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Abstract

A novel chemistry reduction strategy based on convolutional neural networks (CNNs) is developed and applied to
direct numerical simulation (DNS) of a turbulent non-premixed �ame interacting with a cooled wall. The fuel syngas
mixture is burning in pure oxygen. The training and the subsequent application of the CNN rely on the processing
of two-dimensional (2D) images built from species mass fractions and temperature (CNN input), to predict the corre-
sponding chemical sources at the center of the image (CNN output). This image-type treatment of chemistry is found
to e� ciently capture intermediate radicals species highly sensitive to the local �ame topology. To reduce the CPU
cost, a simpli�ed 2D DNS database with detailed chemistry serves as reference and is used for training and testing the
neural network. Comparisons are also made a posteriori against the same 2D DNS with a reduced chemical scheme
specialized for syngas. Then, three-dimensional (3D) DNS are conducted either with CNN or the reduced chemistry
for more a posteriori tests. The CNN reduced chemistry outperforms the reduced Arrhenius based mechanism in the
prediction of radical species, such as monoatomic hydrogen, and also in terms of CPU cost.
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1. Introduction

The chemical mechanisms for hydrocarbon fuel com-
bustion can involve up to hundreds of species and thou-
sands of reactions [1]. Because of the very large num-
ber of degrees of freedom to be solved, such fully de-
tailed mechanisms can hardly be introduced in three-
dimensional (3D) numerical simulations of �ames. In
this context, the downsizing of chemical kinetics, still
securing the prediction of given major thermochemical
properties, is mandatory for virtual prototyping of real
combustion systems, particularly those involving heavy
hydrocarbon liquid or solid fuels [2].

Numerous successful strategies have been discussed
in the literature to reduce detailed chemical kinetics.
They are based mainly on fuel lumping, time-scale and
principal component analysis or direct numerical treat-
ment of the chemical responses from graph analysis or
genetic algorithms, sometimes associated with tabula-
tion methods [3–17].

Learning from a database to then reproduce the chem-
ical response has received extensive attention in tabu-
lation of combustion chemistry. Arti�cial neural net-
works (ANNs) were found accurate, and both CPU and
memory e� cient [18, 19]. Along similar lines, convo-
lutional neural networks (CNNs), which were originally
developed for analyzing visual representations [20],
have been introduced in turbulent combustion model-
ing for direct deconvolution of the �ltered progress vari-
able [21], for modeling the unresolved �ame surface
wrinkling [22] and for the direct reconstruction of un-
resolved sources and �uxes from mesh-resolved quan-
tities in large-eddy simulation (LES) [23]. Compared
to ANNs, CNNs reduce the number of connections per
layer to stack more of them e� ciently, thus increasing
the depth of the neural network.

In the present study, a novel chemistry reduction
approach based on CNNs is proposed and also cou-
pled with a three-dimensional direct numerical simula-
tion (DNS) for validation. A turbulent non-premixed
oxy-�ame interacting with a cooled wall is considered.
This con�guration covers a wide range of combustion
and turbulence conditions in terms of equivalence ra-
tio, progress of reaction and enthalpy including thermal
and viscous boundary layers e� ects, making it a rela-
tively generic test case. The syngas fuel composition is
representative of a CO2 free blast-furnace exhaust �ux,
as found in a recycling combustion process. The in-
put of the CNN are two-dimensional (2D) images of the
species mass fractions and temperature, while the output
are the corresponding chemical burning rates at the cen-
ter point of the image. The training is performed from

a simpli�ed two-dimensional planar DNS, with detailed
chemistry and input images built from a subset of the
full species vector. This subset of 11 species is chosen to
match the major and minor species retained in a reduced
chemical mechanism optimized for syngas. Once the
CNN trained, this reduced set of species becomes the in-
put to get the corresponding chemical rates. Then, only
this reduced set of species needs to be transported with
the �ow, saving much CPU time and reducing memory
requirement.

The objective is to test the feasibility of the novel
method, which should be applicable to any reference
detailed chemical mechanism. The generic GRI-3.0 de-
tailed mechanism [24] without NOx (217 elementary
reactions and 35 chemical species) is used in this �rst
attempt. Once trained for reproducing the chemical
sources of a reduced set of 11 species, the CNN for
chemistry reduction is tested a priori against the detailed
chemistry DNS. Then, the obtained neural network is
fully coupled with the �ow solution for two- and three-
dimensional DNS of the non-premixed �ame-wall in-
teraction. The two-dimensional cases are with the de-
tailed chemistry, the reduced chemical mechanism and
the CNN chemistry. The three-dimensional cases are
with the CNN and the reduced chemistry.

2. Turbulent �ame con�guration and numerics

A turbulent non-premixed oxy-�ame �ame under a
pressure of 341.3 kPa and featuring side-wall e� ects is
simulated (Fig. 1). A representative syngas composition
is injected through the upper inlet (width of 2 mm) at
1223 K and bulk velocity of 50 m/s, with H2/0.0085,
CO/0.7852, CO2/0.0514, N2/0.1549 in mass fraction.
Below the splitter plate of thickness 0.2 mm, the lower
inlet (width of 10 mm) supplies pure oxygen at 298 K
and 100 m/s. A preliminary simulation of an oxygen
turbulent periodical 3D channel �ow at the oxygen bulk
velocity serves as a database to impose a proper tur-
bulent inlet to the oxygen stream. A laminar channel
�ow pro�le is imposed for the fuel stream, between the
wall and the splitter plate. A non-slip wall is placed
at the top of the domain while a symmetrical bound-
ary condition is used at the bottom. Periodic bound-
ary conditions are employed in the spanwisezdirection
(Fig. 1) and a convective boundary condition is used
for the out�ow. The wall temperatureTw(x; t) is non-
uniform and computed assuming that the heat �ux lo-
cally reaching the wall is evacuated on its other side by
an e� cient water cooling with a convective heat trans-
fer h = 3300 W� m� 2 � K � 1, with a water temperature
To = 353 K (i.e.,h(Tw � To) = � (@T=@nw)gas, nw is the
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Figure 1: Instantaneous iso-surface ofQ criterion [25] predicted by CNN-DNS:Q = 107 s� 2, colored by gas temperature. Top graph: distribution
of instantaneous wall temperature along the centreline.

Figure 2: Velocity distribution in wall units for 3D non-reactive case
(mesh veri�cation).

wall normal direction). The physical dimensions of the
computational domain composed of 66.44M cells are
Lx = 100 mm,Ly = 12 mm andLz = 7.68 mm. The
mesh is uniform inx (streamwise) andz (spanwise, not
considered in 2D) directions, with the grid spacinghx

= hz = 60 � m. In they (vertical) direction, the mesh
keeps a �ne resolution of 20� m for the upper region
close to the wall (y > 10 mm) where the �ame is lo-
cated.1 The mesh gets coarser asy decreases from 10
to 0 mm to reach a grid spacing of 100� m at the bot-
tom of the computational domain. The �rst point o� the

1Simulations of one-dimensional canonical strained non-premixed
�ames were conducted to determine the grid resolution for the present
free stream conditions.

top wall is aty+ = 0:55 where the superscript+ denotes
the usual non-dimensionalization by the viscous length
scales. There are 9 grid points withiny+ = 10 to resolve
the viscous layer near the wall [26]. It was veri�ed from
a non-reactive simulation that the structure of the wall
boundary layer agrees with what is expected (Fig. 2).
The time step is �xed at 0.3� s (CFL� 0.8) with sub-
iteration in a sti� -chemistry ODE solver.

The governing equations for the gas mixture are
solved with a low-Mach number in-house code [27–
31]. The conservation equations for mass, momentum,
species and temperature of the gas phase are those of
[31], here without the source terms due to coal parti-
cles. The �ow viscosity and the thermal conductivity of
the gas mixtures are computed from Wilke's type mix-
ing rules. The Lewis number is assumed to be unity for
all the species.

The numerics is based on an approach previously
used for both DNS and LES [32, 33]. The time ad-
vancement relies on a second-order Crank-Nicolson
scheme. A bounded quadratic upstream interpolation
for convective kinematics (BQUICK) scheme is used
for the scalar advection terms in the species and tem-
perature equations, while a second-order central di� er-
ence scheme is applied to the scalar di� usion terms in
the species and temperature equations and all terms in
the momentum equation. An alternating direction im-
plicit (ADI) method has been employed, in which semi-
implicit tridiagonal/pentadiagonal equations are solved
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Table 1: Structure of the sequential CNNs used (see [34] for details
on functions).

Layer type Activation Output Shape
function

Input – (None, 3, 3, 11)
Conv2D ReLU (None, 3, 3, 64)
MaxPooling2D – (None, 2, 2, 64)
Conv 2D ReLU (None, 2, 2, 256)
MaxPooling2D – (None, 1, 1, 256)
Flatten – (None, 256)
Dense ReLU (None, 256)
Dense ReLU (None, 64)
Dense ReLU (None, 16)
Dense (Output) – (None, 11)

separately for each direction.

3. CNN chemistry reduction methodology

3.1. Training phase

Figure 3 sketches the overall CNN training process
from the 2D database, which is applied to the species
O, O2, H, H2, OH, HO2, H2O, H2O2, CO and CO2
(NOx being not included, no source is computed for N2).
Because the syngas is preheated to 1223 K, rapid igni-
tion occurs after mixing with pure oxygen and a non-
premixed �ame develops in the computational domain
(Fig. 1). After the �ame is established, the simulation
proceeds for 2 �ow-through times (2 ms) based on the
bulk velocity of the O2 stream.

The training database is built saving every 50� s the
0.52 million 2D DNS �elds of species mass fractions
and temperature together with their sources, leading to
40 snapshots each containing 520,000 data. To aug-
ment the database up to 80 snapshots, the input data are
perturbed applying 2% of uncorrelated random noise.
Then, over the 80 snapshots, one of every 5 is se-
lected to form the subsequent testing database (16 snap-
shots), while the left 64 snapshots constitute the training
database.

In order to train the CNN with the two-dimensional
simulations, a 2D test-box is constructed around every
i-th DNS node with its neighboring 8 nodes (Fig. 3).
Selecting the 8 neighboring nodes with the target node
at the center, to form a 3x3 2D image, appears as
the most e� cient procedure with the smallest size of
CNN input. This test-box is used to built thei-th im-
age composed of 9 points from the 2D distributions
of the vector� (x` ; t) = (Y1(x` ; t); � � � ;YN(x` ; t); T(x` ; t))

for ` = 1; � � � ; 9, which contains information on the
N = 10 species mass fractions and temperature (N2

not included). The “target” (or “label”) of each image
is the vector of the reaction rates at thex-centredi-th
point, �! [i] = (� (x; t + � t) � � ? (x; t))=�t, with � t = 0:3� s
and where� ? denotes the solution before the ODE sti� -
chemistry solver is applied. Casting the “targets” (i.e.,
the sources) in this form presents many advantages. In-
deed, the output of the CNN can be used either as a
chemical source �! [i] for integration, or directly to read
from the CNN� (t + � t) = �! [i] � 0:3 � 10� 6 + � ? (t) in a
�ow solver relying on splitting for chemistry integration
where� ? (t) is known. In the latter option, sub-iterations
may be needed for� t > 0:3� s. In our simulations, the
time step stays the same between training and usage of
the CNN, therefore no linear approximation is actually
performed. However, care should be taken that split-
ting method for chemistry integration can decrease the
overall order of accuracy of the solver.

To secure the atomic mass balance over a reduced
set of species whose sources �! i are learned from a de-
tailed mechanism, the following procedure is adopted.
(In practice, over the computational domain, the total
default mass to be corrected represents only 0.016% of
the total mass.) First, the atomic sources mass default
are computed for carbon, hydrogen and oxygen. Let us
denote� A;i the number of atom A (i.e., A� C, H or
O) in thei-th species. The mass imbalance in A source
may be written� �! A =

P N
i=1[(� A;iWA)=Wi ] �! i , whereWA

andWi are molar weights. Second, sources of carbon
containing species of the syngas (CO and CO2) and hy-
drogen containing species (H2, H, H2O, OH, HO2 and
H2O2) are corrected adding� �wi = � (Yi=YA)� �! A , with
the atom mass fractionYA =

P N
i=1 � A;i(WA=Wi)Yi . For

oxygen atom, the correction is applied only to O2 and
with the already corrected sources of C and H contain-
ing species. Then, atomic budgets are perfectly pre-
served by the chemical sources learned by the CNN.

46% of the images have a central node temperature
below 320 K, these points with negligible sources are
dropped out from the database. This leads to a �nal
training database of 14.6 GB and a testing database of
3.7 GB. All data contributing to the “images” and to the
“targets” are normalized by their respective maximum
absolute value over all the database, these 22 maximum
levels are stored (10 species mass fractions, temperature
and sources – N2 not involved). The complete structure
of the sequential CNNs is summarized in Table 1. The
CNN architecture is inspired from [23], with two addi-
tional dense layers to secure the performance of the re-
gression task required here. In total, the neural network
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Figure 3: CNN training from 2D database.

contains 237,579 weights, which need to be adjusted.
To improve the precision of the CNNs for small val-

ues of the chemical sources, a second network with ex-
actly the same structure is trained for a subset of the
database de�ned byYO2 > 0:9 at the central node (i.e.,
where overall the burning rates stay very low). The
subset-database is normalized based on its maximum
absolute values. In the following, the networks are re-
ferred to as the main CNN and the second CNN (subset
for lower burning rates).

The training of the CNNs is performed us-
ing the TensorFlow Python library with GPU sup-
port (www.tensor�ow.org). A series of convolu-
tion/sampling operations are performed iteratively, in
which the neural weights are adjusted until a sat-
isfying minimal error is achieved between the “tar-
get” sources and the ones predicted by the CNNs.
The Adam optimizer [35] is employed with a mean-
squared-error (MSE) loss function comparing the pre-
dictions to the target. A training step is performed
with a batch of 10240 “images”, leading to 1740 steps
per “epoch”/iteration for the main CNN. The learning
rate [34] is initially set to 0.001 to decay versus the steps
(n) according tolr = 0:001=(1:0 + 0:0001� n). The net-
work converges in approximatively 500 epochs, requir-
ing for the main CNN 15 hours on an Nvidia GeForce
GTX 1080 Ti GPU.

3.2. Testing phase

The performance of the machine learning reduced
chemistry is �rst examined in a-priori manner by com-
paring chemical sources from CNN and GRI-3.0. The
part of the database unseen during training is probed.
The mean-square error between the predictions and the
targets is 1.5� 10� 7 for the main CNN and 4.5� 10� 8

for the second CNN. Figure 4 displays the predicted

Figure 4: Comparison of the main CNN prediction on normalized
sources of the 10 species and temperature against the GRI-3.0 target
values for the testing database unseen during training.

chemical sources against their reference values for the
main CNN, con�rming the accuracy of the approach.
The second CNN achieves similar performance in this
a-priori validation test (not shown for brevity).

4. CNN-DNS full coupling

The CNN reduced chemistry is now employed in the
simulation of the syngas non-premixed �ame (only CPU
is used in this part with CNNs exported in C language,
see supplementary material). Simulations are then per-
formed with detailed chemistry (2D), CNN chemistry
(2D and 3D) and a reduced chemistry (2D and 3D) given
in Table 2. This reduced mechanism was derived from
GRI-3.0 for the present syngas operating condition in-
cluding wall heat loss e� ects, with the automated ap-
proach reported in detail in [13, 36].2

2This method combines a stochastic probing of the detailed chem-
istry response with directed relation graphs analysis with error prop-
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Figure 5: Averaged distributions of streamwise velocity and major
species mass fractions: CO2, CO, O2, H2 and H2O along the planar
fuel-jet centreline (y= 11 mm). Symbols: GRI-3.0. Solid line: Re-
duced mechanism (Table 2). Dashed line: CNN chemistry. 2D case.

Table 2: Reduced chemistry for syngas oxy-�ame. Units are mol, s,
cm3, cal and K. The Chaperon e� ciencies of the GRI-3.0 mechanism
are preserved for both three-body and fall-o� reactions (see also sup-
plementary material).

no Reaction A � Ea

1 2 O+M 
 O2 +M 1.20e+17 � 1.00 0
2 O + H2 
 H + OH 3.87e+04 2.70 6260
3 O + HO2 
 OH + O2 2.00e+13 0 0
4 O + CO (+M) 
 CO2 (+M) 1.80e+10 0 2385
5 O2 + CO 
 O + CO2 2.50e+12 0 47800
6 H + O2 +M 
 HO2 +M 2.80e+18 � 0.86 0
7 H + O2 + N2 
 HO2 + N2 2.60e+19 � 1.24 0
8 H + 2 O2 
 HO2 + O2 2.08e+19 � 1.24 0
9 H + O2 + H2O 
 HO2 + H2O 1.13e+19 � 0.76 0
10 H + O2 
 O + OH 2.65e+16 � 0.67 17041
11 H + OH+M 
 H2O+M 2.20e+22 � 2.00 0
12 H + HO2 
 O2 + H2 4.48e+13 0 1068
13 H + HO2 
 2OH 8.40e+13 0 635
14 OH + H2 
 H + H2O 2.16e+08 1.51 3430
15 2 OH (+M) 
 H2O2 (+M) 7.40e+13 � 0.37 0
16 OH + HO2 
 O2 + H2O 1.45e+13 0 � 500
17 OH + H2O2 
 HO2 + H2O 2.00e+12 0 427
18 OH + H2O2 
 HO2 + H2O 1.70e+18 0 29410
19 OH + CO 
 H + CO2 4.76e+07 1.23 70
20 2 HO2 
 O2 + H2O2 1.30e+11 0 � 1630
21 2 HO2 
 O2 + H2O2 4.20e+14 0 12000
22 HO2 + CO 
 OH + CO2 1.50e+14 0 23600
23 OH + HO2 
 O2 + H2O 5.00e+15 0 17330

- 2D simulations: The results of CNN-DNS are com-
pared to that of the detailed GRI-3.0 and the 11-species
reduced mechanims of Table 2 in Figs. 5 and 6 (stream-
wise and spanwise distributions). Statistical means are
computed after the �ow is established (10 �ow through
times). The averaged streamwise velocity distribu-
tion along the planar fuel jet centerline decreases until
x � 8 mm (Fig. 5), location where the fuel ignites and

agation [11, 37] and a genetic algorithm [38]. The reaction rates of
the reduced mechanism are optimized against the response of the de-
tailed mechanism in non-adiabatic non-premixed canonical problems
involving turbulent micro-mixing as in [36].

the mass fractions of CO and H2 decrease. The non-
premixed turbulent �ame scalar structure is as expected,
the syngas fuel composed of CO and H2 is mainly trans-
formed into CO2 and H2O (Fig. 5), with a slowing down
of chemistry close to the cooled wall. Because of the
overall fuel-lean character of the system, the mass frac-
tion of O2 increases along the centreline.

According to Figs. 5 and 6, the coupled CNN-DNS
reproduces very well the scalar structure of the non-
premixed planar jet �ame, with a close agreement
against the same DNS with the detailed GRI-3.0 mech-
anism. Interestingly, for the same set of species trans-
ported with the �ow, the reduced mechanism tends to
over-predicts the mass fraction of H radical while the
CNN-DNS keeps a close agreement with the reference
detailed mechanism (Fig. 6). The prediction of the rad-
ical H chemical source may actually bene�t from the
image-type treatment by CNN, in which the 2D distri-
bution of species is used as input. The averaged depar-
ture of wall heat �ux between detailed and CNN (re-
spectively reduced) chemistry is 3% (respectively -1%).
With the CNN, the standard deviation of the departure
represents 6.5% of the mean heat �ux.
- 3D simulations: The statistics of the 3D run with CNN
and the reduced mechanism are initialized from scratch
and collected from 1 �ow though time, with additional
averaging over the 128 spanwise planes, after the initial
condition has been evacuated from the computational
domain and the turbulence is fully developed. Thereby
the memory of the initial condition cannot a� ect the re-
sults. Even though it is su� cient for training, the two-
dimensional channel turbulence lacks vortex stretching
and the three-dimensional turbulent �ow cascade di� ers
in 3D, modifying the turbulence/chemistry interaction
and the scalar averages, as seen comparing Figs. 6 and 7.
The predictions of the CNN-DNS still match those by
the reduced mechanism DNS, but for H mass fraction,
the reduced mechanism predicting again a higher level
than the CNN. Based on above comparisons against
GRI-3.0 in 2D, it is legitimate to assume that the scalar
�ame structure obtained with the CNN chemistry is ac-
tually closer to the one that would be seen in 3D with
the detailed mechanism (out of reach with actual com-
puting power). The averaged departure of wall heat �ux
between CNN and reduced chemistry is 14%, with a
standard deviation of 13.8% of the mean �ux.

The comparison of the computational costs due to
chemistry for advancing the thermochemical variables,
thus excluding the �ow transport part, shows that CNN-
chemistry is 11 times faster than the GRI-3.0 detailed
mechanism, and 1.35 times faster than the 11-species
reduced mechanism, the latter mainly because the Ar-
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(a) (b) (c)

Figure 6: Spanwise averaged distributions of CO2, O2, CO, OH, H mass fractions and temperature. Symbols: GRI-3.0. Solid line: Reduced
mechanism (Table 2). Dashed line: CNN chemistry. (a): 15 mm from the nozzle inlet. (b): 50 mm from the nozzle inlet. (c): 80 mm from the
nozzle inlet. 2D case.

(a) (b) (c)

Figure 7: Averaged distributions of CO2, O2, CO, OH, H mass fractions and temperature. Solid line: Reduced mechanism (Table 2). Line with
symbols: CNN chemistry. (a): BFG jet centerline (streamwise). (b): 15 mm from the nozzle inlet (spanwise). (c): 80 mm from the nozzle inlet
(spanwise). 3D case.

rhenius rates calculation is avoided.

5. Summary

A new paradigm grounded on machine learning is
discussed to introduce complex chemistry in turbulent
�ame simulation and implemented in three-dimensional
direct numerical simulation of a syngas non-premixed
�ame/wall interaction. The training of a convolutional
neural network (CNN) is performed on a simpli�ed two-
dimensional simulation with a reference detailed chem-
istry. The obtained reduced chemistry is then applied to
a three-dimensional turbulent �ame simulation.

The comparisons against the detailed chemistry re-
sponse, a reduced mechanism and the CNN con�rm the
validity of the approach, which allows for conveniently
developing reduced chemistry specialized for given op-
erating conditions from a generic detailed scheme and
even save CPU time compared to using reduced mecha-
nisms based on Arrhenius rates.

One major drawback of the presented approach lies in
the need to simulate a simpli�ed two-dimensional ver-
sion of the target three-dimensional �ow geometry to
train the CNN. However, in future works, generic train-
ing procedures will certainly emerge, so that actually

performing a �ow simulation will not be mandatory to
optimize the neural networks. Along these lines, the use
of non-premixed stochastic micro-mixing model prob-
lems appears as a promising alternative to perform CNN
training in a pre-processing mode. Because it has al-
ready been successfully used as a canonical problem,
prior to any �ow simulation, in the context of automated
chemistry reduction [13].
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