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Abstract

A chemistry reduction approach based on machine learning is proposed and applied to direct nu-

merical simulation (DNS) of a turbulent non-premixed syngas oxy-flame interacting with a cooled

wall. The training and the subsequent application of artificial neural networks (ANNs) rely on

the processing of ‘thermochemical vectors’ composed of species mass fractions and temperature

(ANN input), to predict the corresponding chemical sources (ANN output). The training of the

ANN is performed aside from any flow simulation, using a turbulent non-adiabatic non-premixed

micro-mixing based canonical problem with a reference detailed chemistry. Heat-loss effects are

thus included in the ANN training. The performance of the ANN chemistry is then tested a-

posteriori in a two-dimensional DNS against the detailed mechanism and a reduced mechanism

specifically developed for the operating conditions considered. Then, three-dimensional DNS are

performed either with the ANN or the reduced chemistry for additional a-posteriori tests. The

ANN reduced chemistry achieves good agreement with the Arrhenius-based detailed and reduced

mechanisms, while being in terms of CPU cost 25 times faster than the detailed mechanism and

3 times faster than the reduced mechanism when coupled with DNS. The major potential of the

method lies both in its data driven character and in the handling of the stiff chemical sources. The

former allows for easy implementation in the context of automated generation of case-specific re-

duced chemistry. The latter avoids the Arrhenius rates calculation and also the direct integration

of stiff chemistry, both leading to a significant CPU time reduction.
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1. Introduction

Accounting for the complexity of chemistry in numerical simulation of flames has been the

subject of numerous studies since the 80’s. Reduced and skeleton mechanisms were first dis-

cussed from the fundamentals of combustion chemistry, sometimes coupled with more or less

advanced sensitivity analyses (see [1–5] and references therein). Meanwhile, the progress in the

understanding of chemistry and transport phenomena has driven the development of detailed and

reliable chemistry mechanisms for fuel oxidation, which could now contain up to hundreds of

species and thousands of reactions [6]. To avoid dealing with too many degrees of freedom, which

would need to be solved together with the flow dynamics, these chemical mechanisms are usually

downsized before their introduction in computational fluid dynamics software. Thereby, more or

less automated reduction techniques of these reference detailed chemical mechanisms have been

discussed in the literature. These reduction approaches may combine fuel lumping, time-scale

and principal component analysis or a direct numerical treatment of the chemical signals from

graph analysis or genetic algorithms, approaches which may also be associated with systematic

tabulation techniques [7–23] (not exhaustive list).

Considering a detailed chemical mechanism involving a number NS of species interacting ac-

cording to NR elementary reactions, the reduction procedure consists of expressing the chemical

rates of a number Nr
S < NS of species, so that the thermochemical information relevant for the

problem under consideration is preserved. Robust and well-established methods exist to rank

species according to their relative importance in the prediction of thermochemical properties,

which should be accurately captured by the reduced scheme [11, 15, 16, 20]. This allows for

determining the minimum set of Nr
S species to be transported with the flow to preserve a given

level of accuracy. Once this first step completed, in a second step, the burning rates are usually

expressed from a reduced set of Nr
R < NR elementary reactions, chosen from the detailed scheme.

A different approach is attempted in this work for the second step, i.e., after the important

species have been determined. With this novel strategy, there is no reduced mechanism produced

per se, but instead a specific machine learning procedure is conducted to determine, from the
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detailed chemical scheme, how to express the burning rates of the reduced number of species

transported with the flow. The input of the neural networks is thus the thermochemical reduced

vector and the output is either the vector of reaction rates or the new thermochemical vector for a

given time increment, depending on the most convenient coupling procedure with the flow solver.

Such combination of the benefits of mechanism reduction and high-dimensional chemistry tab-

ulation approaches is not fully new and has already been achieved by employing artificial neural

networks (ANNs). Indeed, ANNs have received extensive attention in tabulation of combustion

chemistry, since their first usage back in the 90’s [24, 25], up to recent studies demonstrating that

modern ANN architectures offer good predictions with great savings in CPU time and memory

requirements [26–28]. Data driven approaches have also been coupled with principal component

analysis for developing closure models in turbulent combustion using experimental multi-scalar

measurements [29] and for building digital-twins to progress towards furnace control [30]. Along

similar lines, convolutional neural networks (CNN), based on image-like treatment of the thermo-

chemical fields, were shown useful to tackle the modeling of turbulent flames [31–33] and their

control [34].

Recently, chemistry reduction based on CNN was discussed with a training of the CNN per-

formed from the targeted flow simulation with detailed chemistry [35]. However, for machine

learning to be fully efficient and of practical interest, the training should be achieved on a canon-

ical problem, as generic as possible, and ideally aside from the targeted flow simulation, as it

was envisioned in [26, 36]. To this end, training from a non-premixed turbulent stochastic micro-

mixing problem is discussed in this paper. This canonical problem was previously introduced in

the context of automated chemistry reduction [19], with a simple pairwise micro-mixing closure.

Instead, the Euclidean minimum spanning tree mixing modeling [37] is here chosen to secure a

better accurate detailed chemistry response in mixture fraction space. Non-adiabatic effects are

also accounted for through added enthalpy losses.

The operating conditions retained for the study are those of a syngas non-premixed oxy-flame

interacting with a cooled wall. This configuration covers a wide range of combustion and turbu-

lence conditions in terms of equivalence ratio, progress of reaction and enthalpy including thermal

and viscous boundary layers effects, making it a relatively generic test case. The syngas fuel
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Table 1: Operating conditions of the syngas oxy-flame (IGAR ADEME project).

Upper inlet Lower inlet
Bulk velocity [m/s] 50 100
Temperature [K] 1223 298
Mass fraction [-]

H2 0.0085 0
CO 0.7852 0
CO2 0.0514 0
N2 0.1549 0
O2 0 1.0

composition is representative of a CO2 free blast-furnace exhaust flux, as found in modern re-

cycling combustion processes. With the most important species determined, the response of the

stochastic particles of the canonical problem enters the training and the testing of ANNs. After the

ANNs are trained successfully, the burning rates of the reduced set of thermochemical variables are

readily obtained from the knowledge of temperature and the retained species mass fractions. An

Arrhenius-type reduced chemical scheme previously derived is also available for these operating

conditions [35].

Direct numerical simulation (DNS) of the non-premixed syngas oxy-flame with side wall ef-

fects are then performed. First, two-dimensional DNS with the detailed chemical scheme serves

as reference to test both the Arrhenius-type reduced scheme and the ANNs trained aside from

DNS. Then, three-dimensional DNS of the same flame configuration are conducted with both the

Arrhenius-type reduced scheme and the ANN-type chemistry. The comparison between results

confirm the robustness of the ANNs for chemistry reduction along with the opportunity to train

neural networks for chemistry reduction prior to flow simulations.

2. Non-premixed flame configuration and numerical modeling

A turbulent non-premixed oxy-flame under an elevated pressure of 341.3 kPa with side-wall

effects is considered, as shown in Fig. 1. A representative syngas composition is injected from the

upper inlet over a width of 2 mm, while pure oxygen is supplied at the lower inlet over 10 mm.

A 0.2 mm splitter plate separates these fuel and oxidizer inlets. The corresponding boundary
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conditions (velocity, temperature and species mass fractions) are summarized in Table 1.

A preliminary simulation of a turbulent periodical 3D channel flow initialized with the oxy-

gen bulk velocity serves as a database to impose a proper turbulent inflow for the lower oxy-

gen stream [39, 40]. A laminar channel flow inlet profile is imposed for the close-to-wall fuel

stream. A non-slip wall is placed at the top of the computational domain, while a symmetrical

boundary condition is employed at the bottom. Convective boundary condition is used for the

outlet of the domain. Periodic boundary conditions are used in the spanwise z direction (Fig. 1).

The temperature of the upper wall Tw(x, t) is non-uniform and calculated so that the heat flux

locally reaching the wall is evacuated mimicking water cooling, with a convective heat transfer

h = 3300 W ·m−2 ·K−1 and a water temperature To = 353 K (i.e., h(Tw − To) = λ(∂T/∂nw)gas,

where nw is the wall normal direction toward the gas).

The physical dimensions of the computational domain are Lx = 100 mm, Ly = 12 mm and

Lz = 7.68 mm. One-dimensional canonical strained non-premixed flames simulations were con-

ducted to calibrate the grid resolution. It was also verified through a non-reacting simulation that

the structure of the wall boundary layer agrees with what is expected (viscous sub-layer, buffer

layer and log-law). The mesh composed of 66.44M cells is uniform in the streamwise x and span-

wise z directions, with the grid spacing hx = hz = 60 µm. In the vertical y direction, the mesh

keeps a fine resolution of 20 µm for the upper region close to the wall (y > 10 mm), where the

flame is located. As y decreases from 10 to 0 mm, the mesh gets coarser to reach a grid spacing

of 100 µm at the bottom of the domain. The first point off the top wall is at y+ = 0.55, where the

superscript ‘+’ denotes usual dimensionless near-wall quantities. There are 9 grid points within

y+ = 10 to resolve the viscous layer near the wall [41]. The time step is fixed at 0.3 µs (CFL≈0.8)

with sub-iterations in a stiff-chemistry ODE solver (CVODE).

The governing equations for the gas mixture are solved with a low-Mach number in-house

code [42–47]. The conservation equations for mass, momentum, species and temperature of the

gas phase are cast as follows:
∂ρ

∂t
+
∂ρu j

∂x j
= 0, (1)
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∂ρui

∂t
+
∂ρuiu j

∂x j
= −

∂p
∂xi

+
∂τi j

∂x j
, (2)

∂ρYn

∂t
+
∂ρu jYn

∂x j
=

∂

∂x j

(
ρD

∂Yn

∂x j

)
+ ω̇Yn , (3)

∂ρT
∂t

+
∂ρu jT
∂x j

=
∂

∂x j

(
λ

CP

∂T
∂x j

)
+

λ

C2
P

∂CP

∂x j

∂T
∂x j

+ ω̇T , (4)

where t is the time [s], ρ is density of the gas mixture [kg ·m−3], u is the gas velocity [m · s−1],

Yn is the mass fraction of the n-th chemical species [-], and T is the gas temperature [K]. p is

the pressure [Pa] and the viscous stress tensor τi j = µ(∂ui/∂x j + ∂u j/∂xi − (2/3)(∂uk/∂xk)δi j). µ,

D, λ and CP are the molecular viscosity [Pa · s], molecular mass diffusivity coefficient [m2 · s−1],

thermal conductivity [W ·m−1 ·K−1] and specific heat capacity [J · kg−1 ·K−1] of the gas mixture,

respectively. In the present study, the Lewis number is assumed to be unity for all the species,

which leads to D = λ/(ρCp); while µ and λ are calculated using Wilke’s type mixing rules. Finally,

ω̇Yn and ω̇T are the species and temperature source terms due to chemical reaction, respectively.

The numerical scheme is based on an approach previously employed for both DNS and large-

eddy simulation (LES) [48, 49]. The time advancement relies on a second-order Crank-Nicolson

scheme. However, due to the splitting method for chemistry integration, the overall order of ac-

curacy of the solver in time advancement may drop below second-order. A bounded quadratic

upstream interpolation for convective kinematics (BQUICK) scheme is applied to the scalar ad-

vection terms in the species and temperature equations, while a second-order central difference

scheme is used for the scalar diffusion terms in the species and temperature equations and all terms

in the momentum equation. An alternating direction implicit (ADI) approach has been used, in

which semi-implicit tridiagonal/pentadiagonal equations are solved separately for each direction.

3. Machine learning chemistry reduction methodology

3.1. Stochastic micro-mixing problem

The training database for the ANN chemistry is built from a turbulent non-adiabatic non-

premixed micro-mixing canonical problem, which was first discussed for process control of se-

lective non-catalytic reduction (SNCR) [50, 51] and then extended to automated chemistry reduc-
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tion [52].

As in the DNS of the non-premixed oxy-flame, two inlets are considered and stochastic parti-

cles evolve from initial conditions characterized by these inlets given in Table 1. The number of

stochastic particles per inlet (i.e., the mass flow rates of the inlets [50]) are organized so that the

overall system operates under the stoichiometric condition. Here, a total number of 1000 stochastic

particles are employed in the reactor, at initial time 660 particles are assigned to the composition

and enthalpy of the fuel inlet and 340 particles to that of the oxygen inlet.

From the initial condition at time t = 0, the species mass fraction Y p
i (t) and sensible enthalpy

hp
s (t) of each stochastic particle evolve according to the following equations:

dY p
i (t)
dt

= MIXp
i (τT ) + ω̇

p
i , (5)

dhp
s (t)

dt
= MIXp

hs
(τT ) + ω̇

p
hs
− αloss(T − To) , (6)

where ‘MIX’ denotes the stochastic turbulent micro-mixing closure for the diffusive budget, which

is here the well-established Euclidean minimum spanning tree (EMST) mixing model [37, 53]. τT

denotes the micro-mixing time and ω̇
p
i and ω̇

p
hs

are the species and enthalpy chemical sources,

respectively. The linear sink term αloss(T − To) in Eq. (6) represents convective heat loss effects,

as previously done in [54, 55] in the derivation of reduced chemical schemes devoted to flame

wall/interaction. To = 353 K is the temperature of the cooling water in the DNS configuration.

αloss is the heat loss coefficient (W · kg−1 ·K−1).

The value of the micro-mixing time is chosen in line with the global turbulent mixing charac-

teristics of the shear layer. According to the inlet conditions, `T , the integral length scale in the

fully developed zone can be expected of the order of a few millimeters. Taking `T ≈ 3 mm and

velocity fluctuations u′ of the order of a few meters per second, τT ≈ `T/u′ ∼ 0.3 ms. Accordingly,

the micro-mixing time is set at 0.3 ms while the time step is 0.3 µs, with sub-iterations to solve

for the stiff-chemistry part of the problem using CVODE. In fact, as soon as it does not prevent

ignition or favor very fast chemistry, varying the value of τT was not found to have a major impact

on the results (see [52] for a discussion on the impact of τT value on chemistry reduction using a

similar stochastic formulation). In the present case, the most crucial point is to cover with Eqs. (5)
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and (6) the full range of chemical responses starting from frozen flow mixing, followed by ignition

and fast oxy-flame burning, to end up with burnt products subsequently subjected to heat-loss.

Equations (5) and (6) are solved using the CANTERA package [56]. The reference GRI-

3.0 methane/air detailed mechanism [57] without NOx (35 chemical species and 217 elementary

reactions) serves as reference to test the reduction methodology.

3.2. Reference reduced-scheme

Combining a directed relation graph analysis (DRGEP) [16] with a genetic algorithm [52],

an 11-species reduced scheme was previously derived with the simple pairwise Curl mixing-

model [58] and validated for the syngas oxy-flame considered here [35] (Table 2). Both the

GRI-3.0 and this reduced-scheme will serve as references thereafter. The most important species

found: O, O2, H, H2, OH, HO2, H2O, H2O2, CO and CO2, N2 and the temperature are retained to

constitute the reduced set of thermochemical variables.

Table 2: Reduced chemistry for syngas oxy-flame. Units are mol, s, cm3, cal and K. The Chaperon efficiencies of the
GRI-3.0 mechanism are preserved for both three-body and fall-off reactions (see also supplementary material).

no Reaction A β Ea
1 2 O +M 
 O2 +M 1.20e+17 −1.00 0
2 O + H2 
 H + OH 3.87e+04 2.70 6260
3 O + HO2 
 OH + O2 2.00e+13 0 0
4 O + CO (+M) 
 CO2 (+M) 1.80e+10 0 2385
5 O2 + CO 
 O + CO2 2.50e+12 0 47800
6 H + O2 +M 
 HO2 +M 2.80e+18 −0.86 0
7 H + O2 + N2 
 HO2 + N2 2.60e+19 −1.24 0
8 H + 2 O2 
 HO2 + O2 2.08e+19 −1.24 0
9 H + O2 + H2O 
 HO2 + H2O 1.13e+19 −0.76 0
10 H + O2 
 O + OH 2.65e+16 −0.67 17041
11 H + OH +M 
 H2O +M 2.20e+22 −2.00 0
12 H + HO2 
 O2 + H2 4.48e+13 0 1068
13 H + HO2 
 2OH 8.40e+13 0 635
14 OH + H2 
 H + H2O 2.16e+08 1.51 3430
15 2 OH (+M) 
 H2O2 (+M) 7.40e+13 −0.37 0
16 OH + HO2 
 O2 + H2O 1.45e+13 0 −500
17 OH + H2O2 
 HO2 + H2O 2.00e+12 0 427
18 OH + H2O2 
 HO2 + H2O 1.70e+18 0 29410
19 OH + CO 
 H + CO2 4.76e+07 1.23 70
20 2 HO2 
 O2 + H2O2 1.30e+11 0 −1630
21 2 HO2 
 O2 + H2O2 4.20e+14 0 12000
22 HO2 + CO 
 OH + CO2 1.50e+14 0 23600
23 OH + HO2 
 O2 + H2O 5.00e+15 0 17330

3.3. Non-premixed database for ANN training

At the start of the simulation with the detailed scheme (GRI-3.0), αloss is set to zero in Eq. (6),

i.e., no heat loss is present. Because the particles of the fuel inlet are preheated to 1223 K, rapid
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ignition occurs with the detailed chemistry mechanism at 81 µs after mixing with the particles from

the oxygen inlet. Figure 2 shows representative scatter plots of the instantaneous temperature of

the stochastic particles against mixture fraction. The instantaneous values at a given time (red) are

plotted along with the time history of all particles up to this time, for three representative times.

The mixture fraction is defined as Z = YN2/0.1549. Because of fuel preheating (Table 1), ignition

first appears on the fuel-rich side for Z > 0.9 (Fig. 2(a)). After 0.3 ms, i.e., 1000 time steps, the

micro-mixing simulation reaches a stable burning status. The peak temperature is 3113 K around

the stoichiometric condition at Z = 0.66 (Fig. 2(b)). Then, to model the interaction of burnt gases

with a cold wall, the heat loss is turned on by setting αloss = 107 W · kg−1 ·K−1, and the simulation

proceed for another 0.6 ms until all the stochastic particles are cooled down (Fig. 2(c)).

By saving the 35 species mass fractions and temperature of each stochastic particle for every

time step, 3000 snapshots each containing thermochemical information from 1000 particles are

available to built a training database. To augment the database up to 9000 snapshots and avoid

over-fitting, as it is usually done in ANN training procedure, the 3,000,000 data are perturbed

twice applying 2% and 3% of uncorrelated random noise, still securing mass conservation.

The chemical sources of intermediate radicals featuring the fastest evolution (i.e., those associ-

ated to the smallest time scales) are known to be difficult to interpolate, because the concentrations

of these species jump from zero to their maximum levels over very small characteristic times. The

issue appeared in the present case for the evolution of H2O2, a species which was found mandatory

to be kept in the reduced scheme to properly capture ignition. To secure an accurate interpolation

of the H2O2 source with the ANN, the neural network needs to be exposed to numerous data

points, where the H2O2 concentration lies between zero and its maximum. A brute force way to

overcome this difficulty would be to train the ANN at all the sub-iterations of the time integra-

tion performed by the stiff-chemistry solver (CVODE), which returns the proper evolutions of the

radical species entering the detailed scheme. This option would result in a huge computing effort

during the learning phase.

Instead, an alternative data driven approach has been followed, which is valid only for a single

variable affected by an overly quick evolution and whose contribution to the overall mass stays

small (the max value of H2O2 mass fraction is 5.3×10−4). To populate the training database with
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a sufficient variety of H2O2 chemical sources, fields are manufactured by adding a copy of the

9000 snapshots in which the H2O2 mass fraction is replaced by a random value between zero

and its peak level. The mass fractions of others species are scaled according to the new total

mass fractions, to conserve mass. These species vectors with specific H2O2 mass fractions then

enter the GRI-3.0 mechanism, to compute their corresponding exact chemical sources. For these

additional species vectors, the detailed scheme returns chemical source rates which fulfill all the

expected physical properties imposed by the detailed scheme and which can be used for the neural

network to learn the relation between species mass fraction and temperature, as input, and sources,

as output. Hence, the training of the ANN to reproduce chemical sources with intermediate values

of H2O2 becomes easily tractable.

The database now have 18000 snapshots each containing 1000 data. 2.7% of the data have a

temperature below 320 K, these points with negligible sources are dropped out, which leads to a

final database of 17.5×106 data.

3.4. ANN training procedure

Figure 3 shows the overall ANN training procedure from the micro-mixing database. The

input of the ANNs are the vectors φ(t) of the 10 species mass fractions and temperature (N2 not

included). The “target” (or “label”) of each input vector is the corresponding reaction rates ω̇i =

(φi(t + δto) − φi(t))/δto, with δto = 0.3 µs, the time step of flow simulations in the present work

(close to the shortest chemical time scale observed for the intermediate species retained in the

mechanism). Organizing the sources in this form is convenient for the subsequent coupling with

flow simulation following two options: In the case where a specific time integration method for

stiff differential systems is preferred, the source can be used directly. If sub-iterations take place

with the time step δt > δto, interpolations will be needed to estimate ω̇i(t). A second option for

the coupling with the flow, is to directly read from the ANNs φi(t + δt). Here again, if δt > δto,

sub-iterations will be required to secure accuracy. The second option is used thereafter and since

δt = δto in our flow simulation, sub-iterations are not performed.

The chemical sources of the reduced set of Nr
S = 11 species (source of N2 is set to zero)

are computed from the detailed chemical scheme with the NS = 35 species. Therefore these
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sources do not preserve the atomic budgets computed over the Nr
S < NS species. Even if at its

maximum, the mass default is only 0.016% of the total mass of these atoms, in order to fully

conserve mass, corrective sources are added according to the relative contribution of the species to

atomic budgets. Let us denote αA,i the number of atom A (i.e., A ≡ C, H or O) in the i-th species.

The mass imbalance in A source reads for the reduced set of species

∆ω̇A =

Nr
s∑

i=1

αA,iWA

Wi
ω̇i , (7)

where WA and Wi are molar weights. Sources of carbon containing species of the syngas (CO and

CO2) and hydrogen containing species (H2, H, H2O, OH, HO2 and H2O2) are corrected adding

∆ẇi = −
Yi

YA
∆ω̇A , (8)

with the atom mass fraction YA =
∑Nr

s
i=1 αA,i(WA/Wi)Yi. For oxygen, Eq. (8) is applied only to O2

and with the already corrected sources of C and H containing species. This correction is applied

during the ANN-DNS coupled simulations (therefore after ANN training). Then, the chemical

sources perfectly preserve atomic budgets, as chemical sources computed from elementary reac-

tions with Arrhenius laws would. In practice this correction stays marginal, a source correction

(Eq. (8)) significantly contributing to the burning rates would mean that too many species were

removed, jeopardizing the quality of the ANN prediction.

Within the information from the stochastic particles containing 17.5×106 data, 3.5×106 (20%)

of them are randomly selected to form the testing database, while the remaining 14×106 (80%)

constitute the training database. All data contributing to the “input vectors” and to the “targets”

are normalized by their respective maximum absolute value over the entire database, and these

maximum levels are stored.
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Table 3: Structure of the sequential ANNs used.

Layer type Activation Output Shape
function

Input – (None, 11)
Dense ReLU (None, 512)
Dense ReLU (None, 256)
Dense ReLU (None, 128)
Dense ReLU (None, 64)
Dense ReLU (None, 16)
Dense (Output) – (None, 11)

3.5. ANN structure

The exact structure of the sequential ANNs 1 is summarized in Table 3. Five fully connected

dense layers are employed between the input and output layers. Each neuron of the dense layers2.

(see green circles in Fig. 3) performs the following two operations: a weighted sum of inputs

from all the neurons of the previous layer and the subsequent calculation of a non-linear activation

function. In the present study, the popular rectified linear unit (ReLU) activation function is used:

ReLU(x) = max(x, 0) . (9)

Various options were attempted (even using a different network for each species and temperature).

In the end, the above ANN topology, which is a quite standard one, including the number of layers

and neurons per layer, appears as the simplest efficient network for the prediction of the chemical

sources. More complex networks would slow down the training process, with an increased risk of

overfitting. In total, the neural network contains 179,851 weights to be adjusted.

To improve the precision of the ANNs for small values of the chemical sources, a second

network with the exact same structure is trained for a subset of the database defined by YO2 > 0.9,

i.e., where the overall burning rates stay very low. A sufficiently large number of data points

are involved in the training so that continuity is secured between the two networks. The subset-

1In a sequential ANN, each layer has exactly one input tensor and one output tensor.
2A dense layer is driven by the same formulas as the linear layers, but the end result is passed through a non-linear

function called ‘Activation function’.
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database is normalized by its own maximum absolute values. In the following, the networks are

referred to as the main ANN and the second ANN (subset for lower burning rates).

The training of the ANNs is performed using the TensorFlow Python library with GPU support

(www.tensorflow.org). The neural weights are adjusted during the training process until a satis-

fying minimal error is obtained between the “target” sources and the ones predicted by the ANNs.

The Adam optimizer [59] is used with a mean-squared-error (MSE) loss function comparing the

predictions to the target. A training step is performed with a batch of 10240 “input vectors”, lead-

ing to 1369 steps per “epoch”/iteration for the main ANN. The learning rate [60] is initially set to

0.0003, to decay versus the steps (n) according to

lr =
0.0003

1.0 + 0.0001 · n
. (10)

The network is trained for 500 epochs to reach convergence, which requires for the main ANN

about 3.2 hours on an Nvidia GeForce GTX 1080 Ti GPU.

3.6. ANN testing

The performance of the ANNs is first evaluated a-priori on the testing database containing

3.5×106 data unseen during training. The mean-square error between the ANN predictions and

the targets is 9.2×10−7 for the main ANN and 3.6×10−7 for the second ANN. Figure 4 shows the

predicted chemical sources against their target values for both the main ANN and the second ANN,

confirming in a preliminary manner the accuracy of the ANN reduced chemistry approach.

4. ANN-DNS full coupling

The ANN reduced chemistry is now coupled with the flow solver to simulate the syngas non-

premixed oxy-flame (only CPU is used in this part with ANNs exported in C language, see sup-

plementary material). To evaluate the performance of the ANN reduced chemistry, simulations are

performed with the reference detailed GRI-3.0 chemistry (2D), ANN chemistry (2D and 3D) and

the reduced chemistry of Table 2 (2D and 3D).
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4.1. Detailed, Arrhenius-reduced and ANN-reduced chemistry in 2D simulations

The comparison of the 2D DNS results between the detailed GRI-3.0, the 11-species reduced

mechanism of Table 2 and the ANN chemistry are shown in Figs. 5 and 6 (streamwise and span-

wise distributions). Statistical averages have been collected for 10 flow-through times after the

flow is fully established.

Until the position x ≈ 8 mm along the planar fuel jet centerline (Fig. 5), the averaged stream-

wise velocity distribution decreases. At this streamwise location, the non-premixed syngas/air

mixture starts to ignite, as indicated by the increase in temperature, while CO and H2 decrease

to produce CO2 and H2O (Fig. 5(a)). At 15 mm from the nozzle inlet, approaching the cooled

wall, the chemistry slows down (x = 0 in Fig. 6(a)). From this streamwise position the flame

progressively spreads, to approach the close vicinity of the wall and the plate progressively heats

up (Fig. 6(c)). Overall, the system is fuel-lean and the mass fraction of O2 increases along the

centerline. O and OH are the two major radicals while the mass fractions of HO2 and H2O2 are

well below 10−4 (Fig. 5(b)).

Comparing against the simulation with the reference detailed GRI-3.0 chemistry mechanism

(circles in Figs. 5 and 6), velocity, temperature and all the major species are well captured by

the ANN-DNS (dashed-lines). Considering the radicals and minor species, the ANN-DNS shows

a good prediction on the two major radicals O and OH, while it tends to over-predict HO2 and

under-predict H2O2.

The statistics from the simulation with the reduced mechanism of Table 2 (lines) are also very

close to the detailed chemistry DNS and will serve as reference to test the ANN in 3D-DNS. For

the H radical, the ANN-DNS returns a closer agreement against the reference detailed mechanism

(Figs. 5(b) and 6). Because of the large number of sub-steps involved in the generation of both

the ANN chemistry and the reduced mechanism of Table 2, it is difficult to identify the exact un-

derlying reason for this behavior of the H radical. This is one of the weak point of data driven

approaches, in the forest of neural connections and weights, it is barely feasible to track back

specific relations between the species which lead to the behavior of intermediate minor species.

However, it is likely that learning from the large number of information available during the train-

ing phase, was helpful for the prediction of radicals. Notice also that the ANNs were trained with
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the detailed mechanism and the errors are due to the machine learning procedure (training dataset,

training method, etc.). On the other hand, the reduced mechanism has been derived by dropping

some species and reactions and therefore its discrepancies are for totally different reasons.

4.2. Arrhenius-reduced and ANN chemistry in 3D simulations

Vortex stretching was missing in the two-dimensional simulations, therefore the statistics col-

lected in the three-dimensional flow are different from those of the planar flow. In particular,

slightly smoother gradients are observed in 3D, as seen in Figs. 7 and 8, compared to Figs. 5

and 6. Overall, the three-dimensional turbulent flow cascade enhances the turbulence-chemistry

interaction, leading to different scalar averages.

The ANN-chemistry provides statistics which are very close to those obtained with the reduced

mechanism, for all the major species (Figs. 7 and 8). A departure is observed for H and also for

HO2 and H2O2. The ANN chemistry predicts a higher level for HO2 and a lower level for H and

H2O2. According to the comparison against the GRI-3.0 reported above in the two-dimensional

case, the scalar structure of H radical obtained with the ANN chemistry is actually expected to be

closer than the reduced scheme to the one that would be seen in 3D with the detailed mechanism,

which would be too expensive with available computing power. At stage, it is concluded that for

the limited amount of species involved, the ignition phenomenon and the responses of reactants

and major products are well captured, which is the main objective of most reduced chemical

schemes used in computational fluid dynamics of complex systems. However as it can be expected,

much more degrees of freedom would be needed to fully predict radicals and intermediate species.

Figure 9 shows the statistics of wall heat flux at the upper wall for both 2D and 3D cases,

good agreement is found between ANN chemistry and reduced chemistry. Right after the splitter

plate, the wall heat flux shows a high value of about 800 kW ·m−2 at x = 0, which is due to

the injection of the preheated fuel at 1223 K. As the fuel gets cooled down by the water-cooled

wall, the mean heat flux decreases rapidly to the order of 200 kW ·m−2 at x = 30 mm in the 2D

cases (Fig. 9(a)). Then, the mean heat flux starts to increase until x = 80 mm, where it reaches

its maximum of 1250 kW ·m−2, because of the flame-wall interaction. Further downstream, the

mean heat flux decreases again when the flame losses heat at the wall. The intermittency of the
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flame approaching and leaving the wall promotes large fluctuations levels for x ∈ [50 mm, 90 mm]

(Fig. 9(a)). The heat flux profiles feature similar characteristics in 3D, with however turbulent

mixing in the third direction leading to a delayed increase of the mean heat flux and also a lower

peak value at about 900 kW ·m−2. This behavior is confirmed in the mean temperature distribution

shown in Fig. 10, as expected the thermal boundary layer in 2D case is much thinner than that in

3D case.

The computational cost of the coupled ANN-DNS approach is given in Fig. 11 for the 2D sim-

ulations, which include all three approaches (detailed, reduced and ANN). For solving the chem-

ical source part of the problem, simulations with ANN chemistry are 25 times faster than those

with the GRI-3.0 detailed mechanism, and 3 times faster than the 11-species reduced mechanism.

This speed-up results mainly from the fact that Arrhenius rates calculation are not needed and the

time integration of stiff chemical sources is also avoided when the option of directly reading the

species increments from the ANN is chosen. The computational time for solving the convective-

diffusive part of the turbulent flame mainly depends on the number of species to be transported, it

is therefore similar for the ANN-DNS and reduced chemistry DNS. (Same remarks apply to the

3D-DNS.)

5. Conclusions

One of the major stumbling block to the systematic introduction of artificial neural networks

(ANNs) in flame simulation lies in the definition of generic training procedures, so that actually

performing the simulation of the target flow geometry is not mandatory to complete the training of

the ANN. Canonical problems, associated to given network architectures and training procedures,

which could be applied prior to flame simulations, are likely to help popularizing the application of

machine learning to computational combustion. Indeed, aside from a few pioneer works [26, 36],

in most of previously published applications, the training and the subsequent use of the neural

networks have been demonstrated on the very same flame configuration, thus limiting the generic

character of the approach.

In the present work, a non-adiabatic non-premixed canonical problem, based on a stochastic

micro-mixing closure, was introduced to train artificial neural networks from a reference detailed
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chemistry (GRI-3.0), including heat-loss effects. The trained ANNs provide directly the reaction

rates of a reduced set of chemical species from the knowledge of their mass fractions and temper-

ature, thus reducing drastically the cost of chemistry simulation. The training, performed aside

from the flow simulation, is based on a reference detailed mechanism involving a large number of

intermediates species and elementary reactions. This secures that the ANNs benefit from the fully

detailed thermochemical information to predict the burning rate of a limited number of chemical

species, which will be transported with the flow in the three-dimensional unsteady simulation.

The ANN reduced chemistry is applied to the direct numerical simulation of a non-premixed

turbulent syngas-flame interacting with a cooled-wall. To assess the quality of the ANN reduced

chemistry, two-dimensional simulations are simultaneously conducted with the reference fully

detailed scheme (GRI-3.0) and an 11-species chemical mechanism specifically reduced for the

syngas operating conditions considered. The three simulations return very similar results, with

the ANN chemistry providing a significant reduction in CPU cost (25 times faster than detailed

chemistry and 3 time faster than the reduced scheme). Then, the ANN chemistry and the reduced

chemistry are applied to a three-dimensional direct numerical simulation of the syngas-flame with

side wall effects. The statistical analysis of the non-premixed turbulent flame confirms the good

performance of the ANN reduced chemistry trained prior and aside from the flow simulation. The

scalar flame structure, in terms of reactants and major products, and the wall heat-flux are well

predicted by the ANN reduced chemistry. Most of the expected trends are also recovered for the

intermediate radicals. The potential of the discussed data driven approach lies in the automated

character of the procedure to derive the reduced scheme, which can easily be implemented as a

pre-processing tool. Another major advantage is that both the Arrhenius rates calculation and the

direct integration of the stiff chemical system are avoided when choosing the option of reading the

species increments directly from the ANN, which therefore leads to a significant reduction in CPU

cost.

More physics could be introduced in the non-premixed canonical problem, as liquid fuel in-

jection [50, 61] or multiple inlets [52], however the extension to turbulent premixed combustion

would require additional work to account for flame propagation.
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[18] P. Boivin, C. Jiménez, A. L. Sánchez, F. A. Williams, An explicit reduced mechanism for H2 air combustion,

Proc. Combust. Inst. 33 (1) (2011) 517 – 523.

[19] N. Jaouen, L. Vervisch, P. Domingo, Auto-thermal reforming (ATR) of natural gas: An automated derivation of

optimised reduced chemical schemes, Proceedings of the Combustion Institute 36 (3) (2017) 3321 – 3330.

[20] P. Koniavitis, S. Rigopoulos, W. Jones, Reduction of a detailed chemical mechanism for a kerosene surrogate

via RCCE-CSP, Combustion and Flame 194 (2018) 85 – 106.

[21] Y. Chang, M. Jia, B. Niu, Z. Xu, Z. Liu, Y. Li, M. Xie, Construction of a skeletal oxidation mechanism of

n-pentanol by integrating decoupling methodology, genetic algorithm, and uncertainty quantification, Combust.

Flame 194 (2018) 15–27.

[22] A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse, A self-contained composition space solution method for

strained and curved premixed flamelets, Combust. Flame. 207 (2019) 342–355.

[23] X. Wen, Y. Luo, H. Wang, K. Luo, H. Jin, J. Fan, A three mixture fraction flamelet model for multi-stream

laminar pulverized coal combustion, Proc. Combust. Inst. 37 (3) (2019) 2901–2910.

[24] F. Christo, A. Masri, E. Nebot, S. Pope, An integrated PDF/neural network approach for simulating turbulent

reacting systems, Symp. (Int.) Combust. 26 (1) (1996) 43–48.

[25] J. A. Blasco, N. Fueyo, C. Dopazo, J. Ballester, Modelling the temporal evolution of a reduced combustion

chemical system with artificial neural network, Combust. Flame 113 (1-2) (1998) 38–52.

[26] L. L. Franke, A. K. Chatzopoulos, S. Rigopoulos, Tabulation of combustion chemistry via Artificial Neural

Networks (ANNs): Methodology and application to LES-PDF simulation of Sydney flame L, Combust. Flame

185 (2017) 245–260.

[27] F. R. R. Padilha, A. L. D. Bortoli, Solutions for a laminar jet diffusion flame of methly formate using a skeletal

mechanism obtained by applying ANNs, Journal of Mathematical Chemistry 57 (2019) 2229–2247.

[28] O. Owoyele, P. Kundu, M. M. Ameen, T. Echekki, S. Som, Application of deep artificial neural networks to

multi-dimensional flamelet libraries and spray flames, International Journal of Engine Research 21 (1) (2020)

151–168.

[29] R. Ranade, T. Echekki, A framework for data-based turbulent combustion closure: A posteriori validation,

19



Combustion and flame 210 (2019) 279–291.

[30] G. Aversano, A. Bellemans, Z. Li, A. Coussement, O. Gicquel, A. Parente, Application of reduced-order models

based on PCA & Kriging for the development of digital twins of reacting flow applications, Computers &

Chemical Engineering 121 (2) (2019) 422–441.

[31] Z. Nikolaou, C. Chrysostomou, L. Vervisch, R. S. Cant, Progress Variable Variance and Filtered Rate Modelling

Using Convolutional Neural Networks and Flamelet Methods, Flow Turbulence Combust. 103 (2) (2019) 485–

501.

[32] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, T. Poinsot, Training convolutional neural networks to

estimate turbulent sub-grid scale reaction rates, Combust. Flame 203 (2019) 255–264.

[33] A. Seltz, P. Domingo, L. Vervisch, Z. M. Nikolaou, Direct mapping from LES resolved scales to filtered-flame

generated manifolds using convolutional neural networks, Combust. Flame 210 (2019) 71–82.

[34] X. Zhu, Z. Cai, J. Wu, Y. Cheng, Q. Huang, Convolutional neural network based combustion mode classification

for condition monitoring in the supersonic combustor, Acta Astronautica 159 (2019) 349–357.

[35] K. D. Wan, C. Barnaud, L. Vervisch, P. Domingo, Machine learning for detailed chemistry reduction in DNS of

a syngas turbulent oxy-flame with side-wall effects, Proc. Combust. Inst. 38, in press.

[36] A. K. Chatzopoulos, S. Rigopoulos, A chemistry tabulation approach via Rate Controlled Constrained Equilib-

rium (RCCE) and Artificial Neural Networks (ANNs), with application to turbulent non-premixed CH4/H2/N2

flames, Proceedings of the Combustion Institute 34 (1) (2013) 1465–1473.

[37] S. Subramaniam, S. B. Pope, A mixing model for turbulent reactive flows based on Euclidean minimum spanning

trees, Combustion and Flame 115 (4) (1998) 487 – 514.

[38] J. C. R. Hunt, A. A. Wray, P. Moin, Eddies, streams, and convergence zones in turbulent flows, Center for

Turbulence Research Proceedings of the Summer Program CTR-S88 (1988) 193–208.

[39] C. D. Pierce, P. Moin, Method for generating equilibrium swirling inflow conditions, AIAA journal 36 (7) (1998)

1325–1327.
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Figure 1: Instantaneous iso-surface of Q criterion [38] predicted by ANN-DNS: Q = 107 s−2, colored by gas temper-
ature. Top graph: distribution of instantaneous wall temperature along the centerline.

(a) t = 81 µs (b) t = 0.3 ms (c) t = 0.9 ms

Figure 2: Scatter plots of instantaneous temperature against mixture fraction of every stochastic particle in the micro-
mixing canonical problem at (a) t = 81 µs, (b) t = 0.3 ms, and (c) t = 0.9 ms. Red: the 1000 stochastic particles at the
current time t. Yellow: Time history of the 1000 stochastic particles over the duration 0–t.

Figure 3: Sketch of the ANN training process from the micro-mixing database.
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(a) Main ANN (b) Second ANN, YO2 > 0.9

Figure 4: Comparison of the ANNs prediction on normalized sources of the 10 species and temperature against the
GRI-3.0 target values for the testing database unseen during training.
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Figure 5: Averaged distributions along the planar fuel-jet centerline (y = 11 mm). Symbols: GRI-3.0. Solid line:
Reduced mechanism (Table 2). Dashed line: ANN chemistry. (a) Streamwise velocity and major species mass
fractions: CO2, CO, O2, H2 and H2O. (b) Temperature and radicals and minor species mass fractions: O, OH, H,
HO2, and H2O2. 2D case.
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Figure 6: Spanwise averaged distributions of CO2, O2, CO, OH, H mass fractions and temperature. Symbols: GRI-
3.0. Solid line: Reduced mechanism (Table 2). Dashed line: ANN chemistry. (a): 15 mm from the nozzle inlet. (b):
50 mm from the nozzle inlet. (c): 80 mm from the nozzle inlet. 2D case.
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Figure 7: Averaged distributions along the planar fuel-jet centerline (y = 11 mm). Solid line: Reduced mechanism
(Table 2). Dashed line with symbols: ANN chemistry. (a) Streamwise velocity and major species mass fractions:
CO2, CO, O2, H2 and H2O. (b) Temperature and radicals and minor species mass fractions: O, OH, H, HO2, and
H2O2. 3D case.
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Figure 8: Spanwise averaged distributions of CO2, O2, CO, OH, H mass fractions and temperature. Solid line:
Reduced mechanism (Table 2). Dashed line with symbols: ANN chemistry. (a) 15 mm from the nozzle inlet. (b) 50
mm from the nozzle inlet. (c) 80 mm from the nozzle inlet. 3D case.
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Figure 9: Averaged distribution of wall heat flux at the upper wall. Mean ± RMS. 2D (a) Symbols: GRI-3.0. Solid
line and orange: Reduced mechanism (Table 2). Dashed line and green: ANN chemistry. 3D (b) Dash dotted line and
blue: Reduced mechanism (Table 2). Dotted line and red: ANN chemistry.
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Figure 10: Averaged distribution of temperature predicted by ANN chemistry in 2D and 3D cases. The zoomed-in
sub-figures show the thermal boundary layers near the upper wall.
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Figure 11: Normalized average wall-clock-time per time step for solving reaction sources and the convective-diffusive
part of the equations in 2D DNS coupled with GRI-3.0, 11-species reduced mechanism (Table 2), and ANN. (Nor-
malization by GRI-3.0.)
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List of Supplementary materials

S1. The Chemkin file of the 11-species reduced mechanism for syngas oxy-flame.

S2. Instructions of coupling the ANNs with a flow solver.

S3. The main ANN in TensorFlow format, ready for coupling.

S4. The second ANN in TensorFlow format, ready for coupling.
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