Skip to Main content Skip to Navigation
Book sections

From discrete and iterative deconvolution operators to machine learning for premixed turbulent combustion modeling.

Abstract : Following the rapid and continuous progress of computing power allowing for increasing the mesh resolution in large eddy simulation (LES), new modeling strategies appear which are based on a direct treatment of the now well-resolved, but still not fully-resolved scalar signals. Along this line, deconvolution or inverse filtering, either based on discrete or iterative operators, is first discussed. Recent results obtained from a direct numerical simulation (DNS) database and LES of a premixed turbulent jet flame are presented. The analysis confirms the potential of deconvolution to approximate the unclosed non-linear terms and the SGS fluxes. Then, the introduction of machine learning in turbulent combustion modeling is illustrated in the context of convolutional neural networks.
Document type :
Book sections
Complete list of metadatas

https://hal-normandie-univ.archives-ouvertes.fr/hal-03042541
Contributor : Pascale Domingo <>
Submitted on : Sunday, December 6, 2020 - 9:01:31 PM
Last modification on : Saturday, December 12, 2020 - 3:30:06 AM

File

coria_inndata.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-03042541, version 1

Citation

Pascale Domingo, Zacharias Nikolaou, Andréa Seltz, Luc Vervisch. From discrete and iterative deconvolution operators to machine learning for premixed turbulent combustion modeling.. Data analysis for direct numerical simulation of turbulent combustion, 2020. ⟨hal-03042541⟩

Share

Metrics

Record views

10

Files downloads

9