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Abstract

Emerging drought stress on vegetation over western Eurasia is linked to varying tele-

connection patterns. The North Sea–Caspian Pattern (NCP) is a relatively less studied

Eurasian teleconnection pattern, which has a role on drought conditions and the con-

sequence of changing conditions on vegetation. Between 1981 and 2015, we found

that the Standardized Precipitation Index (SPI) and the Normalized Difference

Vegetation Index (NDVI) have different trend patterns over various parts of western

Eurasia. Specifically, the vegetation greenness is linked with wetter conditions over

Scandinavia, and vegetation cover decreases over a drying central Asia. However,

western Russia and Franceare paradoxically becoming greener under drier conditions.

Using the Budyko framework, such paradoxical patterns are found in energy-limited

environmental systems, where vegetation growth is primarily promoted by warmer

temperatures. While most studies focused on the impacts of the North Atlantic Oscil-

lation (NAO), we test whether the NCP explains better the variability of meteorologi-

cal drought and vegetation response over western Eurasia. We hypothesised that the

positive phases of the NCP are correlated to high pressure anomalies over the North

Sea, which can be associated with weakening onshore moisture advection, leading to

warmer and dryness conditions. These conditions are driving vegetation greening, as
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western Eurasia is mainly energy limited. However, we show that as the climate is

warming along with the teleconnection impacts, the future ecosystem over western

Eurasia will be transferred from energy-limited to water-limited systems. This sug-

gests that the observed vegetation greening over past three decades is unlikely to

sustain in the future.

Significance statement

Meteorological droughts affect vegetation cover differently across western Eurasia

depending on water and energy supply. Droughts hinder vegetation development in

water-limited areas, but promote vegetation growth in energy-limited areas due to

rising temperatures. The teleconnections that influence precipitation and tempera-

ture patterns are linked to these patterns of vegetation responses. The North Sea-

Caspian Pattern (NCP) explains more variance between meteorological drought and

vegetation response over western Eurasia than the North Atlantic Oscillation (NAO).

The observed vegetation greening over the last three decades is unlikely to persist,

given the effects of rising temperatures and NCP changes.

K E YWORD S

Budyko framework, drought conditions, Normalized Difference Vegetation Index (NDVI), North
Sea–Caspian Pattern (NCP), Standardized Precipitation Index (SPI), Western Eurasia

1 | INTRODUCTION

Vegetation growth over western Eurasia has been linked with large-

scale teleconnections, local hydrological conditions and temperature

increase from the early 1980s (Gouveia et al., 2008; Olafsson &

Rousta, 2021). Hydroclimate conditions over western Eurasia are

shown to be modulated by several teleconnection patterns including

the North Atlantic Oscillation (NAO; Deser et al., 2017; Iles &

Hegerl, 2017; Tsanis & Tapoglou, 2019), Atlantic Oscillation (AO; Báez

et al., 2014; D. Y. Lee et al., 2020), East Atlantic (EA; Ionita, 2014;

Toreti et al., 2010; Toši�c & Putnikovi�c, 2021; Ulbrich et al., 2012), El

Nino Southern Oscillation (ENSO; R. W. Lee et al., 2019; Mezzina

et al., 2020) and South Asian monsoon (SAM; Alpert et al., 2006).

Despite that teleconnections between these different modes of cli-

mate variability and hydroclimate conditions are well-documented in

previous studies (Lled�o et al., 2020; Rousi et al., 2020; Rust

et al., 2018), the impact of the North Sea–Caspian Pattern (NCP)

remains largely unexplored. The NCP is an upper-level atmospheric

teleconnection with centres of active variability over the North Sea

and the Caspian Sea regions. These seas are regional water bodies,

which affect the common locations of local pressure systems due to

seasonal circulation variations driven by temperature gradients caused

by differences of thermal capacity between land and water (Dippner

et al., 2012; Sibley et al., 2015). To date, NCP effects on temperature

and precipitation have been studied mainly for the East Mediterra-

nean and its surrounding regions (Kutiel et al., 2002; Kutiel &

Türkeş, 2005; Sezen & Partal, 2019). However, given that the NCP

centres of action are farther north, it might strongly impact

precipitation patterns, hence drought occurrence and vegetation con-

ditions over the entire Eurasia (Brunetti & Kutiel, 2011; Ça�glar

et al., 2021).

In recent decades, western Eurasia has experienced several

severe drought events, notably in 2002, 2003, 2015 and 2018, due to

large-scale climate variability (Buras & Rammig, 2020; Ionita

et al., 2017; Rimkus et al., 2017). These droughts strongly impacted

agricultural activities and ecological services (Changnon, 2003;

Murnane, 2004; Parmesan et al., 2000). Vegetation indices serve as a

crucial ecohydrological indicator of terrestrial ecosystems and agricul-

ture (Measho et al., 2019; Niu et al., 2019; Sawada, 2018). Detecting

and monitoring the onset and early stage of droughts are therefore of

critical significance for predicting the impacts on vegetation condi-

tions and anticipate eco-environmental management actions on a

regional scale (Bachmair et al., 2018; Sutanto et al., 2019).

Droughts are traditionally quantified by water availability indices,

such as Standardized Precipitation Index (SPI) (Cancelliere et al., 2007;

Livada & Assimakopoulos, 2007; McKee et al., 1993). Given the direct

effects of droughts on vegetation, vegetation indices (van Hateren

et al., 2021) have also been used as drought indicators (Buitink &

Swank, 2020; Hu et al., 2019; Sepulcre-Canto et al., 2012; Di Wu

et al., 2015). However, there are various factors, such as warming

temperatures (Peng et al., 2011; X. Wang et al., 2017; G. Xu

et al., 2014), increasing solar irradiation (Teuling, 2013), and increasing

CO2 fertilization (Lian et al., 2021), which may lead the vegetation to

be less affected by the declining water availability. According to previ-

ous studies, the vegetation responses to drought conditions are diver-

gent for different climate environments, and the similarity and

2 of 13 HE ET AL.
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differences in water and vegetation variability need to be further

explored (Denissen et al., 2020; Peled et al., 2010; van van Hateren

et al., 2021). To explore the long-term interactions among climate,

regional hydrology and vegetation cover, which is related to the

water-limited and energy-limited environment, the Budyko framework

is applied (Abera et al., 2019; Li et al., 2013; D. Zhang et al., 2018).

In Section 2, we introduce the study area, data sources and

methods. In Section 3, we examine the similarity and disparity in

meteorological and vegetation variations over western Eurasia. Then,

we test whether NCP can be a better contributor than NAO to explain

changes in meteorological and vegetation conditions and describe the

mechanisms associated with NCP teleconnections over various envi-

ronmental systems. In Sections 4 and 5, we discuss their wider impli-

cations and summarize the main results.

2 | DATA AND METHODS

2.1 | Study area

The study is centred on western Eurasia (i.e., 10�W–70�E and 35�N–

72�N; Figure 1). The western part of the study region has an oceanic/

maritime climate with temperate summers and mild winters, whereas

the central and eastern parts have a continental climate with hot sum-

mers and cold winters (Stampoulis & Anagnostou, 2012). Due to dif-

ferent climate zones of western Eurasia, water and vegetation are

unevenly distributed. The total amount of precipitation ranges from

600 to 900 mm�year�1 over the western part to 500 mm�year�1 in

the eastern part of western Eurasia (Mikolaskova, 2009). The main

vegetation cover types vary from woody savannas and mixed forest in

the high latitudes to croplands and grassland in the mid-latitudes

(Figure 1).

2.2 | Data

2.2.1 | Normalized Difference Vegetation Index
data

As a proxy of vegetation greenness, the Normalized Difference Vege-

tation Index (NDVI) is extracted from the National Oceanographic and

Atmospheric Administration (NOAA) Global Inventory Monitoring and

Modeling System (GIMMS), version number 3g.v1 (Cai et al., 2014;

Pinzon & Tucker, 2014; Donghai Wu et al., 2014). This dataset pro-

vides bimonthly data (�every 14 days), with a 1/12� resolution,

between July 1981 and December 2015. In order to validate the

GIMMS NDVI datasets, we use the monthly NDVI dataset from the

Moderate Resolution Imaging Spectroradiometer (MODIS

MOD13C2), which is available at 0.05� resolution (Fensholt &

Proud, 2012; Solano et al., 2010). For comparison, the GIMMS NDVI

data were made to be monthly by averaging the two values in each

month. We found that both datasets are largely similar in terms of

seasonal and interannual variations (Figure S1).

2.2.2 | Climate data

For hydroclimate variables (precipitation, potential evapotranspiration,

temperature), we used the ERA5-Land data, which is derived from the

fifth generation European Centre for Medium-Range Weather

F IGURE 1 The land cover types over the western continental Eurasia between 10�W–70�E and 35�N–72�N

HE ET AL. 3 of 13
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Forecasts (ECMWF) atmospheric reanalysis of the global climate, with

a spatial resolution of 0.1� � 0.1� and monthly temporal resolution

(Smith et al., 2021; Tarek et al., 2020). By using a higher spatial resolu-

tion (0.1� � 0.1�) than that of its driven climate reanalysis data (ERA5;

0.25� � 0.25�), ERA5-Land reanalysis datasets provide an improved

representations of land surface processes (Muñoz, 2019).

To calculate the NAO and NCP indices, sea-level pressure (SLP)

and 500 hPa geopotential height are derived from ERA5 datasets,

with a spatial resolution of 0.25� � 0.25�. Here, the NAO index is cal-

culated using the 1st principal component (PC) of SLP anomalies over

the North Atlantic (90�W–20�E, 20�–80�N) (Hurrell, 1995; Hurrell &

Deser, 2009). The NCP index is the difference in the 500-hPa level

geopotential height between the North Sea (0�, 55�N; 10�E, 55�N)

and northern Caspian Sea (50�E, 45�N; 60�E, 45�N) region (Kutiel

et al., 2002; Sezen, 2017). Here, ERA5-Land and ERA5 data have been

extracted between 1981 and 2015 for consistency with the NDVI

datasets.

We provide a comparison of precipitation patterns between the

ERA5 and observation data from the Climate Research Unit (CRU:

https://crudata.uea.ac.uk/cru/data/hrg/) in Figure S2. Generally, the

annual summer and winter precipitation trends derived from ERA5

are consistent with that from CRU, with drying trends over eastern

part of western Eurasia and wetting trends over western part

(Figure S2). However, the CRU precipitation variability could be lower

over the eastern part of western Eurasia, as the CRU dataset has

fewer station data than ERA5 in some regions (Harris et al., 2020).

Since we focus on the mechanism explaining co-variations in the NCP

and dry/wet conditions in western Eurasia, such potential shortcom-

ings should be neglectable.

2.3 | Drought and vegetation indices

To quantify droughts and vegetation conditions, the SPI (McKee

et al., 1993) and the NDVI are used. The SPI is calculated by assuming

that precipitation is Gamma distributed (Chun, 2010). As the growing

season generally ranges from April to September (total 6 months) over

western Eurasia, we use a 6-month aggregated SPI (i.e., SPI-6) (van

Hateren et al., 2021). Nevertheless, the 1- to 12-month SPI time

series have very similar patterns with the 6-month SPI results (not

shown). To identify drought conditions, the SPI-6 < -1 is selected (van

Hateren et al., 2021). To allow for a fair comparison between SPI-6

and NDVI, the NDVI is also standardized (hereafter called NDVI

anomalies). The NDVI value less than �1 is also characterized as a sig-

nificant vegetation decline.

2.4 | Trend and the GLS regression

The Mann–Kendall (MK) test is used to quantify the significance of

linear temporal trends nonparametrically (Kendall, 1975; Mann, 1945).

Previous work argued that the results of the MK trend test could be

misleading if serial correlations and outliers are ignored (Guo

et al., 2018; Hamed, 2008; Hamed & Ramachandra Rao, 1998; Klaus

et al., 2015; Sang et al., 2014). Thus, we use the modified MK test

(Hamed & Ramachandra Rao, 1998) to examine trends of NDVI and

hydroclimate variability. Trend intensity is estimated based on Thiel-

Sen's slope, which is robust to outliers (Sen, 1968).

To explore the relationships between teleconnections and water

and vegetation distributions, generalized least square (GLS) regres-

sions are used, as in previous hydroclimate analysis (He et al., 2021;

Klaus et al., 2015). The analytic GLS regressions can be written as

Y¼ β0þβ1X, ð1Þ

where Y is the climate variables or vegetation index, and X is the NCP

index value. β0 and β1 are regression coefficients.

To consider spatial autocorrelation and the problem of multiplicity

of spatial trend and regression results, we used a global significance

test based on false discovery rate (FDR) as recommended in previous

studies (Wilks, 2006, 2016). After estimating the p values of trend and

GLS regressions, the FDR test at p = 0.05 is used to control the

expected proportion of locally significant tests that are actually true,

i.e., not occurring by chance due to spatial autocorrelation and the

problem of multiplicity. A local significance test is rejected if the local

p value is no greater than:

PFDR ¼ max
j¼1!k

plocal jð Þ : plocal jð Þ≤ αFDR j
k

� �� �
, ð2Þ

where plocal ( j) denotes the jth smallest (out of k) local p values, and

the αFDR is the chosen control level for the FDR (0.05 for this study).

2.5 | Budyko framework

The Budyko framework has been used to examine long-term interac-

tions among climate, regional hydrology and vegetation cover (Abera

et al., 2019; Li et al., 2013; D. Zhang et al., 2018). There are different

types of Budyko framework (Budyko, 1974; Choudhury, 1999;

Fu, 1981; H. Yang et al., 2008), which are summarized as follows:

Budyko 1974ð Þ ET
P

¼ PET
P

tanh
PET
P

� ��1
"

1�exp �PET
P

� �� ��0:5
,

ð3Þ

Fu 1981ð Þ ET
P
¼1þPET

P
� 1þ PET

P

� �� ω�1
ω

, ð4Þ

Choudhury 1999ð Þ;H:Yanget al: 2008ð Þ ET
P
¼ 1

1þ PþPETð Þω½ �1=ω
, ð5Þ

where ET, P and PET are land surface evapotranspiration, precipita-

tion (water supply) and potential evapotranspiration (water demand),

respectively, and ω is an empirical coefficient related to land patterns

and characteristics.

4 of 13 HE ET AL.
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Among these three equations (Equations 3–5), the one proposed

by Fu (1981) is the most widely used. The Budyko space defines

whether catchment state variations, processes and dynamics are

water or energy limited based on precipitation (P), evapotranspiration

(ET) and potential evapotranspiration (PET) (Berghuijs et al., 2020;

Gentine et al., 2012; Sposito, 2017). In the Budyko space, a Dryness

Index (DI) (i.e., PET/P) value lower than 1 indicates a humid, energy-

limited environment, whereas a DI value higher than 1 indicates a dry,

water-limited environment (Figure 2). The empirical coefficient ω is

used to define and describe the relevant landscape characteristics, like

climate and vegetation covers (Abera et al., 2019; C. Wang

et al., 2016).

3 | RESULTS

3.1 | Impact of NAO and NCP on meteorological
drought and vegetation

We examine the relationships between two teleconnection patterns

(i.e., NAO and NCP) and regional drought conditions over western

Eurasia (Figure 3). There are no significant relationships between the

DI, EI and the NAO, whereas the NCP is positively related to the DI

and EI over western Eurasia (Figure 3). This indicates that positive

NCP phases may better contribute to drier conditions over the region

than the NAO. Moreover, based on the Budyko space (Figure S3b),

the positive phases of NCP contribute to increasing dryness, thus

causing the region to become more water-limited.

The NCP has significant negative impacts on precipitation over

most western Eurasia, but positive impacts over central Asia

(Figure S4). Regarding the temperature, NCP shows a negative rela-

tionship over the whole Eurasia (Figure S4). Such negative relationship

with NCP is found over most parts of western Eurasia for PET, ET and

NDVI variations. Generally, the NCP has negative impacts on

meteorological and vegetation conditions over the region.

To further investigate how NCP affects regional drying/wetting

conditions related to moisture circulations, we examine the regressed

vertically integrated moisture flux associated with NCP variations

(Figure 4). Positive NCP phases appear to promote anti-cyclonic circu-

lation over the North Sea (closely adjacent to the continental western

Eurasia), but cyclonic circulation anomalies over the Caspian Sea

(Figure 4). Such circulation patterns are associated with drier condi-

tion over most part of the study region, but wetter condition over

Central Asia.

3.2 | Trends in meteorological and vegetation
conditions

The mean SPI-6 values are positive and near to zero, suggesting that

there is generally slightly humid air over most western Eurasia

between 1981 and 2015 (Figure 5a). The mean state of NDVI shows

dense vegetation cover (NDVI > 0.3) over most parts of western Eur-

asia and sparse vegetation canopy (NDVI < 0.3) over Central Asia

(Figure 5c). Between 1981 and 2015, there are generally significant

decreasing trends in SPI-6 over western Eurasia except for the Italian

Peninsula, Scandinavia and the Balkans (increasing trends; Figure 5b).

Regarding trends in vegetation cover, regions with dense vegeta-

tion cover (NDVI > 0.3) show increasing trends, and regions with

sparse vegetation cover (NDVI < 0.3) show decreasing trends

(Figure 5d). Therefore, green regions are becoming greener, and

regions where vegetation coverage was low are becoming even less

green. Interestingly, trend patterns in vegetation cover are not strictly

following precipitation trend patterns. For instance, in western Russia

and France, we can observe drier conditions concurrent with greening

trends (Figure 5b,d).

3.3 | Concomitance of meteorological drought and
vegetation decline

To further explore the relationships between water deficits and vege-

tation growth, we examine the concurrence of meteorological drought

and vegetation decline in Figure 6. On the basis of the SPI-6, we can

identify five drought events that are particularly widespread (the area

percentage is more than 50%; Figure S5): 1988, 1996, 2003, 2006

and 2010. Among these widespread drought events, the 1996

drought event appears as the most severe one, and therefore, it is

selected to analyse whether the meteorological drought and vegeta-

tion decline are concurrent (Figure 6; see Figures S6–S9 for other

events). In April, both the SPI-6 and NDVI anomalies indicate a deficit

in the Scandinavia, Baltic regions and western Russia, while this is only

detected in the northernmost regions of Scandinavia in May

(Figure 6a,b). Similar results are found in northern France and England,

but in August and September (Figure 6e,f). In June and July, meteoro-

logical drought and vegetation decline do not occur simultaneously in

most western Europe (Figure 6c,d). Generally, vegetation decline pre-

vails in April and May, but hardly appears from June to September.

F IGURE 2 Budyko framework (Dryness Index against evaporative
index). The solid lines indicate the energy limit and water limit
boundaries. The red dashed line is the theoretical Budyko curve with
a default ω value (i.e., 2.6; Creed et al., 2014)
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Based on the above results (Figure 6), western Russia and France

tend to become drier, but greener (Figure 5b,d). Here, we found that

these regions are generally energy limited (Figure 7), indicating that

vegetation growth is mainly restricted by energy supply, and not by

water supply (Gokmen et al., 2013; Parsons & Abrahams, 1994).

Therefore, even though the region is drier, warmer temperatures pro-

mote vegetation growth. Scandinavia and Baltic regions are mainly

water limited (Figure 7), and thus the vegetation is very responsive to

water deficits, and the NDVI declines as soon as water deficits occur

(Figure 6a). In addition, considering for the whole of western Eurasia,

all dots representing EI and DI values are approaching the energy-

limited line (i.e., the line of EI = DI) in the Budyko space (Figure S5),

suggesting that the whole region can be regarded as an energy-limited

environment. Moreover, higher NDVI values correspond to higher EI

and DI (Figure S5a), further confirming that drying condition may pro-

mote vegetation greenness in the energy-limited environment.

F IGURE 3 The NAO against DI (a) and EI
(b) between 1981 and 2015. (c) and (d) are same
as (a) and (b) but for NCP. Red and blue colours
indicate the positive and negative phases of
NAO/NCP, respectively. The colorbar indicates
the NCP values

F IGURE 4 Vertically integrated moisture flux and divergence climatological state (a) and regressed map with NCP (b) between 1981 and
2015. For (a), the magenta arrows and shaded area are climatological moisture flux and moisture flux divergence, respectively. For (b), the arrows
and shaded areas represent the regressed coefficients of moisture flux and regressed coefficients of moisture flux divergence, respectively. For
regression map, only significant results at p ≤ 0.05 according to the local significance test and to the FDR global significance test are shown
(Wilks, 2006, 2016)
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4 | DISCUSSION

4.1 | The role of teleconnection patterns on
vegetation during droughts

NAO has been broadly accepted as the major mode causing hydrolog-

ical and climate variability over western Eurasia (Lled�o et al., 2020;

Tsonis et al., 2008; W. Zhang et al., 2019). However, here, we demon-

strated that NCP is a much better indicator for regional environmental

changes over this region. The positive phases of NCP are related to an

anticyclonic anomaly centred over the North Sea, and a cyclonic

anomaly is centred over the Caspian Sea region. NCP is indeed associ-

ated with moisture flux divergence, causing dryness over most parts

of western Eurasia. Moreover, the positive phases of NCP are found

to promote the drier continental airflow from northern Asia that affect

the study region (Kutiel & Benaroch, 2002), contributing to the

increased dryness. Such a negative relationship between NCP and

winter precipitation has been previously reported over Turkey

(Sezen, 2017). Sezen (2017), however, suggested that NCP is posi-

tively correlated with summer precipitation in some parts of Turkey.

The difference of NCP impacts on precipitation could be related to

seasonal variances. The negative relationships between NCP and pre-

cipitation in winter may be too strong to mask the positive relation-

ship in summer. Therefore, we found that the NCP has negative

impacts on total precipitation of the whole year in this study. The sea-

sonal impacts of NCP on regional climate variability require further

investigation in future research work. In addition, the NCP has signifi-

cant impacts on temperature (Brunetti & Kutiel, 2011), which may also

contribute to vegetation growth. In addition, future studies should

also examine the potential contribution of other large-scale climate

modes of variability.

4.2 | Similarity and disparity between drought
conditions and vegetation patterns

Previous studies examined the relationship between droughts and

vegetation growth in water- and energy-limited environments over

Europe (Denissen et al., 2020; Peled et al., 2010; van Hateren

et al., 2021). Peled et al. (2010) and van Hateren et al. (2021) found

strong correlations between NDVI and drought indices in water-

limited environments. We achieved similar results in our study: the

meteorological droughts and vegetation decline occurred simulta-

neously over Scandinavia and Baltic regions, water-limited environ-

ments based on Budyko framework (Figure 5). However, the disparity

in long-term variations in water quantity and vegetation density was

not fully explained in previous studies. France and western Russia are

getting drier during the past decades. Therefore, one might expect

F IGURE 5 The mean state (a) and trend (b) of SPI-6 and NDVI (c and d) between 1981 and 2015 over western Eurasia. Trend maps only
show results that are statistically significant at p ≤ 0.05 according to the MK trend test, and to the FDR global significance test (Wilks, 2006,
2016). For trend maps, the colorbar refers to the slope value of trend analysis

HE ET AL. 7 of 13

 19360592, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eco.2446 by C

ochrane France, W
iley O

nline L
ibrary on [27/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



vegetation to decline in response to such water deficits and thus

NDVI values to decrease. However, this is not what we observed:

NDVI values increased. France and western Russia are energy limited

according to the Budyko framework (Figure 5), which explains why

vegetation is greening instead of suffering from the lack of water. In

an energy-limited region, warmer temperatures promote vegetation

growth, which is hypothesised to be due to enhancing photosynthesis

activity (Dusenge et al., 2019; L. Xu et al., 2013; D. Yang et al., 2021).

However, if the precipitation deficits persist, we expect that vegeta-

tion growth will eventually be negatively affected. For instance, in

1996, the NDVI decreased in August and September over France

after four months (April–July) of continuous precipitation deficits. The

reason for the delayed vegetation responses might be due to large

aquifer systems for water storage in this region (de Lavenne

et al., 2021). Therefore, over France, the vegetation takes around

four months before starting to decline after a precipitation deficit.

Moreover, there are mostly croplands over France, and the irrigation

for agriculture may also be the reason for the delayed vegetation

responses (Foudi & Erdlenbruch, 2012; Sidibé et al., 2012).

4.3 | Future implication for vegetation

Between 1981 and 2015, most parts of western Eurasia are energy

limited, and the vegetation growth is promoted by warmer tempera-

tures via photosynthesis activity. However, as the climate is getting

warmer, during the positive phase of NCP, we suggest here that the

Eurasian ecosystem could reach a tipping point when warmer temper-

atures lead to a reduction in photosynthesis in the future (Moore

et al., 2021; Slattery & Ort, 2019). In this case, many regions in Eurasia

F IGURE 6 Concurrence of
meteorological drought (SPI-6) and
vegetation deficit (NDVI anomaly) during
the 1996 growing season: April (a), May
(b), June (c), July (d), August (e) and
September (f). ‘Concurrence’ indicates a
deficit for both SPI-6 and NDVI anomalies
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will have a transition to water-limited ecosystems and be more sensi-

tive to drought risk (Bhuiyan et al., 2017; Tello-Garca et al., 2020).

Therefore, the greening trend of vegetation will be unlikely to be con-

tinued sustainably in the future. Similarly, Rajczak and Schär (2017)

projected the decrease in precipitation in the future over central

Europe and France, and the increased droughts negatively affect the

forestry (Maracchi et al., 2005). However, based on the IPCC report

(IPCC, 2021), both precipitation and temperature are increasing for

the main part of our studied region under the global warming in the

future, and such precipitation and temperature patterns can promote

vegetation growth. Moreover, the climate impacts on vegetation can

be quite different among regions related to the water-limited and

energy-limited characteristics. Therefore, the future dynamic changes

of vegetation in different regions need to be further studied.

5 | CONCLUSIONS

In this study, we aim at exploring the similarity and disparity between

meteorological drought conditions and vegetation pattern, and the

role of teleconnection patterns on vegetation during droughts across

western Eurasia. Between 1981 and 2015, trends in the SPI-6 and

NDVI indicate contrasting results across different regions of western

Eurasia. Specifically, while in northern and southeastern regions,

recent trends to wetter (drier) conditions are associated with an

increase (decrease) in vegetation cover, other regions are paradoxi-

cally becoming greener while becoming drier. Such paradoxical pat-

terns are found in energy-limited environmental systems based on the

Budyko framework, where vegetation growth is primarily promoted

by warmer temperature, enhancing photosynthesis activity. Moreover,

the droughts and vegetation variability are suggested to be closely

related to large-scale teleconnections. While previous studies have

focused mostly on the impact of NAO, NCP, a relatively less studied

teleconnections pattern, seems to explain better the variance of

meteorological drought and vegetation response over western

Eurasia.

The positive phases of NCP are demonstrated to contribute to

the regional drying but greening trends over western Eurasia. Under

the intensifying warming condition, due to the extra warmth brought

by the positive phases of NCP, it will eventually lead the European

ecosystem from energy limited to be water limited. As a result, the

current trend of vegetation greening is unlikely to be sustained in the

future. Overall, we demonstrate an approach for investigating and

forecasting droughts and vegetation changes based on emerging eco-

hydrological risk related to NCP which can be useful for regional land

use and environment management.
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