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Abstract

Multiphase 
ows reveal contorted 
uid structures which cannot be described in terms of drop/bubble diam-
eter distribution. Here we use a morphological descriptor which originates from the �eld of heterogeneous
materials that was proved to be nicely tailored for characterizing the microstructure of e.g. porous media.
It is based on the Minkowski Functionals - an erudite expression which simply designates the integrated
volume, surface, mean and Gaussian curvatures - of all surfaces parallel to the liquid-gas interface. We here
apply this framework to di�erent multiphase 
ow systems and prove that the Minkowski Functionals are
e�ective for providing insights into their morphodynamical behavior.
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1. Introduction

Liquid atomization in multiphase 
ows is one example of physical mechanism whose investigation has to
consider the morphodynamics of the involved 
uid structures. This process is multi-scale since some physical
phenomena such as surface tension and viscous damping may act at very di�erent time and spatial scales
than other phenomena such as deformation due to turbulent straining. Since liquid atomization aims at
increasing the area between the two phases, the following up of the interface during time imposes itself to
investigate its dynamics. However, the task is not easy because, as evidenced by the numerous visualizations
in the literature, atomizing liquid 
ows have complex shapes [5, 19, 20, 32, 34]. Hence, a complete description
of multiphase 
ow cannot encompass describing the dynamical behaviour of liquid structures with di�erent
morphology.

During the 
ow deformation, perturbations of di�erent origin favor the growth of liquid structures of
di�erent sizes and shapes, and showing contracting (bottle neck) and accumulating (swelling) regions pre-
�guring possible breakup events. The multi-scale nature of these systems require to be accounted in the
description of the mechanism to make possible the prediction of breakup events and, therefore, of the drop
size distribution of the �nal spray.

The literature dedicated to the description of liquid-gas 
ows reports the existence of di�erent approaches:
the Volume-based Scale Distribution (VSD) [9], the Surface Curvature Distribution (SCD) [5, 13] and the
two-point structure functions of the phase indicator �eld [31, 32, 34]. Inspired by the fractal dimension
measurement technique based on the Euclidean Distance Mapping method, the VSD provides the volume
comprised between the liquid-gas interface and the surface parallel to it and at a distance d=2 in the liquid
phase. This parallel surface delimits the system resulting from the d-scale erosion of the liquid system. The
scale derivative of the VSD is proportional to the surface area of the eroded system. The variations of the
VSD and of the eroded system surface with time and scale inform on the liquid structure morphology and
give access to its dynamics.

The approach based on the structure functions of the phase indicator function is due to [31, 32, 34]. This
theory shares some similarities with the analysis of Lu and Tryggvason [19, 20] based on the correlation
function of the phase indicator. It relies on the machinery of two-point statistical equations which originates
from the single-phase turbulence community. Interestingly, [32, 34] noticed that two-point statistics of the

�CNRS, Normandy Univ., UNIROUEN, INSA Rouen, CORIA, 76000 Rouen, France
Email: christophe.dumouchel@coria.fr (C. Dumouchel)
Email: fabien.thiesset@coria.fr (F. Thiesset)
Email: thibaut.menard@coria.fr (T. M�enard)

Preprint submitted to Elsevier January 28, 2022



phase indicator are also widely used for characterizing the microstructure of porous media [1, 7, 36, to cite
only but a few], colloids [16], or fractal aggregates [27]. Many key analytical results were obtained notably
to link the small-scales expansions of the two-point correlations to some geometrical characteristics of the
interface (surface area and curvatures) [3, 6, 30]. In [31, 32, 34], the analysis of two-point statistics is
supplemented by a transport equation allowing the space and scale dynamics of the 
ow to be probed.

The SCD [5, 13] �nds its foundation of some results of di�erential geometry and reads as a joint probability
distribution density function of �nding the mean and Gaussian curvatures at some point on the liquid-
gas interface. Together with the distributions of surface area and liquid volume, a more complete set of
geometrical metrics for characterizing objects of any shapes is expected with the SCD. Introducing the mean
and the Gaussian curvatures allows de�ning the local characteristic scales of the interface as the local radius
of curvature. In a recent study [25], the SCD was used in conjunction with the information provided by the
liquid volume fraction and surface density (the ELSA model) to provide early predictions of the spray drop
size distribution.

As suspected by [5], the VSD and SCD approaches are connected to each other. This has been math-
ematically established in a previous work [33]. It is demonstrated that the successive scale derivatives of
order 1 to 3 of the VSD V (d) represent the surface area S(d) of the eroded system, its area-weighted-average
mean curvature H(d) and its area-weighted-average Gaussian curvature G(d), respectively. Valid for the
small scale range only, this result underlines the importance of the four quantities V (d), S(d), H(d) and
G(d) to describe the system. These quantities turn out to be the system Minkowski Functionals (MFs), a
notion issuing from the integral geometry.

The MFs constitute a family of morphological descriptors that describe not only the content (area) but
also topology (connectivity), and shape (geometric curvature) of the system [21]. They bene�t from an
extensive literature dedicated to porous media, 
uctuating interface, image analysis [2, 21, 23]. The MFs
generalize curvature integrals over smooth surface to the case of surfaces with singular edges and corners [2]
and, when combined with the morphological concept of parallel surfaces, can be used to characterize and
model complex spatial structures [23]. Although widely employed in porous media, the only study we are
aware of which makes use of Minkowski Functionals in multiphase 
ows is the one due to Tryggvason and Lu
[37]. Note that in the latter study, the MFs were computed only for the liquid-gas interface but not studied
for the di�erent parallel surfaces.

The purpose of the present work is to evaluate the potential of the MFs to provide a general description
of the 
ow structures morphology in multiphase 
ows. This paper follows along the line of one of our
previous works [33]. The MFs rely on some mathematical foundation originated from integral and di�erential
geometry. Hence, the present paper ineluctably presents some relatively abstract concepts and mathematical
technicalities which we try to expose in a handy manner. The present paper is organized as follows. Section II
introduces the MFs and their application to parallel surfaces. Most mathematical technicalities are detailed
in the appendix while the main core of the text resumes the essential results a general reader should retain.
Section III provides applications of the MFs to multiphase 
ows. Three simple situations are �rst considered:
an oscillating drop (with no breakup events), a relaxing ligament (with breakup events) and the Rayleigh-
Plateau instability of a cylindrical ligament of liquid. Then the framework is used to explore more complex
situations: two-phase homogeneous isotropic turbulence and a turbulent liquid jet 
ow issuing from the
triple disc injector. Conclusions are drawn in a last section.

2. Theoretical considerations

2.1. The Minkowski functionals and their relation for convex bodies
The Minkowski functionals designate four geometric measures of a given body with surface S (in our

case, S is simply the liquid gas interface):

� the volume V enclosed by the surface S

� the surface area S de�ned by:

S =
Z

S
dS (1)

� the area integrated mean curvature H:

H =
Z

S

1
2

(�1 + �2)dS (2)
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Figure 1: Graphical representation of the original body and its parallel surfaces. The medial axis and the reach of a surface are
also shown

� the area integrated Gaussian curvature G

G =
Z

S
�1�2dS (3)

where dS is an elementary surface element, and �1, �2 are the two principal curvature component. By virtue
of the Gauss-Bonnet theorem, for a closed surface, the area integrated Gaussian curvature G is related to
the Euler characteristic � by

G = 2�� (4)

� is a topological invariant, i.e. it depends only on the topology of the body under consideration, regardless
of the way it is bent. For instance � = 2 for a sphere and for any other body homomorphic to a sphere, e.g. a
spheroid. � = 0 for a cylinder and for any other homomorphic bodies to a cylinder (extruded systems). The
MFs are sometimes referred to as integral geometric measures since they are obtained after integration over
the surface S. They have interesting properties, the most important are probably that they are additives
(the MFs of an ensemble of body is the sum of their respective MFs) and they are invariant upon translation
and rotation of the body. Therefore, a system constituted of N spheroids has � = 2N , irrespective of their
relative positions and orientation.

The literature of heterogeneous material [2, 21, 23] indicates that it is worth de�ning and characterizing
the MFs not only for the body itself but for bodies that are obtained upon dilation or erosion of the original
system. The set of systems that are formed upon dilation or erosion of the original system at scale d form
an in�nite set of parallel bodies, i.e. their surface is distant to the original surface S by a distance d=2 in
the surface normal direction. Such parallel surfaces are shown in Fig. 1.

The MFs of all parallel bodies constitute a set of morphological descriptors of the actual system. The
main purpose of the present section is to provide theoretical insights into the distribution of V , S, H and
G as a function of the erosion scale d. Note that in previous work by the same authors [9], only V (d) and
some of its derivatives with respect to d were studied. Here we generalize the approach by considering the
other three MFs.

The question we will address here is how to relate the MFs at a given scale d to the MFs of the original
system (at d = 0). Such relations were derived in [33], where it reads:

V (d) = V (0)� S(0)
d
2
�H(0)

d2

4
�G(0)

d3

24
(5a)

S(d) = S(0) +H(0)d+G(0)
d2

4
(5b)

H(d) = H(0) +G(0)
d
2

(5c)

G(d) = G(0) (5d)
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For readers who may be interested, the derivations are reproduced in Appendix A.2 using tools from
di�erential geometry (the geometry of twice di�erentiable surfaces).

Eqs. (5) reveal that the MFs at scale d are related to the MFs of the original system by simple polynomial
formulas. In other words, only the MFs at scale d = 0 are needed to estimate the MFs at a given erosion
scale d. In addition, from Eqs (5), it is easy to show that

�2V (d);d = S(d) (6a)
S(d);d = H(d) (6b)

2H(d);d = G(d) (6c)

where �;d denotes the derivative with respect to d. Eqs. (6) show that the MFs are related to each other
by successive derivatives with respect to the erosion scale d. In other words, S(d), H(d), G(d) can simply
be deduced from the knowledge of V (d) only.

In Appendix A.3, we also show that the same hold true for non di�erentiable surfaces such as triangulated
surfaces. This is particularly convenient since numerically, the surfaces one has to deal with fall within such
category. In this situation, the derivations resort to some tools from integral geometry (the geometry of
continuous but non di�erentiable surfaces). Again, the mathematical technicalities are gathered in Appendix
A.3 to whom may be interested.

In Fig. 3, we show an example of MFs for an ellipse (the leftmost �gure of Fig. 2) as a function of the
erosion scale d. More details about the parameters of this ellipse and the numerical method for computing
the MFs will be given later in this section. We see that the volume V (d) is a decreasing function of d which
reaches zero when the erosion scale attains the maximum erosion scale (the scale at which the system is
fully eroded). The maximum erosion scale thus plays an important role. The surface S(d) follows the same
trend. We further note that the equality S(d) = �2V (d);d applies very nicely for all erosion scales. The
Euler characteristic �(d) is zero everywhere since the ellipse shown in Fig. 2 is homomorphic to a cylinder
(the Gaussian curvature is zero everywhere on the surface since �2 = 0). What is the most important in Fig.
3 is that the relation H(d) = S(d);d appears to hold only for small values of d while systematic deviations
appear for scales beyond a certain transition value d & 0:35 times the maximum erosion scale. This means
that Eqs. (5) and (6) apply only over a limited range of scales and some corrections might be needed in
general situations. Since for scales smaller than this transition value, the MFs of the original surface allow
the MFs at d to be deduced, generalizing the MFs to the di�erent eroded bodies does not provide any other
informations than the one deduced from the original system. The MFs of parallel surfaces start providing
supplementary informations for scales larger than this transition scale. This leads [2] to state "the Minkowski
functions of the parallel body contains more information about the spatial structure than just the MFs at
zero dilation. [or erosion]. The parallel body [...] depends in turn on non-local properties such as narrow
throats or bottle necks."

It is worth discussing the source leading to the discrepancy between Eqs. (6) and the results shown in
Fig. 3. As shown in Fig. 1, for some su�ciently large distance d=2 from the original surface, a point on
the eroded surface might have more than one closest neighbor on the original surface. This is the case for
example for point p represented by the red dot in Fig. 1. The point p is also the center of the bi-tangent
circle, i.e. the circle that is locally tangent to at least 2 points on the original surface. The set of points
for which this occurs forms the medial axis which is also displayed in Fig. 1. The minimum radius of the
set of bi-tangent circles is called the reach of the system. As shown in Appendix B, for scales beyond the
reach, some cusps are forming on the parallel surfaces and therefore Eq. (5) and (6) ceases to apply. Thus,
the reach is an important notion since it separates the range of erosion scales for which the system can be
described using only geometric measures (the MFs at scale d = 0) and the range of scales where the MFs
start being a morphological descriptor thereby providing information not only about the geometry, but also
about the structure.

2.2. Extension to scales beyond the reach
We just have highlighted that the MFs start being important measures about the system morphology

when the erosion scale goes beyond the reach of the system. In order to better understand the informations
carried by the MFs about the system morphology, we now provide corrections to Eqs. (6). We have
considered two families of shapes that are displayed in Fig. 2:

� Extruded systems, which are obtained by translating a plane curve into the third directions. In
particular, we consider the two leftmost shapes in Fig. 2, i.e. an extruded ellipse and an extruded
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Cassini oval. Since �2 = 0 everywhere on the surface, these systems are homomorphic to a cylinder,
i.e. their Euler characteristic is zero. The volume (surface area) of such systems is given by the covered
area (delineated perimeter) multiplied by the extrusion length.

� Object of revolution, which are obtained by rotating a plane curve along a given axis. In particular,
we consider the two rightmost shapes in Fig. 2, i.e. a prolate spheroid (rotation with respect to the
ellipse major axis) and an oblate spheroid (rotation with respect to the ellipse minor axis). We have
chosen these two situations because of their di�erent medial axis. Indeed, the medial axis of prolate
spheroids is a line which is co-linear with the ellipse major axis while the one of oblate spheroids is a
circle perpendicular to the ellipse minor axis.

For all such systems, one can derive general expressions similar to Eqs. (6) but which hold irrespective
of d. In case of one cusp event, one can write:

�2V (d);d = S(d) (7a)
S(d);d = H(d)� lcC2(�) (7b)

2H(d);d = 2��(d) + 2�C3(�) (7c)

Here, lc is the length of the cusps that are formed at a given erosion scale. C2 and C3 are two corrections
that depends on � de�ned as the angle between the surface normal and the medial axis. It depends implicitly
on d. Due to the additivity property of MFs, the correction to be made when multiple cusp events occur for
the same erosion scale is the sum of the corrections for each cusp event.

Table 1 compiles the expression for cusp length lc and corrections C2, C3 for the aforementioned types
of system. C2(�) and C3(�) emphasize that the relation between the MFs beyond the reach depend on local
(not only integral) properties of the interface.

Table 1: Corrections lc, C2 and C3 appearing in Eqs. (7)

Extruded Axisym. syst. Axisym. syst.
system lin. axis circ. axis

lc h - 2�rc
C2(�) tan � � � - tan � � �
C3(�) 0 (1�cos �)2

cos �
�

cos � � sin(�)

The derivations for such corrections are given in the Appendix. The extruded systems are treated
Appendix B.2 while the bodies of revolution with linear and circular medial axis are tackled in Appendix
B.3 and xAppendix B.4, respectively.

Eqs. (7) and table 1 indicate that irrespective of the shape under consideration, the relation �2V (d);d =
S(d) remains valid. This result is rather general and may hold for even more complex morphology than the
one presented here. The correction C3 appears to be zero for extruded systems, while the correction lcC2 is
absent for bodies of revolution characterized by a linear medial axis (such as a prolate spheroid). Finally,
both lcC2 and C3 contribute for surface of revolution with circular medial axis (such as a oblate spheroid).
Therefore, looking speci�cally at the di�erence between H(d) (G(d)) and S(d);d (2H(d);d) allows us to
discriminate between the di�erent shapes and assess if the structure under consideration is rather extruded
(only lcC2 contributes), elongated (as for prolate spheroid in which case only C3 contributes) or 
atten
(as for oblate spheroid where both lcC2 and C3 contribute). Further, the scales at which such corrections
contribute are also very important since they provide useful informations about the size of narrow-throats
or bulges. To provide more insights into the appropriateness of Eqs. (7) and the behaviour of lcC2 and C3,
we now numerically estimate the MFs for the four shapes presented in Fig. 2.

2.3. Numerical assessment
In all situations, an approximation of the level-set function is �rst initialized before proceeding to the

re-initialization algorithm of [29] to ensure that the di�erent level-set form parallel surfaces. For this purpose,
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Figure 2: Representation of the di�erent validation test cases. From left to right, the extruded ellipse, the extruded Cassini
oval, the prolate spheroid and the oblate spheroid. The surfaces are coloured by the angle �

we use the ARCHER code [24, 38] which will be described in further details later in this paper. The volume
V (d), surface area S(d), mean H(d) and Gaussian curvatures G(d) for each level-set d=2 are computed using
the method of [8, 13] which has the main advantage of incorporating a topological constraint in the curvature
calculation (the Gauss-Bonnet theorem). We use prior versions of the routines now available through the
Mercur(v)e project 1.

To obtain the set of points of the medial axis, we compute for each vertex on the triangulated zero
level-set surface, the location of the intersection between the normal issuing from this vertex and either the
xz-plane for extruded systems, the x axis for axisymmetric objects with linear medial axis or xy plane for
axisymmetric objects with circular medial axis. Then, the angle � and distance from the medial axis can
be readily computed using trivial trigonometry. For each scale d=2, we sum the contribution lcC2; C3 of all
vertex whose distance from the medial axis falls within an interval d=2��d=2 : d=2 + �d=2. �d was chosen
su�ciently small for not loosing some scale dynamics and su�ciently large to ensure statistical convergence.
Generally, 150 to 200 points for the scale parameter d=2 were prescribed, ranging from zero to the maximum
erosion scale (i.e. the scale beyond which the system is fully eroded).

The four validation shapes coloured by the angle � are depicted in Fig. 2 and are discussed below.

2.3.1. The extruded ellipse
We start by validating Eq. (7) for an extruded ellipse whose major axis a aligns with x and its minor

axis b aligns with y. We chose a=b = 10=3 and h was set arbitrarily to h = b=1:6. The reach of such a surface
is given by b2=a = 0:3b and hence we expect corrections to be non zero for scales d=2 > 0:3b.

Results are portrayed in Fig. 3. The scale parameter d is normalized by D = 2b and the geometrical
properties V (d), S(d), H(d) are normalized by their respective values at d = 0. We observe that the
correction operates only on H(d) and, as expected, lcC2 starts being non-zero for scales d=D > 0:3. The
correction appears to increase with increasing scales since � increases from 0 (for point located around y = 0,
see Fig. 2) to 90o (for points around x = 0, see Fig. 2). For scales d larger than D = 2b, the system has
been entirely eroded and hence V (d > D) = S(d > D) = H(d > D) = �(d > D) = 0. The di�erent curves
presented in Fig. 3 emphasize that Eq. (7) holds very nicely for all scales. This validates our calculation
and proves in particular that the assumption about the triangle OAB holds very nicely.

2.3.2. The extruded Cassini oval
Analytical results for extruded bodies are further confronted to numerical data for a Cassini oval. The

later is parametrized with the location of the foci a aligned with the x axis, and the shape parameter b which
were chosen in such way that b=a = 150=148. The scale d which ought to be reached for the Cassini oval to
be fully eroded is the size of the bulge and is equal to D = b2=a. The reach for such a parametrization of
the Cassini oval is equal to half the size of the neck and is given by (b2 � a2)1=2. Hence, we then expect the
correction lcC2 to be non-zero for scales d ’ 0:32D.

Fig. 4 depicts the volume V (d), surface area S(d), mean curvature H(d) and Euler characteristic �(d) for
the Cassini oval. We �nd again that the correction appears only at the level of H(d) while the classical Steiner
formula applies to S(d) and �(d). The correction lcC2 starts being active for scales d ’ 0:32D and brings

1http://docs.mercurve.rdb.is/
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Figure 3: (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic �(d) as a function of
the erosion scale d for the extruded ellipse.
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Figure 4: (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic �(d) as a function of
the erosion scale d for the extruded Cassini oval.
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Figure 5: (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic �(d) as a function of
the erosion scale d for the prolate spheroid

the necessary complement to represent the scale evolution of S(d);d. We note two peaks in the correction
lcC2, one located at the reach and another located at D. These two peaks are due to the contributions of
the neck and the bulge, respectively, where � ! �=2 and hence C2 ! 1 (see Fig. 2). The value of H(d)
between these two peaks indicates that the eroded system becomes the union of two disconnected systems.

It is worth noting that, in general, the correction lcC2 should be summed over the number of cusps
present in a given eroded system, the latter could possibly vary with respect to the erosion scale.

2.3.3. The prolate spheroid
We push further the validation of Eq. (7) to a body of revolution with a linear medial axis. For this

purpose, is considered a prolate ellipsoid obtained by rotating the same ellipse as before around the x-axis.
We have again a=b = 10=3 and thus the reach is equal to 0:3b while the scale d eroding completely the system
is D = 2b.

In agreement with Eqs. (7), Fig. 5 evidences that the correction lcC2 is zero while the correction C3
allows H(d);d to be accurately represented. C3 starts to contribute for scales d larger than 0:3D, as expected.
When d increases, the correction C3 increases before reaching a peak at d = D where � = �=2 and hence
C3 !1.

2.3.4. The oblate spheroid
The last validation test concerns a body of revolution with a circular medial axis. Here, we consider

the rotation of the same ellipse but around the y axis, thereby forming an oblate spheroid. The reach and
maximum erosion scales are the same as the prolate spheroid.

Fig. 6 reveals that the correction appears on both H(d) and �(d) while the classical Steiner formula
applies to S(d). lcC2 and C3 operate for scales d > 0:3D as expected. Eqs. (7) with lcC2 and C3 given in
Table 1 hold very nicely for all scales considered. This con�rms that the analysis performed in xAppendix
B.4 is valid.

3. Application to multiphase 
ows

The analysis is now applied to real systems. Here we focus on the ability of parallel sets to provide
insights into the morphology of deformed liquid structures evolving in a gaseous atmosphere, with particular
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Figure 6: (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic �(d) as a function of
the erosion scale d for the oblate spheroid

emphasis on an oscillating droplet, an elongated ligament and the Plateau-Rayleigh instability. We will also
address turbulent 
ows, namely a liquid-gas homogeneous isotropic turbulence and a turbulent jet issuing
from the triple-disc injector. The latter case will be analysed using experimental data whilst all other
con�gurations are explored using numerical data obtained by the code ARCHER which is presented below.

3.1. Description of the ARCHER code
Numerical data of liquid/gas 
ows are gathered using the High-Performance-Computing code ARCHER

developed at the CORIA laboratory [24]. It is based on the one-
uid formulation of the incompressible
Navier-Stokes equation which is solved on a staggered Cartesian mesh, viz.

@t �u + r � (�u
 u) =
� r p+ r � (2�D) + f + 
H�sn: (8)

p is the pressure �eld, D the strain rate tensor, f a source term, � the kinematic viscosity, � the density,

 the surface tension, n the unit normal vector to the liquid-gas interface, H its mean curvature and �s is
the Dirac function characterizing the location of the liquid gas interface. For solving Eq. (8), the convective
term is written in conservative form and solved using the improved [26] technique presented in [38]. The
method of [28] is used to compute the viscous term. To ensure incompressibility of the velocity �eld, a
Poisson equation is solved. The latter accounts for the surface tension force and is solved using a MultiGrid
preconditioned Conjugate Gradient algorithm (MGCG) [42] coupled with a Ghost-Fluid method [15].

A coupled level-set and volume-of-
uid (CLSVOF) solver is used for transporting the interface, the level-
set function accurately describing the geometric features of the interface (its normal and curvature) and the
volume-of-
uid function ensuring mass conservation. The density is calculated from the volume-of-
uid (or
liquid volume fraction) as � = �l�+ �g(1� �), where �l; �g is the density of the liquid and gas phase. The
dynamic viscosity (�l or �g) depends on the sign of the Level Set function. In cells containing both a liquid
and gas phase, a speci�c treatment is performed to evaluate the dynamic viscosity, following the procedure
of [28]. For more information about the ARCHER solver, the reader can refer to e.g. [24, 38].

3.2. The oscillating droplet
The droplet at initial time corresponds to the prolate spheroid previously described in x2.3.3, i.e. with

major axis a and minor axis b such as a=b = 10=3. We set b = 50 10�6 m. The 
uid physical properties are
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as follows. The density is �L = 753 kg.m�3 and �G = 25 kg.m�3 for the liquid and gas phase, respectively.
The dynamic viscosity is set to �L = 5:65 10�4 kg.m�1.s�1, �G = 1:879 10�5 kg.m�1.s�1. The surface
tension 
 = 0:0135 kg.s�2. The computational domain is Lx = Ly = Lz = 500 10�6 m and 384 grid points
are used in all directions.

Thanks to the action of the surface tension forces, the droplet oscillates from prolate to oblate spheroid
passing by a quasi-spherical shape. Figure 7 depicts the volume V (d), surface area S(d), mean curvature
H(d) and Euler characteristic �(d) when the droplet is prolate (t = 0), quasi-oblate (t = 0:78�
) and quasi-
spherical (t = 1:23�
). (In this �gure the scale is normalized by D = 2b (= 100 �m).) For the three cases, the
derivative V (d);d is proportional to S(d) (Fig. 7(b)) in agreement with Eq. (7)(a) and the Euler characteristic
remains equal to 2 (Fig. 7(d)) since, whatever the scale, the eroded system remains homeomorphic to one
sphere for the three cases displayed in this �gure. However, these cases di�er by the corrections introduced
in Eqs. (7)(b) and (7)(c) to accurately represent the derivatives S(d);d and H(d);d.

Identical to those plotted in Fig. 5, the curves for the prolate spheroid (case (1) in Fig. 7) evidence a
correction lcC2 equal to zero and a correction C3 well evaluated to accurately represent H(d);d. As explained
above, C3 increases from 0 to in�nity when d varies from 0.3D to D since the angle � evolves from 0 to �=2.

The case (2) in Fig. 7 di�ers from the oblate spheroid by the presence of lugs at the poles. This di�erence
explains why the curves of Figs. 6 and 7 (case (2)) are not the same although they are similar: both cases
require corrections to recover S(d);d and H(d);d. The medial axis of the quasi-oblate case is more complex
than the one of the oblate spheroid. It has a circular basis (as for the oblate spheroid) with linear branches
due to the lugs at the poles. Each element of this medial axis is meant to provide a contribution to the
correction as resumed in Table I. The curves shown in Fig. 7 were established by considering the contribution
of the circular medial axis only in the determination of the corrections lcC2 and C3. As shown in Fig. 7,
this does not degrade the capacity of the corrections to recover the derivatives S(d);d and H(d);d, evidencing
that the contribution to the correction of the medial axis linear element is negligible for this case.

Finally, case (3) in Fig. 7 corresponds to a quasi-spherical drop, the erosion of which produce no cusp
whatever the scale. In this case, Eqs.(A.17) apply in agreement with the curves shown in Fig. 7.

The functions plotted in Fig. 7 provide a detailed description of the system and a huge amount of time
and scale information o�ering numerous analysis possibilities that still need to be constructed. For instance,
speci�c scales together with their temporal evolution can be identi�ed. As an illustration, Fig. 8 displays
the temporal evolution of two speci�c scales, Dmin and Dmax, which are detected in Fig. 7 as follows. Dmin
is the largest scale for which the equality 2H(d);d = �(d) is satis�ed. By de�nition, this scale is equal to
twice the erosion-reach of the system. Dmax is the smallest scale for which all functions plotted in Fig. 7
are equal to zero. The length D and the characteristic time �
 = (�LD3=
)1=2 (= 0:236 ms) normalize the
scales and time, respectively.

During the oscillation mechanism, the droplet alternatively adopts a prolate and an oblate shape, which is
respectively recognized by a linear and a circular medial axis. The prolate and oblate episodes are visualized
as gray and white regions in Fig. 8, respectively. The driving surface tension forces responsible for the
oscillation apply on the droplet poles during the prolate episodes whereas they apply on the whole equator
circumference during the oblate episodes. This di�erence is important and explains the fact that the prolate
episodes are longer (� �
) than the oblate ones (� 0:6�
). The period of the oscillation is therefore equal to
1:6�
 = 0:378 ms which is pretty close to the estimated value obtained from the theoretical expression given
by [18] for small amplitude oscillation. Indeed, considering the �rst vibration mode, the oscillation period is
estimated at 0:341 ms.

The green dot-line in Fig. 8 indicates the ratio Ds=D where Ds (� 150 �m) is the diameter of the
droplet when it is spherical. Since the diameter of a sphere is equal to twice its erosion-reach as well as
to its maximum scale, the droplet is spherical when Dmin = Dmax = Ds. During the oscillation sequence
shown in Fig. 8, these equalities are never satis�ed meaning that the droplet never hugs the spherical shape.
This is when the shape changes from prolate to oblate, and vice versa, that the droplet is the closest to a
sphere. The times corresponding to these situations are indicated by black vertical dash-dot lines in Fig.
8. At these times, the ratio Dmax=D exhibits a maximum that remains less than 1.5. On the other hand,
the minima of Dmax=D occur at the times at which the droplet shape is furthest from the sphere. The level
of these minima depends on the oscillation episode. During the prolate episodes, the minimum is reached
when the droplet equator diameter is the smallest. Indeed, at these times, the scale Dmax is equal to this
speci�c diameter. During the oblate episodes, the minimum of Dmax is reached when the distance between
the droplet poles is the smallest, since Dmax is equal to this very distance at these times. The maxima and
minima of the scale Dmax all increase from one oscillation period to the next one, evidencing an evolution
of the system towards the stable spherical shape.
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Figure 7: (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic �(d) as a function of
the erosion scale d for the oscilating droplet. Results are for (1) t = 0, (2) t = 0:78�
 and (3) t = 1:23�
 .
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Figure 8: Time evolution of the reach Dmin and maximum erosion scale Dmax for the oscillating droplet. The vertical black
lines depict the transition from oblate to prolate and the green horizontal line is the sphere equivalent diameter. The three
time instant labelled (1) t = 0, (2) t = 0:78�
 and (3) t = 1:23�
 are also displayed by vertical dotted lines

The scale Dmin provides further details on the shape of the drop during its oscillation. This scale may
be representative of a mean curvature local extremum on the system interface (like in the extruded ellipse
case) or of a local bottle neck (like in the extruded Cassini oval). In the �rst case, Dmin is equal to twice the
lower curvature radius, and, in the second, it is equal to the bottle neck size.

Dmin and Dmax display similar evolutions during the droplet oscillation: at each episode, they decrease,
adopt a behaviour of less variation, and increase. At t = 0, the droplet is prolate and the scale Dmin
is imposed by the maximum curvature at the poles. During the early times, Dmin increases while Dmax
remains constant. This shows that a modi�cation of the shape of a speci�c region of the droplet needs time
to deform farther regions of the system. Such a mechanism may be responsible for secondary deformations of
the droplet during its oscillation. These secondary deformations are local and degrade the prolate or oblate
con�gurations in a more or less pronounced way. The existence of secondary deformations is recognized in
Fig. 8 by the time o�set between the Dmin and Dmax signals and by speci�c Dmin variations absent for
Dmax. This is particularly observed during the two �rst episodes.

During the �rst episode, the relaxation of the initial prolate shape accumulates liquid in the poles that
swell accordingly. As the relaxation continues, the swollen ends become preceded by a contracted region,
mechanism that is accompanied by a change of slope in the increase of the scale Dmin (at t=�
 � 0:25).
When the two contracted sections originating from each pole meet at the equator, the system resembles a
peanut. This is its con�guration at t=�
 � 0:45 at which Dmin displays a maximum that is equal to the
diameter of the peanut equator. As relaxation continues, the contracted regions separate and continue their
route toward the pole, opposite to the one they originate, where they disappear. At the same time, the
global shape of the system passes from prolate to oblate due to accumulation of liquid in the equator region.
The combination of these events makes the scale Dmin decrease.

During the second episode, when the droplet is oblate, an oscillation of Dmin appears at 0:6 < t=�
 < 1:2
while Dmax remains roughly constant. This oscillation re
ects a secondary deformation process. The �rst
minimum of Dmin corresponds to the presence of a remaining lug at the poles whose retraction in turn
produces a 
at interface (�rst maximum of Dmin), hollowed out (second minimum of Dmin), and then

at again (second maximum of Dmin). Finally, while the droplet begins its journey back to a prolate
con�guration, a lug reappears at the poles and Dmin goes through the third and last minimum of this
episode.

The evolution of Dmin shown in Fig. 8 evidences that secondary deformation events are almost absent
during the third and the fourth episodes: Dmin appears more in phase with Dmax, approaches its value and
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Figure 9: Initial condition for the retracting ligament simulation. This case corresponds to case (a) in Fig. 8 of Tong and Wang
[35].

exhibits far less secondary variations. Such dynamic is representative of a stable system that rearranges as
a sphere. In other words, the di�erences between the dynamics of Dmax and Dmin, i.e., the primary and the
secondary deformations respectively, should indicate whether the system is meant to divide or not during
the oscillation process.

3.3. The relaxing ligament
Here, we consider the same case as Fig. 8(a) in Tong and Wang [35]. The initial geometry is that of an

elongated cylindrical ligament closed with two spheres at each of its extremity, see Fig 9. The cylinder has
an initial diameter 0:6 10�3 m and the droplets radius is 1:2 10�3 m. The ligament length is 13:6 10�3 m.

The liquid and gas density are �L = 1000 kg.m�3 and �G = 1:2 kg.m�3, respectively. The viscosity of the
liquid phase is �L = 1 10�3 kg.m�1.s�1, and that of the gas phase �G = 1:82 10�5 kg.m�1.s�1. The surface
tension 
 = 0:073 kg.s�2. Only a quarter (half) of the ligament is simulated in the azimuthal (streamwize)
direction. The computational domain is Lx = 8Ly = 8Lz = 8 10�3 m and 1024� 128� 128 grid points are
used in x, y and z directions, respectively.

The relaxation of the elongated ligament caused by the action of surface tension forces deforms the system
continuously inducing rupture and coalescence events. At t = 1:43�
 , (where �
 = (�LD3=
)1=2 = 4:86 ms)
both spherical ends detach and form two oscillating spheres while the remaining ligament continues relaxing.
At t = 4:9�
 , the remaining ligament breaks up into three droplets with one tiny satellite between them.
Moved by a velocity directed towards the center, the external drops coalesce with the satellites at t = 5:19�

and with the central drop at t = 5:75�
 . The simulation ends with three oscillating droplets, the one in the
center being farther from the stable spherical shape than the two others.

The volume V (d), surface area S(d), mean curvature H(d) and Euler characteristic �(d) are plotted in
Fig. 10 for the ligament at three di�erent instants, i.e., t = 0:57�
 (before the �rst breakup event), t = 3:59�

(between the two breakup events) and t = 5:84�
 (after the second coalescence event). As for the previous
case and in agreement with Eq. (7)(a), the surface area S(d) appears proportional to the derivative V (d);d
irrespective of the scale for the three cases (Fig. 10(b)). Furthermore, since the ligament shows a linear
medial axis at each time during the relaxation mechanism, the mean curvature H(d) requires no correction
to reproduce the derivatives S(d);d (Fig. 10(c)) in agreement with the element listed in Table 1.

Contrary to the previous case that reported a constant Euler characteristic (see Fig. 7), �(d) depends on
the scale as shown in Fig 10(d) for cases (1), (2) and (3), respectively. As observed for the extruded Cassini
oval (Fig. 4), this scale dependence reveals that the eroded systems may be constituted of disconnected
elements the number of which being a function of the erosion scale. As shown in Fig. 10, the ligament
rearranges as a succession of contracted or bottle neck sections separated by swelled sections. Performing an
erosion at a scale equal to a bottle neck diameter produces an eroded system made of disconnected elements
whose number imposes the increase of the Euler characteristic. On the other hand, performing an erosion
at a scale equal to a swelled section diameter erases the contribution of this swell to the eroded system,
decreasing the Euler characteristic accordingly. Therefore, the scales for which �(d) jumps up are bottle
neck diameters, the number of these bottle necks being given by the height of �(d) jump. The scales for
which �(d) jumps down are swell diameters, the number of these swells being given by the height of �(d)
jump. This shows to which extend �(d) provides quantitative information on the system morphology.

As observed for the extruded Cassini oval, the derivative H(d);d shows a peak at each Euler characteristic
jump. Since the peak shape depends on whether �(d) jumps up or down, information on the number and
scale of the bottle necks and swells are also available from H(d);d. Once again, Figs. 10(d) shows that Eq.
(7)(c) together with the elements of Table 1 allow a correct representation of the function H(d);d.

As done for the oscillating droplet in the previous subsections, Fig. 11 shows the temporal evolution of
the speci�c scales Dmin and Dmax. The positions of cases (1) to (3) are indicated by the dot lines and the
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Figure 10: (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic �(d) as a function of
the erosion scale d for the retracting ligament. Results are for t=�
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Figure 11: Time evolution of the reach Dmin and maximum erosion scale Dmax for the retracting ligament. The vertical black
lines depict either break-up or coalescence events. The three time instant t=�
 = (1) 0:57; (2) 3:59; (3) 5:84 are also displayed
by vertical dotted lines

break-up and coalescence events by the black dot-dash lines.
Between t=�
 = 0 and 3.6, Dmax is carried by both system ends that become independent oscillating

drops after the �rst break-up event at t=�
 = 1:45. Initially spherical, these ends oscillate from quasi-prolate
to quasi-oblate spheroids reporting a Dmax evolution similar to the one obtained for the oscillating droplet
(Fig. 8). For time higher than t=�
 = 3:6, Dmax is carried by either elements of the system, explaining the
oscillation of this scale between t=�
 = 4 and 5.

We see in Fig. 10 that the scale Dmin corresponds to the �rst peak of H(d);d indicating that this scale
is always equal to a bottle neck or pinch-o� diameter. Before the �rst break-up event, Dmin is the diameter
of the pinch-o� ensuring the contact of the ends to the ligament. It decreases continuously and reaches zero
at the time of the �rst break-up.

Between the two break-up events, Dmin is carried by the remaining ligament between the external drops.
This scale oscillates, following the evolution of the smallest ligament pinch-o�. The satellites between
the three drops produced by the second break-up impose the small Dmin after t=�
 = 4:95, and their
disappearance by the �rst coalescence event is recognized by the sudden increase of Dmin at t=�
 = 5:2.
Finally, the coalescence of the three central droplets (at t=�
 = 5:75) produces contact pinch-o�s between
the drops and Dmin becomes equal to the diameter of these pinch-o�s explaining its small value found at
this time. The vivid increase of Dmin after this event augurs well for the evolution of the central element
towards a spherical shape.

3.4. The Plateau-Rayleigh instability
This section presents the case of a cylindrical ligament subject to the surface tension driven Rayleigh-

Plateau instability. We employ the same numerical con�guration as [5]. The liquid and gas density are
�L = 1000 kg.m�3 and �G = 1 kg.m�3, respectively. The viscosity of the liquid phase is �L = 1 10�3

kg.m�1.s�1, and that of the gas phase �G = 1:879 10�5 kg.m�1.s�1. The surface tension 
 = 0:072
kg.s�2. The ligament has an initial radius a = kLx=� where the non-dimensional perturbation wavenumber
k = ka = 0:55 applies on the x axis. The amplitude of the perturbation was set to 0:1a. Only a quarter
(half) of the ligament is simulated in the azimuthal (streamwize) direction. The computational domain is
Lx = 3Ly=2 = 3Lz=2 = 1:5 10�4 m and 192 � 128 � 128 grid points are used in x, y and z directions,
respectively.

For the selected sinusoidal perturbation wave-number, the cylindrical ligament is unstable and, according
to the Rayleigh theory, the perturbation temporal growth rate is equal to ! = 0:318�
=(8)1=2 (where �
 =

15



0:0

0:5

1:0

(a)(a)(a)

Vd

d=D

0

20

40

60

(d)

0:0

0:5

1:0

(b)(b)(b)

S(d)
� 2V(d);d

d=D

0

20

40

60

(d)

0:0 0:5 1:0 1:5 2:0
d=D

0:0

0:5

1:0

(c)(c)(c)

H (d)
S(d);d

H (d) � lcC2(� )

0:0 0:5 1:0 1:5 2:0
d=D

0

20

40

60

(d)

� (d)
2H (d);d=2�

� (d) + C3(� )

(1) (2) (3)

Figure 12: (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic �(d) as a func-
tion of the erosion scale d for a liquid ligament undergoing the Plateau-Rayleigh instability. Results are for t=�bu =
(1) 0:42; (2) 0:96; (3) 1:09.
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Figure 13: Time evolution of the reach Dmin, the maximum erosion scale D1;max and the size of the satelite maximum
erosion scale D2;max for the Plateau-Rayleigh instability. The two vertical black lines depict the �rst departure of Dmin from
an exponential behavior and the apparition of the pinch-o�, respectively. The three time instant labelled (1) t = 0:42�bu,
(2) t = 0:96�bu and (3) t = 1:09�bu are also displayed by vertical dotted lines

0.045 ms) and the break-up time is tbu = �
 log(D=2�0)=(!(81=2)), i.e., �bu = 0:115ms. The deformation
of the ligament manifests �rst by a growth of the amplitude of the sinusoidal perturbation and, second, by
a rearrangement of the ligament as an almost spherical bead connected with a small scale ligament. The
rupture of this structure produces one big drop (from the bead) and one satellite drop, the latter coming
from the relaxation of the small ligament when left alone after the break-up.

Figure 12 presents the functions V (d), S(d), H(d) and �(d) for the three cases, i.e., during the initial
sinusoidal perturbation growing (case (1)), just before the break-up event (case (2)) and after the break-
up event (case (3)). As for the previous situations, we note that the functions S(d) and V (d);d remain
proportional with each other for the three cases (Fig. 12(b)). As expected from the prolate spheroid (Fig. 5)
or the relaxing ligament (Fig. 10), the functions H(d) and S(d);d match well for cases (1) and (2), i.e., those
having a linear medial axis and requiring no correction at this level. Since case (3) shows an quasi-oblate
element, a correction of H(d) appears necessary to retrieve S(d);d. Once again we note that the correction
provided by Eq. (7) apply very well. Although the main drop of case (3) is quasi-oblate, note that the
function S(d);d is rather di�erent than the one obtained in Fig. 6 for the exact oblate spheroid or the one
in Fig. 7 when the oscillating droplet is almost oblate. These observations underline the sensitiveness of the
functions displayed in these �gures.

Since the system remains homeomorphic to a cylinder before break-up, the Euler characteristic �(0) is
equal to zero for cases (1) and (2) (see Fig. 12(d)). However, for other scales, �(d) varies according to the
number of elements that constitute the eroded system. As described in the previous section, this number
increases when the erosion scale matches the diameter of a bottle neck or a pinch-o�, or decreases when
the erosion scale matches the diameter of a swell section. The scales concerned by this Euler characteristic
change are rendered visible by the peaks of the function H(d);d. (Note that, here again, Eq. (7) and the
elements of Table 1 combine very well and ensure a good representation of the function H(d);d). For case
(1), the �rst peak indicates the scale of a bottle neck and the second one the one of a swell. These scales
correspond to the smaller and larger diameters of the deformed ligament, respectively. For case (2), the �rst
peak indicates the diameter of the pinch-o� between the ligament and the bead, the second peak indicates
the larger diameter of the ligament and the third peak is the characteristic scale of the bead. For case (3)
�(0) = 4 since the system has transformed as two drops. This value changes as a function of the scale
indicating that these drops are not fully spherical yet.

Figure 13 displays the temporal evolution of three speci�c scales: Dmin, D1;max and D2;max. (The time
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is normalized by the theoretical break-up time �bu.) These scales are those at which H(d);d exhibits a peak.
Since the reach of the system, i.e. the scale Dmin, is associated with a peak of the function H(d);d, it always
corresponds to the radius of a bottle neck or of a pinch-o�.

The unstable nature of this system is manifested by a marked divergence of the scales Dmin and D1;max.
The scale D1 max continuously increases following very well the exponential growth obtained from the linear
theory and shown by the black line. Similarly, the scale Dmin reports a continuous decrease that follows
the theoretical behavior up to t=�bu = 0:7. After this time, the linear theory is not appropriate anymore to
reproduce the evolution of Dmin which, therefore, is likely a�ected by the �rst action of non-linear e�ects.
The black dash line in Fig. 13 shows that Dmin decreases as t2=3. As reported by the literature [e.g. 10]
this temporal dependence reveals that the pinch-o� contraction has reached an inertial regime for which
the dominant resistance against surface tension stems from the inertia of accelerating 
uid elements. This
regime lasts until t=�bu = 0:9 after which another dynamics appears. This last behavior likely represents the
visco-capillary regime for which the dominant resistance against surface tension stems from viscous forces.
The theory predicts a linear dependence between the pinch-o� diameter and the time for this regime that
is not obvious in Fig. 13 although the points seem to align close to the break-up event. At this very time
(t=�bu = 0:9), a third peak of H(d);d appears at scale D2;max. The appearance of this scale demonstrates
that the pinch-o� evolution divides the liquid system in two isolated parts, con�rming the approach of a
break-up event. Each of these parts have their own maximum scale, D2;max being the one of the ligament.
We see that during break-up, this scale does not vary signi�cantly.

The multi-scale analysis is validated here by the fact that it allows us to �nd the known behaviors of
Dmin and Dmax. Note that it o�ers an alternative to the problems posed by traditional approaches, which
require the localization of scales before their measurement, a step that proves to be a source of imprecision.
The multi-scale approach involves only one measurement, that of a function which, beyond the scales Dmin
and Dmax presented here, contains a signi�cant amount of information.

3.5. The two-phase homogeneous isotropic turbulence
The present framework is now applied to appraise the morphology of liquid structures in a turbulent


ow. For this purpose, we use the same 
ow con�guration as the one explored by [5, 12, 32, 34], i.e. a
two-phase 
ow evolving in a triply periodic turbulent 
ow. The square box is �lled with 5% of liquid and
the four initially spherical liquid structures get contorted through the action of turbulence. The latter is
linearly forced so that the turbulent kinetic energy remains constant and equal to 3:6 m2:s�2. We use the
same physical parameter as [32, 34]. The density of liquid and gas phases are set to �L = 753 kg:m�3 and
�G = 25 kg:m�3, respectively, leading to a density ratio of about 30. The dynamic viscosity for the liquid
and gas phase are �L = 5:65 10�4 Pa:s and �G = 1:879 10�5 Pa:s, respectively. Therefore, the kinematic
viscosity is the same for both the liquid and gas phase. Compared to [32, 34], we used a slightly higher
surface tension 
 = 0:0189 N:m�1 which was proven to enhance the number of generated liquid structures.
The domain is discretized using 256 points in all three directions. The domain is square and 1:5 10�4 m
wide in each direction. These parameters lead to a turbulent Reynolds number based on the kinetic energy
and integral length scale of 194, the Taylor microscale Reynolds number is 25, the turbulent Weber number
is 5.8. The ratio of the Taylor microscale and Kolmogorov length scale to the mesh cell size is 20.0 and 2.05
respectively.

We have selected three typical structures which are colored in blue, red and yellow in Fig. 14. Note that
although the yellow structure appears disconnected, the surfaces on top and bottom of the domain belongs
to the same structure because of periodicity. We have computed their corresponding MFs which are plotted
in Fig. 15. The erosion scale d is normalized by the sphere equivalent diameter noted Deq;s = (3V (d =
0)=4�)1=3. V (d); S(d) and H(d) are normalized by the sphere equivalent volume (�D3

eq;s=6), surface (�D2
eq;s)

and mean curvature (2�Deq;s), respectively. We note that for all three structures, S(d) = �2V (d);d meaning
that this result is rather general and holds even for more complicated morphology than the ones previously
analysed. Looking at the Euler characteristic in Fig. 15, we note that �(d = 0) = 2 meaning that all three
structures are homomorphic to a sphere. The blue curve in Fig. 15 indicates that the corrections C2 and C3
which are given by H(d)� S(d);d and �(d)�H(d);d=�, respectively, are almost zero for almost all values of
the morphological parameter d. This means that the structure under consideration is roughly spherical which
is indeed observed in Fig. 14. For this structure, we have S(d = 0) and H(d = 0) which are almost equal to
their sphere equivalent value. The red curve reveals that the correction C2 is almost zero while C3 reveals two
distinct peaks with signi�cant values. Given our previous analysis of the Plateau-Rayleigh instability, we can
conclude that such distributions of C2 and C3 are representative of an elongated structure, i.e. characterized
by a quasi linear medial axis. The peak at the smallest d can be associated to the presence of a pinch-o�

18



Figure 14: Direct visualization of three structures (represented in blue, red and yellow) evolving in a liquid-gas homogeneous
isotropic turbulence

with size � 0:45Deq;s. The second peak is representative of a bulge whose size is about 0:55Deq;s. This is
consistent with the direct visualization of the red structure given in Fig. 14. Finally, the yellow structure
which appears much more contorted than the two others is characterized by non zero corrections for both
H(d) and �(d). C2 and C3 start being non zero for scales larger than 0:25Deq;s which provides a measure of
the reach of the system under consideration. The scale dependence of C2 for scales d larger than 0:25Deq;s
indicates that the yellow structure might be rather 
at, i.e. with a medial axis falling along a surface. This
is indeed observed in the actual visualization of this structure given in Fig. 14.

We see again on this application that the description of parallel systems by the MFs brings more infor-
mation than the only description of the system at the erosion scale d = 0. As we have done here, MFs can
be computed for all individual structures. Since they are additive, the morphology of the total system can
simply be deduced from the sum of the MFs of individual structures. In what follows, we perform such kind
of analysis.

3.6. Ligament mediated atomization.
The last example of the present framework application concerns a ligament mediated atomization process.

Contrary to the previous examples, the application is made here on experimental results (the details of the
experiment are available in [39]). The atomizer is equipped with a triple-disk nozzle known to favor the
development of a turbulent 
ow with a double contra-rotating swirl which results in the production of a
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Figure 15: MFs of three typical structures evolving in a liquid-gas homogeneous isotropic turbulence.

2D highly-perturbed liquid sheet. Turbulence is a source of disturbances, some of which, selected by the
action of surface tension forces, deform the edges of the sheet in a rather regular and reproducible way and
structure its contraction into a network of deformed lateral ligaments, the rupture of which produces drops
of di�erent sizes. Fig. 16 is a snapshot of the process in the region extending from about 10 to 28 nozzle
diameters denoted Di (Di = 400 �m, see [39]), region where the drop production is the more e�ective. We
see the end of the contraction of the liquid sheet and its reorganization into lateral ligaments as well as the
break-up of these ligaments into drops. This atomization process is mainly 2D and what is observed in Fig.
16 is representative of the whole 
ow evolution.

The MFs of the liquid system are measured on images similar to the one in Fig. 16 after appropriate
image processing [4]. In order to compute the MFs using the exact same numerical tools as the one used
heretofore, the liquid observed in the 2D image is simply extruded over the third direction. A �ctitious
constant thickness h = 1, is used. Thus, the MF V (d) is equal to the liquid surface projected area (times
h = 1), S(d) is equal to the liquid system perimeter (times h = 1) and H(d) is equal to the length averaged
mean curvature. The fourth MF related to the Gaussian curvature is equal to zero since the curvature in
the extruded direction is zero. Note that in this two-dimensional description, the length-averaged mean
curvature H(d) carries the role of the Euler characteristic �(d), i.e., H(d) = ���(d). Since the 
ow is
inhomogeneous, the MFs are measured on �ve distinct portions of the liquid system delimited by the colored
rectangles shown in Fig.16. The measurements are performed on 150 images and the averaged MFs are
displayed in Fig.17 where the curve colors indicate the measurement locations and where Di is the nozzle
ori�ce diameter.

The top graph in Fig.17 presents the volume V (d). As expected, this function decreases with the scale
d, and, for all scales, V (d) continuously decreases with the distance from the injection point. This latter
behavior re
ects the decrease of the projected surface area as the liquid sheet contracts and reorganizes as
ligaments. The sheet contraction is also evidenced by the decay of the larger scale as one moves away from
the injector.

The middle graph in Fig.17 displays the measured S(d) and the derivative �2V (d);d. As for all cases
examined in the previous sections of this paper, the equality S(d) = �2V (d);d still applies at all scales. At
large scales, i.e., those representative of the sheet, S(d) is much smaller than at small scales and continuously
decreases with the downstream position. This illustrates the small interface length carried by the sheet as
well as its disappearance while reorganizing as ligaments. At small scales, S(d) increases continuously for all
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Figure 16: Triple-disk atomizer liquid sheet atomization process; Ori�ce diameter Di = 400�m; water + 10% isopropanol, liquid
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[39] for further detail.
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scales as a function of the downstream position. This behavior underlines the increase of interface associated
with the development and atomization of the ligaments. It is interesting to note that the interface quantity
represented by S(d) appears to converge to its equilibrium value whilst the breaking process is not yet
complete.

The bottom graph in Fig.17 displays the measured mean curvature�H(d)=� and the derivative�S(d);d=�.
Being the average of 150 measures, �H(d)=� is not limited to integer values only and displays a smooth
continuous behavior. Its value for d = 0 (�H(0)=�) corresponds to the average number of disjoint elements:
the drop production process makes this number increase with the position. �H(d)=� and �S(d);d=� are not
equal due to the complex shape of the liquid structures. While �H(d)=� represents the average number of
disjoint liquid elements, S(d);d=� additionally carries information about their characteristic scales. Thus, in
the region of large scales (see the insert on the �gure) S(d);d=� shows two main peaks at two characteristic
scales, i.e., the average smallest and largest widths of the sheet. We see that these scales decrease with the
downstream position. This is representative of the rate at which the sheet contracts, which can thus be
measured here.

In the small scale region, �H(d)=� and �S(d);d=� separate at a scale corresponding to the averaged reach
of the liquid system. The absence of a peak of �S(d);d=� at this scale indicates that the reach corresponds
to the smallest curvature radius as for the case of the extruded ellipse (Fig. 3) and not to the pinch-o�
size as for the case of the extruded Cassini oval (Fig. 4). The decrease of the averaged reach with the
downstream position illustrates the presence of smaller and smaller drops. When the scale d exceeds the
reach, �H(d)=� begins to decrease, indicating the loss of small drops. This coincidence shows that the reach
well corresponds to the radius of the small drops. At the same time, �S(d);d=� increases until it reaches
a maximum and then decreases continuously to 0. The scale at which �S(d);d=� is maximum decreases
with the downstream position. The behavior of �S(d);d=� with the scale d integrates two mechanisms: the
decrease of the number of disjoint elements (topological information) and the increase of the C2(�) correction
with the erosion scale for the remaining elements (morphological information). When �S(d);d=� increases,
the second mechanism prevails over the �rst; when it decreases, it is the opposite. When �S(d)=� is constant,
the two mechanisms annihilate (see last position results in Fig. 17). Thus, the decay of �S(d);d=� after the
maximum is representative of the maximum scale distribution of main structures. Note that when �S(d);d=�
starts decaying, �H(d)=� starts decreasing more quickly. The end of the atomization process (all drops are
spherical) will be characterized by the equality �S(d)=� = �H(d)=� and this unique function can be shown
to be directly proportional to (1 � F0(D)) where F0(D) is the cumulative number-based drop-diameter
distribution ([33]). The decays of the functions shown in Fig.17 will therefore converge to the drop diameter
distribution which must undoubtedly lie between the functions �H(d)=� and �S(d);d=�.

This last application illustrates the richness of MFs for the description of atomization processes with
the possibility to identify characteristic scales of the structures involved and to study their dynamics. We
demonstrate here the possibility of using this approach on images provided by the experiment o�ering access
to many quantitative information to describe and study an atomization process.

4. Conclusion

The present work is motivated by the need of liquid morphological descriptors that aim at supplementing
the drop size distribution which is inoperative for describing the primary atomization zone. The conclusions
of the present analysis concern both the mathematical development and its application.

From a mathematical point of view, the links between Minkowski Functionals for systems parallel to
an initial system have been established for all possible distances. If these relationships had already been
established for distances below the initial system reach, this was not the case for distances beyond this reach.
This result is obtained using tools from integral geometry. The reader is advised to refer to Appendix A.3
and Appendix B for technical details. It is worth stressing that the analysis is carried for simple bodies
(extruded and axisymmetric shapes) which has allowed us to extract the following key features. While the
relationships between the MFs of parallel surfaces only involve their successive derivatives when the distance
remains less than the reach, they depend, for scales beyond the reach, on the shape of the medial axis and
on local properties of the interface such as the angle between the normal of the parallel surface at the cusps
and the initial system medial axis. The dependence of the MFs with the interface local property allows
identifying speci�c scales such as those for which a bottle-neck or a bulge appears. This analysis suggests
that a complete morphological description of complex shapes requires the weighted medial axis (where the
distance of the interface is known for each medial axis point) to be supplemented by an information about
the angle between the cusp normal and the medial axis.
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As far as the application of such analysis to free liquid systems is concerned, the �rst result is an indication
on the equilibrium of any structure: indeed, a liquid structure with a reach less than the maximum scale
reveals the existence of a deformation dynamic. Furthermore, the ability of the analysis to identify the
bottlenecks is of great use in studying their dynamics and their possible evolution towards a pinch-o� and
a breakup event. Applied to the Rayleigh-Plateau instability, this paper demonstrates that the analysis is
suited for probing the dynamics of the large scale and of the pinch-o� mechanisms. In this analysis, the
reach of the system (scale Dmin) appears to be a very important indicator. In addition to the identi�cation
and following over time of bottlenecks, this scale provides information on the presence of local deformations,
named secondary deformations, when they involve small scales that cause a decrease of the reach. These
deformations are important because they can, in some cases, trigger local rupture processes. Such situations
have not been investigated for the moment.

Finally, this work demonstrates the possibility of using MFs to describe and quantify experimental
observations. Even if the information is 2D, the description of the series of parallel systems produces
comprehensive quantitative informations whose evolution in space or time is accessible. These evolutions are
new elements for the study of atomization processes.

In conclusion, the MFs are nicely tailored for inferring the morphology of the structures under consid-
eration. They provide a qualitative assessment of their shape (spherical, elongated, 
at) together with a
quantitative measure of their characteristic scales (reach, pinch-o� and bulges size). They thus contain a
much richer information than the one exclusively contained at d = 0 or the one deduced from their sphere
equivalent value. The two-point structure function of the phase indicator [32{34] and the following over
time of the MF of parallel systems constitute relevant multi-scale analysis tools for the study of dynamic
heterogeneous systems. Contrary to the phase indicator statistics, the MF at di�erent erosion scales lack of
a transport equation. Nevertheless, it can be used as a support to develop models as, for example, illustrated
by a previous work devoted to the representation of an atomization process by the scale entropy di�usion
model [11].
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Appendix A. Derivation of the classical Steiner formula

Geometric measures of parallel sets are well described for C2-class surfaces (for which di�erential geometry
applies) and C0-class convex sets (using results from integral geometry). Before we start, it is necessary to
describe the convention used throughout the present work.
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Figure A.18: Sketch portraying the convention used in the present study. The phase indicator function � = 1 in the phase
of interest (here the liquid phase) and zero elsewhere. The normal to the interface n = r � are represented by arrows. The
interfaces obtained upon erosion operations are displayed by full lines. Those obtained from dilation are shown by dashed lines.
On the left �gure, the normals are pointed towards each others, hence the structure is concave upon erosion but convex upon
dilation. The opposite applies to the complement object sketched in the right �gure.

Appendix A.1. Convention
Let us de�ne the phase indicator function �(x) = 1 in the phase of interest (here the liquid phase) and

zero elsewhere (see Fig. A.18). The set of points where � = 1 is noted A = fx j �(x) = 1g.
The bodies Adil and Aero obtained by either a dilation or an erosion operation are characterized by the

Minkowski addition (noted �) and subtraction (noted 	), respectively

Adil = A�Bd=2 (A.1a)
Aero = A	Bd=2 = (Ac �Bd=2)c (A.1b)

Here, Bd=2 is a spherical structural element of radius d=2 and the superscript c denotes the complement
body, i.e. Ac = fx j �(x) = 0g

We further set the normal vector n to the interface separating zones where �(x) = 1 and �(x) = 0 as
n = r �. Therefore, n points towards zones where �(x) = 1 (see Fig. A.18). The objects obtained by
successive erosion and dilation operations form an in�nite set of parallel bodies which can further be de�ned
by:

Adil = fx j  (x) � �d=2g (A.2a)
Aero = fx j  (x) � d=2g (A.2b)

where  (x) is the signed distance function from the interface which is positive in zones where �(x) = 1 (in
the direction of n) and negative elsewhere. In other words, d=2 > 0 (in the n direction) corresponds to
erosion and d=2 < 0 to dilation. The interfaces obtained by erosion and dilation operations are portrayed
in Fig. A.18 as full and dashed lines, respectively. It is worth stressing that if, locally, the normals are
converging towards each other, i.e. r �n < 0 (left panel of Fig. A.18), then the body is seen as being convex
upon dilation but concave upon erosion. On the contrary, when normals are diverging, i.e. r �n > 0 (right
panel of Fig. A.18), the body is convex upon erosion and concave upon dilation.

Appendix A.2. C2-class surface
We use intrinsic coordinates to characterize the surface. Let �1 and �2 be the intrinsic surface coordinates

attached to a surface noted S(0) at point p(0) and aligned with the principal directions of curvature. Let
e1 and e2 denote the unit vector tangential to the parametric curves �1;2 = const. Then n = e1 � e2 is the
unit normal vector to S(0). (e1; e2;n) forms an orthogonal triad of unit vectors attached to S(0) at point
p(0) as represented in Fig. A.19.
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Figure A.19: Synthetic representation of the intrinsic curvilinear coordinate system attached to the surface S(0) at a given
point p(0)

A surface S(d), which is at constant distance d=2 along the normal of S(0), is said to be parallel to S(0).
We also refer the parallel surface S(d) to as the eroded system at distance d=2. Then the point p(d) is
related to p(0) by

p(d) = p(0) +
d
2

n (A.3)

Eq. (A.3) serves as a transformation that relates the Cartesian coordinates (x1; x2; x3) to the new coordinate
system, and can be inverted to express (�1; �2; d) in terms of (x1; x2; x3). In particular, the elementary volume
d3V between two parallel surfaces separated by a distance d

2 can be expressed as

d3V = h1h2h3 d�1d�2d
d
2

(A.4)

where the scale factors or Lam�e coe�cients write [40, p.158]:

h1 = 1 +
d
2
�1(0) (A.5a)

h2 = 1 +
d
2
�2(0) (A.5b)

h3 = 1 (A.5c)

Here �1(0) and �2(0) are the principal curvature of S(0) at point p(0) in the �1- and �2-directions, respectively.
Hence, the elementary volume between two parallel surfaces separated by a distance d

2 , viz.

d3V =
1
2

�
1 + �1(0)

d
2

� �
1 + �2(0)

d
2

�
d�1d�2dd

=
1
2

�
1 +H(0)d+ G(0)

d2

4

�
d�1d�2dd (A.6)

with 2H(0) = �1(0) + �2(0) and G0 = �1(0)�2(0). H(0) and G(0) are respectively the mean and Gaussian
curvature of S(0) at p(0). The volume V (d) of the eroded system a distance d=2 then writes

V (d) = V (0)�
1
2

Z

�1

Z

�2

Z d

0
(1 +H(0)� + G(0)

�2

4
)d�1d�2d�

= V (0)� S(0)
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2

�
1 + hH(0)i

d
2

+ hG(0)i
d2

12

�
(A.7)
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where

S(0) =
Z

�1

Z

�2

d�1d�2 (A.8)

is the surface area of S(0) and h i denotes the area weighted average over S(0), i.e.

h�(0)i =
1

S(0)

Z

�1

Z

�2

�(0) d�1d�2 (A.9)

Eq. (A.9) can be written for any quantities at any distance from the interface d=2. For the sake of clarity,
we de�ne

H(0) = hH(0)iS(0) (A.10a)
G(0) = hG(0)iS(0) (A.10b)

similarly,

H(d) = hH(d)iS(d) (A.11a)
G(d) = hG(d)iS(d) (A.11b)

Using this notation, Eq. (A.7) can be rewritten as:

V (d) = V (0)� S(0)
d
2
�H(0)

d2

4
�G(0)

d3
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(A.12)

Although slightly di�erent, this expression is closely related to the Weyl’s tube formula [41].
Di�erential geometry further allows us to write an expression for the area S(d) of the parallel surface

S(d) at a distance d=2 from S(0)

S(d) = S(0) +H(0)d+G(0)
d2

4
(A.13)

For the principal curvature, we have [40, p.159]

�i(d) =
�i(0)

1 + �i(0)d2
(A.14)

with i = 1; 2. Hence, the mean and Gaussian curvatures of S(d) write

H(d) =
H(0) + G(0)d2

1 +H(0)d+ G(0)d2

4

(A.15a)

G(d) =
G(0)

1 +H(0)d+ G(0)d2

4

(A.15b)

Proceeding to surface area weighted average yields

H(d) = H(0) +G(0)
d
2

(A.16a)

G(d) = G(0) (A.16b)

As a consequence, the volume V (d), the surface area S(d), mean H(d) and Gaussian curvatures G(d) are
simply related by:

�2V (d);d = S(d) (A.17a)
S(d);d = H(d) (A.17b)

2H(d);d = G(d) (A.17c)

where Einstein notation has been used for derivatives w.r.t d, i.e.

�;x =
@
@x
� (A.18)

where x denotes either the scale d or time t. It is also worth introducing the Euler characteristic �(d) which
by virtue of the Gauss-Bonnet theorem writes

�(d) = G(d)=2� (A.19)
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Appendix A.3. C0-class surface
When the surface possesses singular edges and corners (e.g. a triangulated surface), di�erential geometry

does not apply. Nevertheless, integral geometric measures for the volume V , the surface area S and curvatures
H, G can still be de�ned.

For convex-sets in 3D space, the volume of the eroded system V (d) can be expressed using Steiner’s
formula [22]:

V (d) =
3X

�=0

�
3
�

�
!�V�(0)

�
�
d
2

��
(A.20)

where
�
n
p

�
=

n!
p!(n� p)!

(A.21)

!� denotes the �-dimensional volume of a unit-sphere, i.e. !0 = 1, !1 = 2, !2 = � and !3 = 4�=3 and the
V� are called the Minkowski functional (abbreviated MF) and are given by

V0 = V; (A.22a)
6V1 = S; (A.22b)

3�V2 = �H (A.22c)
4�V3 = G (A.22d)

In general, the Minkowski functional V�(d) of the eroded parallel set are given by [22]:

V�(d) =
3��X

�=0

�
3� �
�

�
!�+�

!�
V�+�(0)

�
�
d
2

��
(A.23)

Eq. (A.23) yields the same expression for the volume V (d), surface area S(d), mean H(d) and Gaussian
curvatures G(d) as Eqs. (A.12), (A.13), (A.16a) and (A.16b), respectively. The same applies to Eqs. (A.17).
In summary, irrespectively of the type of surface (C2 or C0-convex), the relations for the volume, surface
area and curvatures of the eroded system are the same. For C2-class, they are generally referred to as the
Weyl’s formula while for C0-convex sets, they are called the Steiner’s formula.

If one considers a dilation operation instead of an erosion, these equations applies simply by inverting
the scale d=2.

Appendix B. Derivation of the corrected Steiner formula

Appendix B.1. Sets of �nite reach
Eqs. (A.12), (A.13), (A.16a) and (A.16b) reveal that integral geometric measures of the parallel body

are uniquely determined by the ones at zero dilation/erosion. Further, Eqs. (A.17) proves that by knowing
only e.g. the volume V (d), one can obtain all others Minkowski functional by simple derivations w.r.t d.

Eqs. (A.12), (A.13), (A.16a) and (A.16b) remain valid as long as all points on S(d) possesses a unique
correspondent on S(0), that is to say when the value of d=2 is less than the reach. Depending on the
morphological operation (dilation or dilation) and the convexity of the body upon such an operation, one
may de�ne the erosion reach and/or the dilation reach.

All convex bodies (which by de�nition have in�nite reach), and all bodies with C2-class boundary fall
within the class of sets with positive reach [14]. In other words, the notion of set with positive reach (or
unique footprint [17]) is a generalization that embeds both convex and C2-class surfaces.

For non-convex bodies and for C2-class sets at erosion scales larger than the reach, there are, to the
best of our knowledge, no known measurable relations similar to Eqs. (A.12), (A.13), (A.16a) (A.16b), and
(A.17).

In what follows, we aim at extending the analysis by deriving relations similar to Eqs. (A.17) which
hold for non-convex sets beyond the reach. In this perspective, we also hope providing insights into the link
between integral geometrical measures of the body under consideration and what [2] refer to as ’non-local’
properties. For the analysis to be analytically tractable, we will consider only simple shapes: tubular bodies,
systems of revolution with linear or circular medial axis.
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Figure B.20: Schematic of a body yielding the formation of a cusp when eroded at a scale d=2 > reach.

A system eroded at a scale d=2 larger than the reach presents at least one cusp, a local singularity located
on the medial axis at a distance d=2 from the original system boundary. As illustrated in Fig. B.20, d=2 is
then the radius of the bi-tangent circle to the system boundary. The cusp is located at the center of this
bi-tangent circle. For the ellipsoid of Fig. B.20 the medial axis lies on the horizontal axis. As demonstrated
through the forthcoming analysis, the cusp plays a central role for characterizing non-convex bodies.

Let us de�ne by a + the system obtained after erosion of the original system at a scale d=2 � � (the
system delimited by the red curve in Fig. B.20), and by a � the system obtained after erosion of the original
system at a scale d=2 followed by a dilation at scale � (the system delimited by the green curve in Fig. B.20).

The trick we employ to derive Steiner-type formula for erosion scales beyond the reach is based on the
observation that the MFs of the systems + and � di�er except in the limit �! 0 where they are the same.
For simple shapes, and given a realistic hypothesis on the system +, this di�erence and its limit as � ! 0
can be analytically computed. As we will see later in this section, this ultimately leads to corrections of Eqs
(A.17). The aforementioned hypothesis on the system + is to consider that the segment AB is tangent to
the curve at point A and hence the triangle OAB is right-angle (i.e. OA �AB = 0). By doing so, one can
compute the MFs for both systems � and + as now described.

Appendix B.2. Extruded systems
We start by considering extruded systems. These are characterized by a �xed cross section in the plane

xy that is simply repeated over the z axis (we use the same axis convention as in Fig. B.20). The extent of
the body in the z directions is noted h. Note that such systems have zero Gaussian curvature. Proceeding
with the calculation of volume, surface area, mean and Gaussian curvatures, for both + and � systems, one
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obtains

V +(�) = V �(�) + h�2 (tan � � �) (B.1a)
S+(�) = S�(�) + 2h� (tan � � �) (B.1b)
H+(�) = H�(�) (B.1c)
�+(�) = ��(�) = 0 (B.1d)

Steiner’s formula applies to the system � for dilation at scale � [2], viz.

V �(�);� = S�(�) (B.2a)
S�(�);� = �2H�(�) (B.2b)
H�(�);� = �2���(�) (B.2c)

In Eq. (B.2), derivatives are performed w.r.t �. Using (B.1) and Eq. (B.2), one can show that

V +(�);� = S+(�) (B.3a)
S+(�);� = �2H+(�) + 2h (tan � � �) (B.3b)
H+(�);� = �2��+(�) (B.3c)

The relations for the actual system upon erosion at scale d=2 is obtained by setting d � �2� in Eqs. (B.3)
before applying the limit �! 0). By doing so, we obtain:

2V (d);d = �S(d) (B.4a)
S(d);d = H(d)� h (tan � � �) (B.4b)

2H(d);d = 2��(d) (B.4c)

Eqs. (B.4) indicate that an extra term is present in the expression for the mean curvature H(d) while the
relations pertaining to the surface area and Euler characteristic remain unchanged. This correction reads
as the product of the cusp length (here h) by a correction factor which depends on the angle � between the
normal to the set boundary and the x axis (the axis on which the medial axis falls). � depends on the scale
d=2 and hence the correction is scale-dependent.

Appendix B.3. Axisymmetric systems with linear medial axis
Light is now shed on a Steiner type formula for an axisymmetric system whose medial axis reduces to a

line. Such a system can be obtained by e.g. rotating Fig. B.20 around the x axis. Using the same procedure
as in xAppendix B.2, we get

V +(�) = V �(�) + 2�
(1� cos �)2

cos �
�3

3
(B.5a)

S+(�) = S�(�) + 2�
(1� cos �)2

cos �
�2 (B.5b)

H+(�) = H�(�)� 2�
(1� cos �)2

cos �
� (B.5c)

�+(�) = ��(�) (B.5d)

which, by virtue of Eqs. (B.2), yields

2V (d);d = �S(d) (B.6a)
S(d);d = H(d) (B.6b)

2H(d);d = 2��(d) + 2�
(1� cos �)2

cos �
(B.6c)

It is worth emphasizing that for objects of revolution with a linear medial axis, the correction appears only
on the Euler characteristics while the surface area and mean curvature remain untouched.
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Appendix B.4. Axisymmetric systems with circular medial axis
A system similar to Fig. B.20 but rotated around the y axis possesses a circular medial axis. In this

condition, one obtains

V +(�) = V �(�) +2�rc(tan � � �)�2

+2� tan2 � sin �
�3

3
(B.7a)

S+(�) = S�(�) +4�rc(tan � � �)�
+2� tan2 � sin ��2 (B.7b)

H+(�) = H�(�) �2�
�

�
cos �

� sin �
�
� (B.7c)

�+(�) = ��(�) (B.7d)

where rc is the radial distance of the cusp. Using again Eqs. (B.2), we can show that

2V (d);d = �S(d) (B.8a)
S(d);d = H(d)� 2�rc(tan � � �) (B.8b)

2H(d);d = 2��(d) + 2�
�

�
cos �

� sin �
�

(B.8c)

Note here that the corrections appear on both the mean and Gaussian curvature while the relations for
surface area remain the same as Eq. (A.17). As it was the case for extruded systems (Eq. (B.4)), the
correction on the mean curvature reads as the product of the cusp length (here 2�rc) by tan � � �.
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