Res, vol.54, pp.1-52, 2010.

A. Boisson-dernier, S. A. Kessler, and U. Grossniklaus, The walls have ears: The role of plant CrRLK1Ls in sensing and transducing extracellular signals, J. Exp. Bot, vol.62, pp.1581-1591, 2011.

A. Geitmann and M. Steer, The Architecture and properties of the pollen tube cell wall, The Pollen Tube: A Cellular and Molecular Perspective

R. Malhó, . Ed, and . Springer, , vol.3, pp.177-200, 2006.

A. Geitmann, How to shape a cylinder: Pollen tube as a model system for the generation of complex cellular geometry, Sex. Plant Reprod, vol.23, pp.63-71, 2010.

E. Nguema-ona, S. Coimbra, M. Vicré--gibouin, J. C. Mollet, and A. Driouich, Arabinogalactanproteins in root and pollen tube cells: Distribution and functional aspects, Ann. Bot, vol.110, p.134, 2012.

A. Y. Cheung and H. M. Wu, Structural and signalling networks for the polar cell growth machinery in pollen tubes, Annu. Rev. Plant Biol, vol.59, pp.547-572, 2008.

A. Moscatelli, F. Ciampolini, S. Rodigheiro, E. Onelli, M. Cresti et al., Distinct endocytosis pathways identified in tobacco pollen tubes using charged nanogold, J. Cell Sci, vol.120, pp.3804-3819, 2007.

J. Bove, B. Vaillancourt, J. Kroeger, P. K. Hepler, P. W. Wiseman et al., Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching, Plant Physiol, vol.147, pp.1646-1658, 2008.

A. Moscatelli and A. I. Idilli, Pollen tube growth: A delicate equilibrium between secretory and endocytic pathways, J. Integr. Plant Biol, vol.51, pp.727-739, 2009.

L. Zonia, Spatial and temporal integration of signalling networks regulating pollen tube growth, J. Exp. Bot, vol.61, pp.1939-1957, 2010.

S. Roy, K. J. Eckard, S. Lancelle, P. K. Hepler, and E. M. Lord, High-pressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes, Protoplasma, vol.20, pp.87-98, 1997.

Y. Q. Li, C. Faleri, A. Geitmann, H. Q. Zhang, and M. Cresti, Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L, Protoplasma, vol.189, pp.26-36, 1995.

C. Ferguson, T. T. Teeri, M. Siika-aho, S. M. Read, and A. Bacic, Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum, Planta, vol.206, pp.452-460, 1998.

K. A. Lennon and E. M. Lord, The in vivo pollen tube cell of Arabidopsis thaliana. I. Tube cell cytoplasm and wall, Protoplasma, vol.214, pp.45-56, 2000.

J. Derksen, B. Knuiman, K. Hoedemaekers, A. Guyon, S. Bonhomme et al., Growth and cellular organization of Arabidopsis pollen tubes in vitro, Sex. Plant Reprod, vol.15, pp.133-139, 2002.

F. Dardelle, A. Lehner, Y. Ramdani, M. Bardor, P. Lerouge et al., Biochemical and immunocytological characterizations of Arabidopsis thaliana pollen tube cell wall, Plant Physiol, vol.153, pp.1563-1576, 2010.

Y. Chebli, M. Kaneda, R. Zerzour, and A. Geitmann, The cell wall of the Arabidopsis thaliana pollen tube-Spatial distribution, recycling and network formation of polysaccharides, Plant Physiol, vol.160, pp.1940-1955, 2012.

J. Derksen, Y. Q. Li, B. Knuiman, and H. Geurts, The wall of Pinus sylvestris L. pollen tubes, Protoplasma, vol.208, pp.26-36, 1999.

R. Yatomi, S. Nakamura, and N. Nakamura, Immunochemical and cytochemical detection of wall components of germinated pollen of Gymnosperms, vol.41, pp.21-28, 2002.

Y. Qin, D. Chen, and J. Zhao, Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L, Protoplasma, vol.231, pp.43-53, 2007.

E. Parre and A. Geitmann, Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense, Planta, vol.220, pp.582-592, 2005.

Y. Hasegawa, S. Nakamura, S. Kakizoe, M. Sato, and N. Nakamura, Immunocytochemical and chemical analyses of Golgi vesicles isolated from the germinated pollen of Camellia japonica, J. Plant Res, vol.111, pp.421-429, 1998.

J. Z. Wu, Y. Lin, X. L. Zhang, D. W. Pang, and J. Zhao, IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri, J. Exp. Bot, vol.59, pp.2529-2543, 2008.

I. Abreu and M. Oliveira, Immunolocalisation of arabinogalactan proteins and pectins in Actinidia deliciosa pollen, Protoplasma, vol.224, pp.123-128, 2004.

J. Puhlmann, E. Bucheli, M. J. Swain, N. Dunning, P. Albersheim et al., Generation of monoclonal antibodies against plant cell wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal alpha-(1,2)-linked fucosyl-containing epitope, Plant Physiol, vol.104, pp.699-710, 1994.

S. E. Marcus, Y. Verhertbruggen, C. Herve, J. J. Ordaz-ortiz, V. Farkas et al., Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls, BMC Plant Biol, vol.8, pp.60-71, 2008.

M. H. Clausen, W. G. Willats, and J. P. Knox, Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7, Carbohydr. Res, vol.338, pp.1797-1800, 2003.

Y. Verhertbruggen, S. E. Marcus, A. Haeger, J. J. Ordaz-ortiz, and J. P. Knox, An extended set of monoclonal antibodies to pectic homogalacturonan, Carbohydr. Res, vol.344, pp.1858-1862, 2009.

W. G. Willats, L. Mccartney, C. G. Steele-king, S. E. Marcus, A. Mort et al., A xylogalacturonan epitope is specifically associated with plant cell detachment, Planta, vol.218, pp.673-681, 2004.

L. Jones, G. B. Seymour, and J. P. Knox, Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1->4)-beta-D-galactan, Plant Physiol, vol.113, pp.1405-1412, 1997.

W. G. Willats, S. E. Marcus, and J. P. Knox, Generation of a monoclonal antibody specific to (1->5)-alpha-L-arabinan, Carbohydr. Res, vol.308, pp.149-152, 1998.

I. Moller, S. E. Marcus, A. Haeger, Y. Verhertbruggen, R. Verhoef et al., High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchial clustering of their carbohydrate microarray binding profiles, Glycoconj. J, vol.25, pp.49-58, 2008.

P. J. Meikle, I. Bonig, N. J. Hoogenraad, A. E. Clarke, and B. A. Stone, The location of (1?3)-betaglucans in the walls of pollen tubes of Nicotiana alata using a (1?3)-beta-glucan-specific monoclonal antibody, Planta, vol.185, pp.1-8, 1991.

T. Matoh, M. Takasaki, K. Takabe, and M. Kobayashi, Immunocytochemistry of rhamnogalacturonan II in cell walls of higher Plants, Plant Cell Physiol, vol.39, pp.483-491, 1998.

S. A. Johnson-brousseau and S. Mccormick, A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically expressed genes, Plant J, vol.39, pp.761-775, 2004.

C. M. Rounds, E. Lubeck, P. K. Hepler, and L. J. Winship, Propidium iodide competes with Ca 2+ to label pectin in pollen tubes and Arabidopsis root hairs, Plant Physiol, vol.157, pp.175-187, 2011.

A. W. Blake, L. Mccartney, J. E. Flint, D. N. Bolam, A. B. Boraston et al., Understanding the biological rationale for the diversity of cellulose-directed carbohydratebinding molecules in prokaryotic enzymes, J. Biol. Chem, vol.281, pp.29321-29329, 2006.

. Wallmbdb, , 2012.

G. Y. Jauh and E. M. Lord, Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination, Planta, vol.199, pp.251-261, 1996.

J. C. Mollet, S. Kim, G. Y. Jauh, and E. M. Lord, AGPs, pollen tube growth and the reversible effects of Yariv phenylglycoside, Protoplasma, vol.219, pp.89-98, 2002.

A. L. Rubinstein, J. Má-rque, M. S. Cervera, and P. A. Bedinger, Extensin-like glycoproteins in the maize pollen tube wall, Plant Cell, vol.7, pp.2211-2225, 1995.

T. Chen, N. J. Teng, X. Q. Wu, Y. H. Wang, W. Tang et al., Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking, Plant Cell Physiol, vol.48, pp.19-30, 2007.

D. D. Fernando, C. R. Quinn, E. Brenner, and J. N. Owens, Male gametophyte development and evolution in Gymnosperms, Int. J. Plant Dev. Biol, vol.4, pp.47-63, 2010.

E. Parre and A. Geitmann, More than a leak sealant. The mechanical properties of callose in pollen tubes, Plant Physiol, vol.137, pp.274-286, 2005.

J. Derksen, G. J. Janssen, M. Wolters-arts, I. Lichtscheidl, W. Adlassnig et al., Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum, Plant J, vol.68, pp.495-506, 2011.

J. M. Abercrombie, B. C. O'meara, A. R. Moffatt, and J. H. Williams, Developmental evolution of flowering plant pollen tube cell walls: Callose synthase (CalS) gene expression patterns, EvoDevo, 2011.

M. D. Lazzaro, J. M. Donohue, and F. M. Soodavar, Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes, Protoplasma, vol.220, pp.201-207, 2003.

K. H. Caffall and D. Mohnen, The structure, function, and biosynthesis of plant cell wall pectic polysaccharides, Carbohydr. Res, vol.344, pp.1879-1900, 2009.

F. Micheli, Pectin methylesterases: Cell wall enzymes with important roles in plant physiology, Trends Plant Sci, vol.6, pp.414-419, 2001.

M. Stepka, F. Ciampolini, M. Charzynska, and M. Cresti, Localization of pectins in the pollen tube wall of Ornithogalum virens L. Does the pattern of pectin distribution depend on the growth rate of the pollen tube, Planta, vol.210, pp.630-635, 2000.

Y. Q. Li, F. Chen, H. F. Linskens, and M. Cresti, Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants, Sex. Plant Reprod, vol.7, pp.145-152, 1994.

K. M. Chen, G. L. Wu, Y. H. Wang, C. T. Tian, J. Samaj et al., The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components, Protoplasma, vol.233, pp.39-49, 2008.

W. G. Willats, C. Orfila, G. Limberg, H. C. Buchholt, G. Van-alebeek et al., Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties, and cell adhesion, J. Biol. Chem, vol.276, pp.19404-19413, 2001.

P. Fayant, O. Girlanda, Y. Chebli, C. Aubin, I. Villemure et al., Finite element model of polar growth in pollen tubes, Plant Cell, vol.22, pp.2579-2593, 2010.

A. Group, An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants, Bot. J. Linn. Soc, vol.161, pp.105-121, 2009.

S. C. Fry, Cell wall polysaccharide composition and covalent crosslinking, Annu. Plant Rev, vol.41, pp.1-42, 2011.

H. V. Scheller, P. Ulvskov, and . Hemicelluloses, Annu. Rev. Plant Biol, vol.61, pp.263-289, 2010.

D. J. Cosgrove, Enzymes and other agents that enhance cell wall extensibility, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.50, pp.391-417, 1999.

G. Freshour, C. P. Bonin, W. D. Reiter, P. Albersheim, A. G. Darvill et al., Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis, Plant Physiol, vol.131, pp.1602-1612, 2003.

J. H. Williams, Novelties of the flowering plant pollen tube underlie diversification of a key life history stage, Proc. Natl. Acad. Sci, vol.105, pp.11259-11263, 2008.

S. T. Laughlin and C. R. Bertozzi, Imaging the glycome, Proc. Natl. Acad. Sci, vol.106, pp.12-17, 2009.

C. T. Anderson and I. S. Wallace, Illuminating the wall: Using click chemistry to image pectins in Arabidopsis cell walls, Plant Signal. Behav, vol.7, pp.661-663, 2012.

C. T. Anderson, I. S. Wallace, and C. R. Somerville, Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls, Proc. Natl. Acad. Sci, vol.109, pp.1329-1334, 2012.

A. L. Rae, P. J. Harris, A. Bacic, and A. E. Clarke, Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes, Planta, vol.166, pp.128-133, 1985.

N. Nakamura and H. Suzuki, Sugar composition of pollen grain and pollen tube cell walls, Phytochemistry, vol.20, pp.981-984, 1981.

S. C. Fry, W. S. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucanderived oligosaccharides, Physiol. Plant, vol.89, pp.1-3, 1993.

D. M. Cavalier, O. Lerouxel, L. Neumetzler, K. Yamauchi, A. Reinecke et al., Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component, Plant Cell, vol.20, pp.1519-1537, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352498

M. Günl, F. Kraemer, and M. Pauly, Oligosaccharide Mass Profiling (OLIMP) of Cell Wall Polysaccharides by MALDI-TOF/MS, The Plant Cell Wall: Methods and Protocols

Z. A. Popper, , 2011.

O. Lerouxel, T. S. Choo, M. Seveno, B. Usadel, L. Faye et al., Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting, Plant Physiol, vol.130, pp.1754-1763, 2002.

M. Sekkal, J. Huvenne, P. Legrand, B. Sombret, J. Mollet et al., Direct structural identification of polysaccharides from red algae by FTIR microspectrometry. I. Localization of agar in Gracilaria verrucosa sections, Microchim. Acta, vol.112, pp.1-10, 1993.
URL : https://hal.archives-ouvertes.fr/hal-02121680

L. Chen, N. C. Carpita, W. D. Reiter, R. H. Wilson, C. Jeffries et al., A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra, Plant J, vol.16, pp.385-392, 1998.

G. Mouille, S. Robin, M. Lecomte, S. Pagant, and H. Höfte, Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy, Plant J, vol.35, pp.393-404, 2003.

Q. Wang, L. Lu, X. Wu, Y. Li, and J. Lin, Boron influences pollen germination and pollen tube growth in Picea meyeri, Tree Physiol, vol.23, pp.345-351, 2003.

Q. L. Wang, L. A. Kong, H. Q. Hao, X. H. Wang, J. X. Lin et al., Effects of brefeldin A on pollen germination and tube growth: Antagonistic effects on endocytosis and secretion, Plant Physiol, vol.139, pp.1692-1703, 2005.

Y. Wang, T. Chen, C. Zhang, H. Hao, P. Liu et al., Nitric oxide modulates the influx of extracellular Ca 2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes, New Phytol, vol.182, pp.851-862, 2009.

D. Mohnen, Pectin structure and biosynthesis, Curr. Opin. Plant Biol, vol.11, pp.266-277, 2008.

A. Driouich, M. L. Follet-gueye, S. Bernard, S. Kousar, L. Chevalier et al., Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants, Front. Plant Sci, vol.2012
URL : https://hal.archives-ouvertes.fr/hal-00720301

K. Akita, T. Ishimizu, T. Tsukamoto, T. Ando, and S. Hase, Successive glycosyltransfer activity and enzymatic characterization of pectic polygalacturonate 4-alpha-galacturonosyltransferase solubilized from pollen tubes of Petunia axillaris using pyridylaminated oligogalacturonates as substrates, Plant Physiol, vol.130, pp.374-379, 2002.

K. H. Caffall, S. Pattathil, S. Phillips, M. G. Hahn, and D. Mohnen, Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa, Mol. Plant, vol.2, pp.1000-1014, 2009.

Y. Kong, G. Zhou, Y. Yin, Y. Xu, S. Pattathil et al., Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases, Plant Physiol, vol.155, pp.1791-1805, 2011.

J. D. Sterling, M. A. Atmodjo, S. E. Inwood, V. S. Kumar-kolli, H. F. Quigley et al., Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase, Proc. Natl. Acad. Sci, vol.103, pp.5236-5241, 2006.

S. Bouton, E. Leboeuf, G. Mouille, M. T. Leydecker, J. Talbotec et al., QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis, Plant Cell, vol.14, pp.2577-2590, 2002.

Y. Qin, A. R. Leydon, A. Manziello, R. Pandey, D. Mount et al., Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, Pointing to genes critical for growth in a pistil, PLoS Genet, 2009.

J. K. Jensen, S. O. Sørensen, J. Harholt, N. Geshi, Y. Sakuragi et al., Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis, Plant Cell, vol.20, pp.1289-1302, 2008.

J. Harholt, A. Suttangkakul, and H. V. Scheller, Biosynthesis of pectin, Plant Physiol, vol.153, pp.384-395, 2010.

T. Konishi, T. Takeda, Y. Miyazaki, M. Ohnishi-kameyama, T. Hayashi et al., A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose, Glycobiology, vol.17, pp.345-354, 2007.

G. Drakakaki, O. Zabotina, I. Delgado, S. Robert, K. Keegstra et al., Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development, Plant Physiol, vol.142, pp.1480-1492, 2006.

C. Rautengarten, B. Ebert, T. Herter, C. J. Petzold, T. Ishii et al., The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis, Plant Cell, vol.23, pp.1373-1390, 2011.

H. Iwai, A. Hokura, M. Oishi, H. Chida, T. Ishii et al., The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization, Proc. Natl. Acad. Sci, vol.103, pp.16592-16597, 2006.

A. M. Wu, C. Rihouey, M. Seveno, E. Hörnblad, S. Singh et al., The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation, Plant J, vol.57, pp.718-731, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02128741

D. M. Brown, Z. Zhang, E. Stephens, P. Dupree, and S. R. Turner, Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis, Plant J, vol.57, pp.732-746, 2009.

F. Delmas, M. Sé-veno, J. G. Northey, M. Hernould, P. Lerouge et al., The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation, J. Exp. Bot, vol.59, pp.2639-2647, 2008.

X. L. Liu, L. Liu, Q. K. Niu, C. Xia, K. Z. Yang et al., Male gametophyte defective 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis, Plant J, vol.65, pp.647-660, 2011.

Y. Deng, W. Wang, W. Q. Li, C. Xia, H. Z. Liao et al., MALE GAMETOPHYTE DEFECTIVE 2, encoding a sialyltransferase-like protein, is required for normal pollen germination and pollen tube growth in Arabidopsis, J. Integr. Plant Biol, vol.52, pp.829-843, 2010.

M. Kobayashi, N. Kouzu, A. Inami, K. Toyooka, Y. Konishi et al., Characterization of Arabidopsis CTP:3-deoxy-D-manno-2-octulosonate cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis, Plant Cell Physiol, vol.52, pp.1832-1843, 2011.

F. Goubet and D. Mohnen, Solubilization and partial characterization of homogalacturonanmethyltransferase from microsomal membranes of suspension-cultured tobacco cells, Plant Physiol, vol.121, pp.281-290, 1999.

M. Pauly and H. V. Scheller, O-Acetylation of plant cell wall polysaccharides: Identification and partial characterization of a rhamnogalacturonan O-acetyl-transferase from potato suspensioncultured cells, Planta, vol.210, pp.659-667, 2000.

G. Mouille, M. C. Ralet, C. Cavelier, C. Eland, D. Effroy et al., Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain, Plant J, vol.50, pp.605-614, 2007.

Y. Miao, H. Y. Li, J. Shen, J. Wang, and L. Jiang, QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspensioncultured cells, J. Exp. Bot, vol.62, pp.5063-5078, 2011.

Y. Manabe, M. Nafisi, Y. Verhertbruggen, C. Orfila, S. Gille et al., Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea, Plant Physiol, vol.155, pp.1068-1078, 2011.

O. A. Zabotina, Xyloglucan and its biosynthesis, Front. Plant Sci, vol.2012

J. C. Cocuron, O. Lerouxel, G. Drakakaki, A. P. Alonso, A. H. Liepman et al., A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase, Proc. Natl. Acad. Sci, vol.104, pp.8550-8555, 2007.

D. M. Cavalier and K. Keegstra, Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose, J. Biol. Chem, vol.281, pp.34197-34207, 2006.

S. Vuttipongchaikij, D. Brocklehurst, C. Steele-king, D. A. Ashford, L. D. Gomez et al., Arabidopsis GT34 family contains five xyloglucan ?-1,6-xylosyltransferases, New Phytol, vol.195, pp.585-595, 2012.

M. Madson, C. Dunand, X. Li, R. Verma, G. F. Vanzin et al., The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins, Plant Cell, vol.15, pp.1662-1670, 2003.

J. K. Jensen, A. Schultink, K. Keegstra, C. G. Wilkerson, and M. Pauly, RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): Identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis, Mol. Plant, vol.5, pp.984-992, 2012.

R. M. Perrin, A. E. Derocher, M. Bar-peled, W. Zeng, L. Norambuena et al., Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis, Science, vol.284, pp.1976-1979, 1999.

G. F. Vanzin, M. Madson, N. C. Carpita, N. V. Raikhel, K. Keegstra et al., The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1, Proc. Natl. Acad. Sci, vol.99, pp.3340-3345, 2002.

G. Guerriero, J. Fugelstad, and V. Bulone, What do we really know about cellulose biosynthesis in Higher Plants?, J. Integr. Plant Biol, vol.52, pp.161-175, 2010.

T. Richmond, Higher plant cellulose synthases, Genome Biol, vol.1, pp.3001-3002, 2000.

M. S. Doblin, I. Kurek, D. Jacob-wilk, and D. P. Delmer, Cellulose biosynthesis in plants: From genes to rosettes, Plant Cell Physiol, vol.43, pp.1407-1420, 2002.

T. A. Richmond and C. R. Somerville, Integrative approaches to determining Csl function, Plant Mol. Biol, vol.47, pp.131-143, 2001.

A. J. Bernal, C. M. Yoo, M. Mutwil, J. K. Jensen, G. Hou et al., Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells, Plant Physiol, vol.148, pp.1238-1253, 2008.

L. Wang, K. Guo, Y. Li, Y. Tu, H. Hu et al., Expression profiling and integrative analysis of the CESA/CSL superfamily in rice, BMC Plant Biol, p.282, 2010.

M. S. Doblin, L. De-melis, E. Newbigin, A. Bacic, and S. M. Read, Pollen tubes of Nicotiana alata express two genes from different ?-Glucan synthase families, Plant Physiol, vol.125, pp.2040-2052, 2001.

G. Cai, C. Faleri, C. Del-casino, A. M. Emons, and M. Cresti, Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules, Plant Physiol, vol.155, pp.1169-1190, 2011.

W. Wang, L. Wang, C. Chen, G. Xiong, X. Y. Tan et al., Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes, J. Exp. Bot, vol.62, pp.5161-5177, 2011.

S. Persson, A. Paredez, A. Carroll, H. Palsdottir, M. Doblin et al., Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis, Proc. Natl. Acad. Sci, vol.104, pp.15566-15571, 2007.

L. C. Boavida, B. Shuai, H. J. Yu, G. C. Pagnussat, V. Sundaresan et al., A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana, Genetics, vol.181, pp.1369-1385, 2009.

D. P. Verma and Z. Hong, Plant callose synthase complexes, Plant Mol. Biol, vol.47, pp.693-701, 2001.

S. Nishikawa, G. M. Zinkl, R. J. Swanson, D. Maruyama, and D. Preuss, Callose (beta-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth, BMC Plant Biol, vol.5, p.15, 2005.

X. Dong, Z. Hong, M. Sivaramakrishnan, M. Mahfouz, and D. P. Verma, Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis, Plant J, vol.42, pp.315-328, 2005.

L. Brownfield, K. Ford, M. S. Doblin, E. Newbigin, S. Read et al., Proteomic and biochemical evidence links the callose synthase in Nicotiana alata pollen tubes to the product of the NaGSL1 gene, Plant J, vol.52, pp.147-156, 2007.

L. Brownfield, S. Wilson, E. Newbigin, A. Bacic, and S. Read, Molecular control of the glucan synthase-like protein NaGSL1 and callose synthesis during growth of Nicotiana alata pollen tubes, Biochem. J, vol.414, pp.43-52, 2008.

E. Pacini, G. G. Franchi, and M. Ripaccioli, Ripe pollen structure and histochemistry of some Gymnosperms, Plant Syst. Evol, vol.217, pp.81-99, 1999.

S. Mcqueen-mason, D. M. Durachko, and D. J. Cosgrove, Two endogenous proteins that induce cell wall extension in plants, Plant Cell, vol.4, pp.1425-1433, 1992.

Z. Li, D. M. Durachko, and D. J. Cosgrove, An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls, Planta, vol.191, pp.349-356, 1993.

J. Sampedro and D. J. Cosgrove, The expansin superfamily, Genome Biol, vol.6, pp.1-11, 2005.

S. Mcqueen-mason and D. J. Cosgrove, Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension, Proc. Natl. Acad. Sci, vol.91, pp.6574-6578, 1994.

S. Mcqueen-mason and D. J. Cosgrove, Analysis of wall hydrolysis, stress relaxation, and binding, Plant Physiol, vol.107, pp.87-100, 1995.

E. I. Sharova, Expansins: Proteins involved in cell wall softening during plant growth and morphogenesis, Russ. J. Plant Physiol, vol.54, pp.713-727, 2007.

, Arabidopsis genes, 2012.

S. Dai, L. Li, T. Chen, K. Chong, Y. Xue et al., Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth, Proteomics, vol.6, pp.2504-2529, 2006.

L. C. Li, P. A. Bedinger, C. Volk, A. D. Jones, and D. J. Cosgrove, Purification and characterization of four ?-expansins (Zea m 1 Isoforms) from maize pollen, Plant Physiol, vol.132, pp.2073-2085, 2003.

Y. Jin, A. S. Tashpulatov, H. Katholnigg, E. Heberle-bors, and A. Touraev, Isolation and characterization of two wheat ?-expansin genes expressed during male gametophyte development, Protoplasma, vol.228, pp.13-19, 2006.

M. A. Zaidi, S. O'leary, S. Wu, S. C. Gleddie, F. Eudes et al., A molecular and proteomic investigation of proteins rapidly released from triticale pollen upon hydration, Plant Mol Biol, vol.79, pp.101-121, 2012.

D. J. Cosgrove, P. Bedinger, and D. M. Durachko, Group 1 allergens of grass pollen as cell wall-loosening agents, Proc. Natl. Acad. Sci, vol.94, pp.6559-6564, 1997.

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson et al., An -Electronic fluorescent pictograph? browser for exploring and analyzing large-scale biological data sets, PLoS One, vol.2, p.718, 2007.

M. Magrane and . Uniprot-consortium, UniProt Knowledgebase: A hub of integrated protein data, Database, 2011.

H. Hende, K. J. Bradford, D. A. Brummel, H. T. Cho, D. J. Cosgrove et al., Nomenclature for members of the expansin superfamily of genes and proteins, Plant Mol. Biol, vol.55, pp.311-314, 2004.

R. Swanson, T. Clark, and D. Preuss, Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes, Sex. Plant Reprod, vol.18, pp.163-171, 2005.

J. K. Rose, J. Braam, S. C. Fry, and K. Nishitani, The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature, Plant Cell Physiol, vol.43, pp.1421-1435, 2002.

S. C. Fry, R. C. Smith, K. F. Renwick, D. J. Martin, S. K. Hodge et al., Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants, Biochem. J, vol.282, pp.821-828, 1992.

K. Nishitani and R. Tominaga, Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule, J. Biol. Chem, vol.267, pp.21058-21064, 1992.

R. Yokoyama and K. Nishitani, A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell wall construction in specific organs of Arabidopsis, Plant Cell Physiol, vol.42, pp.1025-1033, 2001.

R. Yokoyama, J. K. Rose, and K. Nishitani, A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis, Plant Physiol, vol.134, pp.1088-1099, 2004.

J. Becnel, M. Natarajan, A. Kipp, and J. Braam, Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator, Plant Mol. Biol, vol.61, pp.451-467, 2006.

K. Kurasawa, A. Matsui, R. Yokoyama, T. Kuriyama, T. Yoshizumi et al., The AtXTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in Arabidopsis thaliana, Plant Cell Physiol, vol.50, pp.413-422, 2009.

G. F. Zhang and L. A. Staehelin, Functional compartmentation of the Golgi apparatus of plant cells: Immunocytochemical analysis of high-pressure frozen-and freeze-substituted sycamore maple suspension culture cells, Plant Physiol, vol.99, pp.1070-1083, 1992.

J. Gaffe, D. M. Tieman, and A. K. Handa, Pectin methylesterase isoforms in tomato (Lycopersicon esculentum) tissues (effects of expression of a pectin methylesterase antisense gene), Plant Physiol, vol.105, pp.199-203, 1994.

S. Y. Rhee and C. R. Somerville, Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall, Plant J, vol.15, pp.79-88, 1998.

S. Y. Rhee, E. Osborne, P. D. Poindexter, and C. R. Somerville, Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell-wall degradation, Plant Physiol, vol.133, pp.1170-1180, 2003.

K. E. Francis, S. Y. Lam, and G. P. Copenhaver, Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methyl-esterase gene, Plant Physiol, vol.142, pp.1004-1013, 2006.

S. Wolf, G. Mouille, and J. Pelloux, Homogalacturonan methyl-esterification and plant development, Mol. Plant, vol.2, pp.851-860, 2009.

Y. Zhu, P. Zhao, X. Wu, W. Wang, M. Scali et al., Proteomic identification of differentially expressed proteins in mature and germinated maize pollen, Acta Physiol. Plant, vol.33, pp.1467-1474, 2011.

W. Ge, Y. Song, C. Zhang, Y. Zhang, A. L. Burlingame et al., Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen, Biochim. Biophys. Acta, vol.1814, pp.1964-1973, 2011.

Y. Q. Li, A. Mareck, C. Faleri, A. Moscatelli, Q. Liu et al., Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L, Planta, vol.214, pp.734-740, 2002.

L. Jiang, S. L. Yang, L. F. Xie, C. S. Puah, X. Q. Zhang et al., VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract, Plant Cell, vol.17, pp.584-596, 2005.

G. W. Tian, M. H. Chen, A. Zaltsman, and V. Citovsky, Pollen-specific pectin methylesterase involved in pollen tube growth, Dev. Biol, vol.294, pp.83-91, 2006.

M. Bosch, A. Y. Cheung, and P. K. Hepler, Pectin methylesterase, a regulator of pollen tube growth, Plant Physiol, vol.138, pp.1334-1346, 2005.

S. Wolf, S. Grsic-rausch, T. Rausch, and S. Greiner, Identification of pollen-expressed pectin methylesterase inhibitors in Arabidopsis, FEBS Lett, vol.555, pp.551-555, 2003.

A. Raiola, L. Camardella, A. Giovane, B. Mattei, G. De-lorenzo et al., Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors, FEBS Lett, vol.557, pp.199-203, 2004.

C. Pina, F. Pinto, J. A. Feijó, and J. D. Becker, Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation, Plant Physiol, vol.138, pp.744-756, 2005.

G. Y. Zhang, J. Feng, J. Wu, and X. W. Wang, BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth, Planta, vol.231, pp.1323-1334, 2010.

A. Lehner, C. Leroux, and J. C. Mollet, Unpublished work, 2013.

N. Röckel, S. Wolf, B. Kost, T. Rausch, and S. Greiner, Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins, Plant J, vol.53, pp.133-143, 2008.

E. Leboeuf, F. Guillon, S. Thoiron, and M. Lahaye, Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: Implications for cell adhesion, J. Exp. Bot, vol.56, pp.3171-3182, 2005.

C. Durand, M. Vicre-gibouin, M. L. Follet-gueye, L. Duponchel, M. Moreau et al., The organization pattern of root border-likes cells of Arabidopsis thaliana is dependent on cell wall homogalacturonan, Plant Physiol, vol.150, pp.1411-1421, 2009.

J. C. Mollet, S. Y. Park, E. A. Nothnagel, and E. M. Lord, A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix, Plant Cell, vol.12, pp.1737-1749, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02121618

S. Y. Park, G. Y. Jauh, J. C. Mollet, K. J. Eckard, E. A. Nothnagel et al., A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix, Plant Cell, vol.12, pp.151-164, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02121636

C. W. Tung, K. G. Dwyer, M. E. Nasrallah, and J. B. Nasrallah, Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth, Plant Physiol, vol.138, pp.977-989, 2005.

J. Nieuwland, R. Feron, B. A. Huisman, A. Fasolino, C. W. Hilbers et al., Lipid transfer proteins enhance cell wall extension in tobacco, Plant Cell, vol.17, 2005.

K. Chae, C. A. Kieslich, D. Morikis, S. C. Kim, and E. M. Lord, A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization, Plant Cell, vol.21, pp.3902-3914, 2009.

J. Y. Gou, L. M. Miller, G. Hou, X. H. Yu, X. Y. Chen et al., Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination and Plant reproduction, Plant Cell, vol.24, pp.50-65, 2012.

R. A. Wing, J. Yamaguchi, S. K. Larabell, V. M. Ursin, and S. Mccormick, Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia, Plant Mol. Biol, vol.14, pp.17-28, 1989.

Y. Wu, X. Qiu, S. Du, and L. Erickson, PO149, a new member of pollen pectate lyase-like gene family from alfalfa, Plant Mol. Biol, vol.32, pp.1037-1042, 1996.

R. Kulikauskas and S. Mccormick, Identification of the tobacco and Arabidopsis homologues of the pollen-expressed LAT59 gene of tomato, Plant Mol. Biol, vol.34, pp.809-814, 1997.

M. V. Marin-rodriguez, J. Orchard, and G. B. Seymour, Pectate lyases, cell wall degradation and fruit softening, J. Exp. Bot, vol.53, pp.2115-2119, 2002.

S. G. Palusa, M. Golovkin, S. B. Shin, D. N. Richardson, and A. S. Reddy, Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis, New Phytol, vol.174, pp.537-550, 2007.

L. Sun and S. Van-nocker, Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis, BMC Plant Biol, p.152, 2010.

S. Dai, T. Chen, K. Chong, Y. Xue, S. Liu et al., Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen, Mol. Cell. Proteomics, vol.6, pp.207-230, 2007.

B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem J, vol.280, pp.309-316, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00310263

, Glycoside Hydrolase Family Classification, p.23, 2012.

E. Del-campillo and L. N. Lewis, Occurrence of 9.5 cellulase and other hydrolases in flower reproductive organs undergoing major cell wall disruption, Plant Physiol, vol.99, pp.1015-1020, 1992.

L. Aouar, Y. Chebli, and A. Geitmann, Morphogenesis of complex plant cell shapes: The mechanical role of crystalline cellulose in growing pollen tubes, Sex. Plant Reprod, vol.23, pp.15-27, 2010.

H. P. Roggen and R. G. Stanley, Cell-wall-hydrolysing enzymes in wall formation as measured by pollen-tube extension, Planta, vol.84, pp.295-303, 1969.

H. Takeda, T. Yoshikawa, X. Z. Liu, N. Nakagawa, Y. Q. Li et al., Molecular cloning of two exo-beta-glucanases and their in vivo substrates in the cell walls of lily pollen tubes, Plant Cell Physiol, vol.45, pp.436-444, 2004.

T. Kotake, Y. Q. Li, M. Takahashi, and N. Sakurai, Characterization and function of wall-bound exo-beta-glucanases of Lilium longiflorum pollen tubes, Sex. Plant Reprod, vol.13, pp.1-9, 2000.

P. Hruba, D. Honys, D. Twell, V. Capkova, and J. Tupy, Expression of beta-galactosidase and beta-xylosidase genes during microspore and pollen development, Planta, vol.220, pp.931-940, 2005.

R. Pressey and B. J. Reger, Polygalacturonase in pollen from corn and other grasses, Plant Sci, vol.59, pp.57-62, 1969.

K. A. Hadfield and A. B. Bennett, Polygalacturonases: Many genes in search of a function, Plant Physiol, vol.117, pp.337-343, 1998.

. Arabidopsis-genome-initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, vol.408, pp.796-815, 2000.

Z. H. Gonzá-lez-carranza, K. A. Elliott, and J. A. Roberts, Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana, J. Exp. Bot, vol.58, pp.3719-3730, 2007.

J. Kim, S. H. Shiu, S. Thoma, W. H. Li, and S. E. Patterson, Patterns of expansion and expression divergence in the plant polygalacturonase gene family, Genome Biol, vol.7, p.87, 2007.

M. Torki, P. Mandaron, R. Mache, and D. Falconet, Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana, Gene, vol.242, pp.427-436, 2000.

L. Huang, Y. Ye, Y. Zhang, A. Zhang, T. Liu et al., BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation, Ann. Bot, vol.104, pp.1339-1351, 2009.

L. Huang, J. Cao, A. Zhang, Y. Ye, Y. Zhang et al., The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development, J. Exp. Bot, vol.60, pp.301-313, 2009.

F. Tamari and J. S. Shore, Allelic variation for a short-specific polygalacturonase in Turnera subulata: Is it associated with the degree of self-compatibility?, Int. J. Plant Sci, vol.167, pp.125-133, 2006.

J. D. Dearnaley and G. A. Daggard, Expression of a polygalacturonase enzyme in germinating pollen of Brassica napus, Sex. Plant Reprod, vol.13, pp.265-271, 2001.

M. Bosch and P. K. Hepler, Pectin methylesterases and pectin dynamics in pollen tubes, Plant Cell, vol.17, pp.3219-3226, 2005.

P. M. Dey and E. Del-campillo, Biochemistry of the multiple forms of glycosidases in plants, Adv. Enzymol. Relat. Areas Mol. Biol, vol.56, pp.141-249, 1984.

Y. O. Ahn, M. Zheng, D. R. Bevan, A. Esen, S. H. Shiu et al., Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35, Phytochemistry, vol.68, pp.1510-1520, 2007.

W. Tanthanuch, M. Chantarangsee, J. Maneesan, and J. Ketudat-cairns, Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.), BMC Plant Biol, vol.8, p.84, 2008.

M. B. Singh and R. B. Knox, Grass pollen allergens: Antigenic relationships detected using monoclonal antibodies and dot blotting immunoassay, Int. Arch. Allergy Appl. Immunol, vol.78, pp.300-304, 1985.

A. Y. Cheung, H. Wang, and H. M. Wu, A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth, Cell, vol.82, pp.383-393, 1995.

H. M. Wu, H. Wang, and A. Y. Cheung, A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower, Cell, vol.82, pp.395-403, 1995.

H. J. Rogers, S. L. Maund, and L. H. Johnson, A ?-galactosidase-like gene is expressed during tobacco pollen development, J. Exp. Bot, vol.52, pp.67-75, 2001.

M. Walker, M. Tehseen, M. S. Doblin, F. A. Pettolino, S. M. Wilson et al., The transcriptional regulator LEUNIG_HOMOLOG regulates mucilage release from the Arabidopsis testa, Plant Physiol, vol.156, pp.46-60, 2011.

T. L. Western, J. Burn, W. L. Tan, D. J. Skinner, L. Martin-mccaffrey et al., Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis, Plant Physiol, vol.127, pp.998-1011, 2001.

J. Sampedro, B. Pardo, C. Gianzo, E. Guitian, G. Revilla et al., Lack of alpha-xylosidase activity in Arabidopsis alters xyloglucan composition and results in growth defects, Plant Physiol, vol.154, pp.1105-1115, 2010.

A. Lehner, F. Dardelle, O. Soret-morvan, P. Lerouge, A. Driouich et al., Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil, Plant Signal. Behav, vol.5, pp.1282-1285, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01805116

J. R. Anderson, W. S. Barnes, and P. Bedinger, 6-Dichlorobenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes, J. Plant Physiol, vol.2, pp.61-67, 2002.

S. E. Whitney, E. Wilson, J. Webster, A. Bacic, J. S. Reid et al., Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose, Am. J. Bot, vol.93, pp.1402-1414, 2006.

M. J. Pena, P. Ryden, M. Madson, A. C. Smith, and N. C. Carpita, The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth, Plant Physiol, vol.134, pp.443-451, 2004.

E. Nguema-ona, C. Andeme-onzighi, S. Aboughe-angone, M. Bardor, T. Ishii et al., The reb1-1 mutation of Arabidopsis: Effect on the structure and localization of galactose-containing cell wall polysaccharides, Plant Physiol, vol.140, pp.1406-1417, 2006.

O. A. Zabotina, W. T. Van-de-ven, G. Freshour, G. Drakakaki, D. Cavalier et al., Arabidopsis XXT5 gene encodes a putative alpha-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis, Plant J, vol.56, pp.101-115, 2008.

S. Gille and M. Pauly, O-acetylation of plant cell wall polysaccharides. Front, Plant Sci, vol.2012

P. J. Pena, Y. Kong, W. S. York, and M. A. O'neill, A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth, Plant Cell, vol.24, pp.1-14, 2012.

T. Wang, O. Zabotina, and M. Hong, Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance, Biochemistry, vol.51, pp.9846-9856, 2012.

H. Vogler, C. Draeger, A. Weber, D. Felekis, C. Eichenberger et al., Electronic supplementary material The online version of this article, Plant J, 2012.

F. Paynel, Á. Leroux, Á. Surcouf, Á. Driouich, Á. C. Mollet-Á-p.-lerouge et al., EA, vol.4358

A. Schaumann,

. Mont-saint-aignan and J. France, Pelloux Laboratoire Biologie des Plantes et Innovation (BIOPI) EA3900, vol.33

F. Amiens,

. Blum, Electrophoresis and western-blot Isoelectric focalisation (IEF) was performed on ultrathin polyacrylamide slab gels (0.3 mm) with 3.5-10.0 pH range (Pharmalytes) in 5 % acrylamide according to the manufacturer's procedure with a Multiphor II system (LKBPharmacia). The pH gradient was measured with a contact electrode (pH Inlab 426, VWR International), along a central gel strip. Samples (20 lL) were loaded at the anodic side with an applicator. After electrophoresis, gels were washed for 15-30 min in 20 mM Tris-HCl pH 8.5, 5 mM EDTA. The gels were then submitted to protein fixation for 60 min, M citrate buffer (pH 5.5), 0.1 M phosphate buffer (pH 6.6 and 7.6) and 0.1 M TrisHCl buffer, p.9

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, Image processing with Image, J Biophotonics Int, vol.11, pp.36-42, 2004.

C. Balestrieri, D. Castaldo, A. Giovane, L. Quagliuolo, and L. Servillo, A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis), Eur J Biochem, vol.193, pp.183-187, 1990.

Y. Bertheau, E. Madgidi-hervan, A. Kotoujansky, C. Nguyen-the, T. Andro et al., Detection of depolymerase isoenzymes after electrophoresis or electrofocusing or in titration curves, Anal Biochem, vol.139, pp.383-389, 1984.

B. Bjellqvist, G. J. Hughes, C. Pasquali, N. Paquet, F. Ravier et al., The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences, Electrophoresis, vol.14, pp.1023-1031, 1993.

H. Blum, H. Beier, and H. J. Gross, Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels, Electrophoresis, vol.8, pp.93-99, 1987.

L. C. Boavida and S. Mccormick, Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana, Plant J, vol.52, pp.570-582, 2007.

M. Bosch, A. Y. Cheung, and P. K. Hepler, Pectin methylesterase, a regulator of pollen tube growth, Plant Physiol, vol.138, pp.1334-1346, 2005.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-254, 1976.

S. M. Brady, D. A. Orlando, J. Y. Lee, J. Koch, J. R. Dinneny et al., A high-resolution root spatiotemporal map reveals dominant expression patterns, Science, vol.318, pp.801-806, 2007.
DOI : 10.1126/science.1146265

L. Camardella, V. Carratore, M. A. Ciardiello, L. Servillo, C. Balestrieri et al., Kiwi protein inhibitor of pectin methylesterase amino-acid sequence and structural importance of two disulfide bridges, Eur J Biochem, vol.267, pp.4561-4565, 2000.

Y. Chebli, M. Kaneda, R. Zerzour, and A. Geitmann, The cell wall of the Arabidopsis pollen tube-spatial distribution, recycling, and network formation of polysaccharides, Plant Physiol, vol.160, pp.1940-1955, 2012.

M. A. Ciardiello, D. 'avino, R. Amoresano, A. Tuppo, L. Carpentieri et al., The peculiar structural features of kiwi fruit pectin methylesterase: amino acid sequence, oligosaccharide structure, and modeling of the interaction with its natural proteinaceous inhibitor, Proteins, vol.71, pp.195-206, 2007.

F. Dardelle, A. Lehner, Y. Ramdani, M. Bardor, P. Lerouge et al., Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall, Plant Physiol, vol.153, pp.1563-1576, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01805112

S. Dedeurwaerder, L. Menu-bouaouiche, A. Mareck, P. Lerouge, and F. Guérineau, Activity of an atypical Arabidopsis thaliana pectin methylesterase, Planta, vol.229, pp.311-321, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02128673

P. Derbyshire, M. C. Mccann, and K. Roberts, Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level, BMC Plant Biol, vol.7, p.31, 2007.

C. Deytieux-belleau, A. Vallet, B. Donèche, and L. Geny, Pectin methylesterase and polygalacturonase in the developing grape skin, Plant Physiol Biochem, vol.46, pp.638-646, 2008.

D. Matteo, A. Giovane, A. Raiola, A. Camardella, L. Bonivento et al., Structural bases for the interaction between pectin methylesterase and a specific inhibitor protein, Plant Cell, vol.17, pp.849-858, 2005.

E. M. Eriksson, A. Bovy, K. Manning, L. Harrison, J. Andrews et al., Effect of the colorless nonripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening, Plant Physiol, vol.136, pp.4184-4197, 2004.

E. K. Francis, S. Y. Lam, and G. P. Copenhaver, Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene, Plant Physiol, vol.142, pp.1004-1013, 2006.

S. C. Fry, Cell wall polysaccharide composition and covalent crosslinking, Ann Plant Rev, vol.41, pp.1-42, 2011.
DOI : 10.1002/9781119312994.apr0430

D. Gao, M. R. Knight, A. J. Trewavas, B. Sattelmacher, and C. Plieth, Self reporting Arabidopsis expressing pH and [Ca 2? ] indicators unveil ion dynamics in the cytoplasm and the apoplast under abiotic stress, Plant Physiol, vol.134, pp.898-908, 2004.

E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins et al., The architecture and properties of the pollen tube cell wall. In: Malhó R (ed) The pollen tube, Walker JM (ed) The proteomics protocols handbook, vol.3, pp.177-200, 2005.

S. Guénin, A. Mareck, C. Rayon, R. Lamour, A. Ndong et al., Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana, New Phytol, vol.192, pp.114-126, 2011.

P. K. Hepler, J. G. Kunkel, C. M. Rounds, and L. J. Winship, Calcium entry into pollen tubes, Trends Plant Sci, vol.17, pp.32-38, 2012.
DOI : 10.1016/j.tplants.2011.10.007

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes, Adv Bioinform, p.420747, 2008.

J. J. James, N. N. Alder, K. H. Mühling, A. E. Läuchli, K. A. Shakel et al., High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermiculatus, J Exp Bot, vol.57, pp.139-147, 2006.

L. Jiang, S. L. Yang, L. F. Xie, C. S. Puah, X. Q. Zhang et al., VANGUARD1 encodes a pectin methyl-esterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract, Plant Cell, vol.17, pp.584-596, 2005.

J. A. Klavons and A. D. Bennett, Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins, J Agric Food Chem, vol.34, pp.597-599, 1986.

J. Lacoux, L. Gutierrez, F. Dantin, B. Beaudoin, D. Roger et al., Antisense transgenesis of tobacco with a flax pectin methylesterase affects pollen ornamentation, Protoplasma, vol.222, pp.205-209, 2003.

A. Lehner, F. Dardelle, O. Soret-morvan, P. Lerouge, A. Driouich et al., Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil, Plant Signal Behav, vol.5, pp.1282-1285, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01805116

V. Lionetti, A. Raiola, L. Camardella, A. Giovane, N. Obel et al., Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea, Plant Physiol, vol.143, pp.1871-1880, 2007.

R. Louvet, E. Cavel, L. Gutierrez, S. Guénin, D. Roger et al., Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana, Planta, vol.224, pp.782-791, 2006.

M. Magrane and U. Consortium, UniProt knowledgebase: a hub of integrated protein data, 2011.

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends Plant Sci, vol.6, pp.414-419, 2001.

F. Micheli, B. Sundberg, R. Goldberg, and L. Richard, Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy, Plant Physiol, vol.124, pp.191-199, 2000.

J. C. Mollet, C. Leroux, F. Dardelle, and A. Lehner, Cell wall composition, biosynthesis and remodeling during pollen tube growth, Plants, vol.2, pp.107-147, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805132

A. M. Moustacas, J. Nari, M. Borel, G. Noat, and R. J. , Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension, Biochem J, vol.279, pp.351-354, 1991.

S. Osorio, C. Castillejo, M. A. Quesada, N. Medina-escobar, G. J. Brownsey et al., Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca), Plant J, vol.54, pp.43-55, 2008.

S. Osorio, A. Bombarely, P. Giavalisco, B. Usadel, C. Stephens et al., Demethylation of oligogalacturonides by FaPE1 in the fruits of the wild strawberry Fragaria vesca triggers metabolic and transcriptional changes associated with defence and development of the fruit, J Exp Bot, vol.62, pp.2855-2873, 2011.

E. Parre and A. Geitmann, Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense, Planta, vol.220, pp.582-592, 2005.

A. Peaucelle, R. Louvet, J. N. Johansen, H. Höfte, P. Laufs et al., Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins, Curr Biol, vol.18, pp.1943-1948, 2008.

A. Peaucelle, S. A. Braybrook, L. Guillou, L. Bron, E. Kuhlemeier et al., Pectin-induced changes in cell wall mechanics underlies organ initiation in Arabidopsis, Curr Biol, vol.21, pp.1720-1726, 2011.

S. Pelletier, J. Van-orden, S. Wolf, K. Vissenberg, J. Delacourt et al., A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls, New Phytol, vol.188, pp.726-739, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203918

J. Pelloux, C. Rustérucci, and E. J. Mellerowicz, New insights into pectin methylesterase structure and function, Trends Plant Sci, vol.12, pp.267-277, 2007.

Y. Qin, A. R. Leydon, A. Manziello, R. Pandey, D. Mount et al., Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil, PLoS Genet, vol.5, p.1000621, 2009.

A. Raiola, L. Camardella, A. Giovane, B. Mattei, D. Lorenzo et al., Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors, FEBS Lett, vol.557, pp.199-203, 2004.

I. B. Reca, V. Lionetti, L. Camardella, D. 'avino, R. Giardina et al., A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1, Plant Mol Biol, vol.79, pp.429-442, 2012.

L. Richard, L. X. Qin, P. Gadal, and R. Goldberg, Molecular characterization of a putative pectin methylesterase cDNA and its expression in Arabidopsis thaliana (L.), FEBS Lett, vol.355, pp.135-139, 1994.

N. Röckel, S. Wolf, B. Kost, T. Rausch, and S. Greiner, Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins, Plant J, vol.53, pp.133-143, 2008.

C. M. Rounds, E. Lubeck, P. K. Hepler, and L. J. Winship, Propidium iodide competes with Ca 2? to label pectin in pollen tubes and Arabidopsis root hairs, Plant Physiol, vol.157, pp.175-187, 2011.

A. Plant-growth-regul-siedlecka, S. Wiklund, M. A. Péronne, F. Micheli, J. Lesniewska et al., Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus, Plant Physiol, vol.146, pp.554-565, 2008.

M. Suarez-cervera, J. A. Asturias, A. Vega-maray, T. Castells, C. Lopeziglesias et al., The role of allergenic proteins Pla a 1 and Pla a 2 in the germination of Platanus acerifolia pollen grains, Sexual Plant Reprod, vol.18, pp.101-112, 2005.

J. D. Thomson, D. G. Higgins, and T. J. Gibson, CLUSTALW: improving the sensibility of progressive alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, pp.4673-4680, 1994.

G. W. Tian, M. H. Chen, A. Zaltsman, and V. Citovsky, Pollen-specific pectin methylesterase involved in pollen tube growth, Dev Biol, vol.294, pp.83-91, 2006.

H. Towbin, T. Staehelin, and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc Natl Acad Sci, vol.76, pp.4350-4354, 1979.

J. P. Vincken, H. A. Schols, R. Oomen, M. C. Mccann, P. Ulvskov et al., If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture, Plant Physiol, vol.132, pp.1781-1789, 2003.

S. Wolf, S. Grsic-rausch, T. Rausch, and S. Greiner, Identification of pollen expressed pectin methylesterase inhibitors in Arabidopsis, FEBS Lett, vol.555, pp.551-555, 2003.

S. Wolf, T. Rausch, and S. Greiner, The N-terminal pro-region mediates retention of unprocessed type-I PME in the Golgi apparatus, Plant J, vol.58, pp.361-375, 2009.

M. Woriedh, S. Wolf, M. L. Marton, A. Hinze, M. Gahrtz et al., External application of gametophytespecific ZmPEMI1 induces pollen tube burst in maize, 2013.

G. Y. Zhang, J. Feng, J. Wu, and X. W. Wang, BoPMEI1, a pollenspecific pectin methylesterase inhibitor, has an essential role in pollen tube growth, Planta, vol.231, pp.1323-1332, 2010.

P. Zimmermann, M. Hirsch-hoffmann, L. Hennig, and W. Gruissem, GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox, Plant Physiol, vol.136, pp.2621-2632, 2004.

, Fig S1 Electrophoresis gel of purified kiwi PMEI -(a) Molecular weight standards. (b) Purified kiwi PMEI (10 µg)

C. Leroux, S. Bouton, M. C. Kiefer-meyer, C. Morvan, J. Pelloux et al.,

P. Lerouge, A. Lehner, and J. C. Mollet, Involvement of pectin methylesterase during imbibition and germination of Arabidopsis pollen grain, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01841122

C. Leroux, S. Bouton, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al.,

A. Lehner and J. C. Mollet, Involvement of pectin methylesterase during imbibition and germination of Arabidopsis pollen grain, Journée Ecole doctorale Normande Biologie Intégrative, p.1, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01841122

C. Leroux, A. Lehner, F. Fournet, S. Guénin, M. C. Kiefer-meyer et al., Involvement of two pectin methylesterases AtPPME1 and AtPME48 during Arabidopsis pollen germination, pp.6-8, 2011.

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al.,

J. C. Mollet, Involvement of pectin methylesterases in Arabidopsis pollen imbibition and germination, Journée Ecole doctorale Normande Biologie Intégrative, 2012.

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al.,

J. C. Mollet, Involvement of pectin methylesterases in Arabidopsis pollen imbibition and germination. 1 ère journée scientifique de l'IRIB, 0270.

A. Lehner, F. Dardelle, C. Leroux, and J. C. Mollet, De la fleur à la graine, le fabuleux destin du pollen. 21 ème édition de la Fête de la Science, pp.10-14, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01848674

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al.,

J. C. Mollet, A new model depicting the role of PME during dehydration and germination of pollen grain. Colloque Grands Réseaux de Recherche, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02082495

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al.,

J. C. Mollet, A new model depicting the role of PME during dehydration and germination of pollen grain. 2 ème journée scientifique de l'IRIB, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02082495

A. Lehner, C. Leroux, S. Guénin, F. Fournet, M. C. Kiefer-meyer et al., AtPME48 encodes a pectin methylesterase involved in Arabidopsis pollen grain germination, XIII th Cell Wall Meeting, pp.7-12
URL : https://hal.archives-ouvertes.fr/hal-02080256

, Juillet, 2013.

C. Leroux, S. Bouton, C. Morvan, F. Fournet, S. Guénin et al.,

A. Mareck, J. Pelloux, A. Driouich, P. Lerouge, A. Lehner et al., PME48 activity leads to abnormal pollen germination. 23 rd Congrès ICSPR2014 (International Congress on Sexual Plant Reproduction), p.271, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02081453

, Journées du Réseau Français des Parois (RFP), 2011.

, Baccalauréat Scientifique spécialité SVT-Lycée Jehan Ango -Dieppe. 2011-aujourd'hui: Doctorat en Biologie Cellulaire Végétale -Laboratoire Glyco-MEV -Université de Rouen : « Implication des pectines méthyl-estérases (PME) et de leurs inhibiteurs (PMEI) au cours de l'imbibition et de la germination du grain de pollen ainsi qu'au cours de la croissance polarisée du tube pollinique chez Arabidopsis thaliana, @: christelleleroux3@gmail.com 27 ans, Célibataire, Permis B, véhicule personnel Octobre 2011-aujourd'hui, 2005.

. Février-juillet, Implication de deux pectines méthylestérases dans la croissance du tube pollinique chez Arabidopsis thaliana, 2011.

. Février-août, Etude de l'inactivation du gène codant pour l'arabinogalactane protéine 40 pollen spécifique sur le développement du pollen et la croissance du tube pollinique chez Arabidopsis thaliana. Eté 2009 : Stage d'observation -laboratoire de recherche Glyco-MEV -Université de Rouen, 2010.

, Stage d'observation au sein du laboratoire de la coopérative agricole Terre de lin -Saint-Pierre le Vigier

, Biologie moléculaire: Extraction ADNg et ARN

R. Pcr and . Qpcr,

C. Leroux, S. Bouton, M. C. Kiefer-meyer, T. Ndinyanka, F. Mareck et al., PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination, Plant Physiology, vol.167, pp.347-380, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01838053

F. Paynel, C. Leroux, O. Surcouf, A. Schaumann, J. Pelloux et al., Kiwi fruit PMEI inhibits PME activity, modulates root elongation and induces pollen tube burst in Arabidopsis thaliana. Plant Growth Regulation, vol.74, pp.285-297, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01838209

J. C. Mollet, C. Leroux, F. Dardelle, and A. Lehner, Cell wall composition, Biosynthesis and Remodeling during Pollen Tube Growth, Plants, vol.2, pp.107-147, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01805132

, COMMUNICATIONS AFFICHÉES

C. Leroux, S. Bouton, C. Morvan, F. Fournet, S. Guénin et al., PME48 activity leads to abnormal pollen germination. 23 rd Congrès ICSPR2014 (International Congress on Sexual Plant Reproduction), pp.13-18, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02081453

A. Lehner, C. Leroux, S. Guénin, F. Fournet, M. C. Kiefer-meyer et al., AtPME48 encodes a pectin methylesterase involved in Arabidopsis pollen grain germination, XIII th Cell Wall Meeting, pp.7-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02080256

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al., A new model depicting the role of PME during dehydration and germination of pollen grain. 2 ème journée scientifique de l'IRIB, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02082495

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al., A new model depicting the role of PME during dehydration and germination of pollen grain, Colloque Grands Réseaux de Recherche, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02082495

A. Lehner, F. Dardelle, C. Leroux, and J. C. Mollet, De la fleur à la graine, le fabuleux destin du pollen. 21 ème édition de la Fête de la Science, pp.10-14, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01848674

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al., AtPPME1 and AtPME48, two homologous pectin methylesterases involved in Arabidopsis pollen grain germination. 1 ère journée scientifique de l'IRIB, 2012.

C. Leroux, A. Lehner, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al., Involvement of pectin methylesterases in Arabidopsis pollen imbibition and germination, Journée Ecole doctorale Normande Biologie Intégrative, 2012.

C. Leroux, A. Lehner, F. Fournet, S. Guénin, M. C. Kiefer-meyer et al., Involvement of two pectin methylesterases AtPPME1 and AtPME48 during Arabidopsis pollen germination

C. Leroux, S. Bouton, M. C. Kiefer-meyer, C. Morvan, J. Pelloux et al., Involvement of pectin methylesterase during imbibition and germination of Arabidopsis pollen grain. Journée mini-talk, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01841122

C. Leroux, S. Bouton, M. C. Kiefer-meyer, J. Pelloux, A. Driouich et al., Involvement of pectin methylesterase during imbibition and germination of Arabidopsis pollen grain, Journée Ecole doctorale Normande Biologie Intégrative, pp.10-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01841122

, @: christelleleroux3@gmail.com 27 ans, Célibataire, Permis B, véhicule personnel LEROUX Christelle Doctorat en biologie végétale