New synthesis routes and catalytic applications of ferrierite crystals. Part 2: the effect of OSDA type on zeolite properties and catalysis
Enrico Catizzone, Massimo Migliori, Tzonka Mineva, Stijn van Daele, Valentin Valtchev, Girolamo Giordano

To cite this version:

HAL Id: hal-03035139
https://hal-normandie-univ.archives-ouvertes.fr/hal-03035139
Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
New synthesis routes and catalytic applications of ferrierite crystals.

Part 2: the effect of OSDA type on zeolite properties and catalysis

Enrico CATIZZONEa, Massimo MIGLIORI* b, Tzonka MINEVAc, Stijn van DAELEd, Valentin VALTCHEVe and Girolamo GIORDANOb

a ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, I-75026, Rotondela (MT), Italy.

b University of Calabria, Department of Environmental and Chemical Engineering, Via P. Bucci – I-87036 Rende (CS), Italy.

c Matériaux Avancés pour la Catalyse et al Santé, UMR 5253 CNRS/UM/ENSCM, Institut Charles Gerhardt de Montpellier (ICGM), 240, Avenue du Professeur Emile Jeanbrau, 34296, Montpellier cedex 5, France.

d Total Research and Technology Feluy (TRTF), Zone Industrielle C, 7181 Feluy, Belgium.

e Laboratoire Catalyse et Spectrochimie CNRS, ENSICAEN, Université de Caen Basse-Normandie, 6 Boulevard Maréchal Juin, Caen, France

*Corresponding author email: massimo.migliori@unical.it
ABSTRACT

Tailoring of physicochemical properties of synthetic zeolites is of paramount importance when these materials are applied as heterogenous catalysts. In this work, the effect of the synthesis system and in particular of the organic structure directing agent (OSDA) on acidity, crystal morphology, and catalytic behavior of FER-type materials is studied. FER-type zeolites with similar Si/Al ratio and crystal size range 0.3-15 µm are synthesized by changing OSDA type or by adding surfactant. A crystallization kinetic analysis shows that the stability of the zeolitic phase strongly depends on the OSDA type. In particular, the crystallization time strongly affects the purity of the FER phase when tetrahydrofuran is used as a template. Furthermore, it is found that long amines as 1,8-diaminooctane can play a role of OSDA obtaining highly crystalline FER-type crystals and with a high Lewis acid sites concentration. FT-IR and 27Al-NMR analyses show that all of the synthesized samples possess different Lewis acid sites concentration associated with extra-framework Al-OH species that are not detected by NMR analysis. Catalytic tests in methanol-to-dimethyl ether reaction reveal that synthesized samples exhibit different catalytic behavior. In particular, large (10-15 µm) FER-type catalyst synthesized with tetrahydrofuran suffer deactivation caused by a higher carbon deposit level. On the contrary, nano-sized FER-type crystals, prepared by using pyrrolidine as OSDA and a surfactant, exhibits high selectivity and considerable resistance to coke deposition.

Keywords: Ferrierite zeolite, synthesis, crystal morphology, Brønsted-Lewis acidity, methanol conversion.
1. INTRODUCTION

Activity, selectivity and stability of zeolites catalysts are recognised to depend upon several factors as zeolite structure, crystal size and nature of active sites. Zeolite channel system (channel orientation and opening size) and diffusion pathway are well-known factors affecting the accessibility of the active sites, products distribution and catalyst deactivation [1-5] strongly. Zeolites channel system is also a critical factor that controls the deactivation by coke deposition; thus zeolites with lower channels dimensionality suffer from more rapid deactivation [6].

Nevertheless, zeolites with a similar channel system can exhibit different catalytic behaviour depending on the nature of acid sites. Hence, the acid sites concentration, typology (Brønsted and Lewis), strength, and location are important parameters when zeolites are applied as heterogeneous catalysts [7-13].

Furthermore, catalyst resistance to deactivation as well as catalyst effectiveness can be improved by changing the size and morphology of zeolite crystals [14-16]. In particular, the application of nano-sized or hierarchical zeolite crystals permits to reduce coke formation and enhance the diffusion of reactant species improving catalyst performances [17-19].

Therefore, the ability of zeolite to be modified by both in situ and post-synthesis treatments is of considerable importance for the industrial perspective, particularly in the area of heterogeneous catalysis [20-23].

Ferrierite (FER) is an important zeolite applied in applied as catalyst in the skeletal isomerization of n-butene for the production of iso-butene and as additive to ZSM-5 catalyst in the dewaxing by selective cracking process for the production of lubricant
FER framework consists of an intersecting 2-dimensional system of 10- (5.4 x 4.2 Å) and 8- (4.8 x 3.5 Å) member ring channels and can be synthesized with Si/Al ratios ranging from 5 to infinity [25, 26]. The particular channel configuration of FER framework is appropriate for processing small molecules. In particular, FER-type crystals have recently ranked as a reliable acid catalyst for dimethyl ether (DME) production. DME is considered a reliable alternative fuel for Diesel engines thanks to its high cetane number, low ignition-temperature and soot-free exhausted gases [27-31]. Furthermore, DME is an essential intermediate compound in olefins production from methanol [32, 33]. DME can be produced by either double-step or one-step route [31].

Briefly, in the double-step process, methanol is synthesized from syngas over copper-based catalysts, purified and then dehydrated to DME in a separate reactor over an acid catalyst. In one-step process, both synthesis and dehydration of methanol are carried out in a single reactor over a multi-functional metal/acid catalyst. From an economic point of view, one-step process seems to be more profitable. Furthermore, a growing attention is receiving the one-step DME synthesis starting from CO₂-rich syngas or CO₂/H₂ mixture [34]. γ-Al₂O₃ is the most studied catalyst for the methanol dehydration step thanks to the high selectivity towards DME at the typical reaction temperature adopted for both the direct and the indirect routes, inhibiting olefins formation thanks to its low acidity [31]. Although this indisputable advantage, high reaction temperature is necessary (about 300 °C) to promote satisfactory results in terms of methanol conversion. Furthermore, the presence of water molecules formed during the reaction suppress the activity of Lewis acid sites of γ-Al₂O₃ [34, 35]. Moreover, low DME productivity is obtained during one-pot CO₂-hydrogenation over CuZn/ γ-Al₂O₃, where a lot amount of water is formed and low temperature are requested for a thermodynamic
point of view [36-38]. For these reasons, research is focusing on the development of new catalysts with high activity at relatively lower temperature as well as high stability in presence of water. Zeolites are investigating as alternative acid catalysts to γ-Al₂O₃, although physicochemical properties shall be carefully selected. In fact, as reported in recent works, channel system, acidity and crystal morphology of zeolites strongly affect the catalytic behaviour in terms of DME yield, deactivation and coke formation [39-43]. For instance, during methanol dehydration reaction, high coke deposition rate is found for zeolites with 3-dimensional channel system such as MFI, BEA or CHA, while fast deactivation is observed for zeolite with 1-dimensional channel system such as TON, MTW and EUO [39, 41]. On the contrary, FER-type catalyst exhibits high resistance to deactivation and a high inhibiting-features toward coke formation during methanol dehydration reaction. The superiority of FER over the other investigated zeolites was related to its 2-dimensinal channel system with small/medium pore openings that ensure high shape-selectivity towards DME [39]. Moreover, the superiority of FER-type zeolite over γ-Al₂O₃ in terms of resistance in presence of water was recently reported [40].

The utilization of zeolites as acid catalysts for one-pot CO₂/CO hydrogenation was also assessed. The physicochemical properties of zeolites strongly affect the catalytic behaviour of multifunctional catalyst. Even the preparation method of the multifunctional catalyst is of paramount importance. For instance, a superior catalytic performance was demonstrated on hybrid catalysts prepared by oxalate co-precipitation of copper, zinc and zirconium over zeolite crystals respect to conventional mechanical mixture. The generation both of metal-oxides and acid sites in a single grain leads to an increased CO₂ conversion. In particular, when FER-type zeolite is used as dehydration
component, higher DME productivity is obtained respect to other zeolites, i.e. MFI and MOR. CuZnZr-FER hybrid catalyst offers a promising DME production via CO$_2$ hydrogenation process thanks to more efficient redox-acid cooperation to convert CO$_2$ into methanol and dehydrate rapidly the alcohol into DME with low production of by-products as carbon monoxide [44-47]. The superiority of FER over other zeolite structures (i.e. TON, MFI, MOR, MTT, FAU) in the syngas-to-DME process was also pointed out by several studies [48-54]. All of this results indicate that the careful choice of the properties of acid catalyst is fundamental for DME production via both tow-step (methanol dehydration) or one-step (syngas/CO$_2$-to-DME) synthesis way.

As extensively reported, the physicochemical properties of zeolites are highly dependent on the synthesis procedure adopted for the synthesis. For instance, the choice of organic structure directing agent (OSDA) is of paramount importance for aluminium distribution, acidic properties and crystals size, being these key parameters for catalysis [55, 56].

The present study is devoted to the fine control of the physicochemical properties of FER-type catalysts. The series of samples were synthesised by adopting different synthesis conditions in order to obtain crystals with different acid sites distribution and morphology. Pyrrolidine, ethylenediammine, 1,8-diaminoctane and tetrahydrofuran were used as OSDA. Furthermore, a small addition of sodium lauryl sulphate to the synthesis gel permits to reduce crystal size with no effect on crystallinity.

Brønsted/Lewis acid sites distribution and concentration of synthesised materials have been investigated with NH$_3$-TPD and FT-IR of adsorbed D$_3$-acetonitrile while crystals morphology has been analysed by scanning electron microscopy. Methanol dehydration to dimethyl ether catalytic tests in the reaction temperature range 180-240 °C, has
permitted to evaluate the catalysts in terms of activity, selectivity, deactivation, and coke formation. The set of experimental data can be used to tailor the properties of FER-type catalysts.

2. EXPERIMENTAL

2.1 Samples preparation

Four different OSDA: pyrrolidine (Py), ethylenediamine (En), tetrahydrofuran (THF) and 1,8-diaminoctane (DAO) were used to synthesise FER samples from a synthesis gel with a Si/Al ratio in the range 8-10. The following chemicals were used in all the synthesis: colloidal silica Ludox AS-40 (SiO$_2$, 40 wt% suspension in H$_2$O, Aldrich), sodium aluminate (NaAlO$_2$, Aldrich), aluminium sulphate (Al$_2$(SO$_4$)$_3$ x 16H$_2$O, Aldrich), sodium hydroxide (pellets, Aldrich), pyrrolidine (Aldrich) ethylenediamine (Fluka), tetrahydrofuran (Aldrich), 1,8-diaminoctane (Aldrich), sodium lauryl sulphate (Aldrich) and distilled water. Synthesis gels were prepared at room temperature, and the crystallization was carried out in stainless-steel Teflon coated autoclave.

Synthesis of FER sample by using pyrrolidine (Py-FER) as OSDA was prepared by adopting the following synthesis gel molar composition [33]:

$$12 \text{Py} - 1.6 \text{Na}_2\text{O} - 1 \text{Al}_2\text{O}_3 - 20 \text{SiO}_2 - 400 \text{H}_2\text{O}$$

In a typical synthesis, sodium aluminate, NaOH and pyrrolidine were dissolved in distilled water and the mixture was stirred until complete dissolution of components. Afterwards, colloidal silica was added dropwise to the solution, and the gel was stirred for 1 hour. The obtained gel transferred in an 80 mL autoclave and left for 30-90 hours at 180 °C in a tumbling oven (rotation speed: 15 rpm).
The effect of a surfactant on crystal morphology of the Py-FER, was evaluated by adding sodium lauryl sulphate (SLS) with an SLS/Al₂ molar ratio equals to 0.3 at the above described synthesis gel, and the obtained sample is labelled as SLS-Py-FER.

Synthesis of FER sample by using ethylenediammine (En-FER) was carried out by adopting the following synthesis gel molar composition [33]:

19.7 En – 1.85 Na₂O – 15.2 SiO₂ – 1 Al₂O₃ – 590 H₂O

Sodium aluminate, NaOH and ethylenediammine were dissolved in distilled, and the mixture was stirred until complete dissolution of components. Afterwards, colloidal silica was added dropwise to the solution, and the gel was stirred for 1 hour. The obtained gel transferred in a 120 mL autoclave and left for 3-12 days in the same conditions of the Py-FER synthesis.

The synthesis of FER sample by using 1,8-diaminoctane as OSDA was performed by a replacing ethylenediammine as it follows:

10 DAO – 1.85 Na₂O – 15.2 SiO₂ – 1 Al₂O₃ – 590 H₂O

NaOH and sodium aluminate were dissolved in distilled water and the mixture was stirred until complete dissolution of components. Afterwards, a DAO in water solution was added and the resulting phase was mixed for 30 minutes. Finally, colloidal silica was added dropwise and the obtained gel was stirred for 1 h prior to transfer it in an autoclave with a volume of 60 mL. Crystallization was performed by adopting the same procedure described for En-FER. More details are reported elsewhere [ref].

The synthesis of FER sample with tetrahydrofuran as OSDA (THF-FER) was performed by adopting the procedure published by Guo et al. [55] with the following synthesis gel molar composition:
183 10 THF – 4.3 Na₂O – 20 SiO₂ – 1 Al₂O₃ – 400 H₂O
184 NaOH aqueous solution was added dropwise to a mixture of aluminium sulphate
185 colloidal silica and water. The obtained phase was stirred for 1 h and tetrahydrofuran
186 was added under vigorous stirring. After 1 h, the gel was transferred in an autoclave
187 with a volume of 60 mL and kept at 200 °C for 6-12 days in a static oven [55].
188 After crystallization, the solid was separated by vacuum filtration and washed several
189 times with distilled water until the pH of filtered solution was close to the neutral value.
190 The obtained white solid was then dried for 15 hours in a static oven kept at 80 °C. In
191 order to remove template from zeolite, air-flow calcination was carried out at 550 °C
192 with an holding time of 8 hours and a heating rate of 2 °C/min. Afterwards, H-form
193 solid was obtained by ion-exchange with a NH₄Cl 1 M solution at 80 °C followed by a
194 secondary air-flow calcination under the same condition of the previous one [56].
195
196 2.2 Physicochemical characterization
197 X-Ray powder diffraction (APD 2000 Pro) (region 5° < 2θ < 50°, step 0.02°/ s) was
198 used to verify both purity and crystallinity of obtained phase; the morphology of the
199 crystalline phase was observed on a scanning electron microscope (SEM, FEI model
200 Inspect) and a transmission electron microscopy (TEM, Philips CM12). Atomic
201 absorption spectroscopy (ContraAA® 700 – Analytik Jena) was used for the
202 measurement of content of sodium, aluminum and silicon content in the calcined
203 catalysts.
204 The specific surface area (by B.E.T. method) and the micropores volume (by t-plot
205 method) of the calcined samples were obtained by nitrogen adsorption/desorption
206 isotherms at -196 °C with a ASAP 2020 instrument (Micromeritics).
The 27Al-NMR spectra were acquired on a Bruker Advance 500 MHZ instrument at 130.3 MHz with radiofrequency power of 54 kHz, a pulse length of 4.6 µs with a corresponding angle theta of π/4. Rotors were spun at 14 kHz, and the recycle delay used for both nuclei was 1 second.

Surface acidity of H-form sample was measured by both NH$_3$-TPD analysis (TPDRO1100, ThermoFisher) and FT-IR analysis by using D$_3$–acetonitrile as a probe molecule. Detailed procedure is reported elsewhere [57].

2.3 Catalytic tests

Catalytic tests were performed in the temperature range 180 – 240 °C using an experimental apparatus described elsewhere [59, 65]. A mixture of methanol (0.06 mol/mol) and nitrogen as a carrier (60 Nml min$^{-1}$) was fed in a quartz reactor loaded with 70 mg of catalyst in pellets form (300 – 500 µm) fixing the Weight Hourly Space Velocity (WHSV) at 4.5 grMeOH·(gr$_{cat}$·h)$^{-1}$. Prior to any test, the catalyst drying was performed under nitrogen flow at 240°C for 3 h.

The product stream composition was determined by a gas chromatograph (Agilent 7890A), equipped with a capillary column (J&W 125–1032) and an FID detector.

Catalyst resistance against deactivation was investigated in Time-On-Stream (TOS) measurements carried out at 240 °C for about 1000 min. The amount of retained carbonaceous species deposited during TOS test was measured by thermo-gravimetric analysis (TGA) in air flow by heating the sample from room temperature to 850 °C (heating rate 5 °C·min$^{-1}$) and attributing the sample weight loss observed between 250 and 700 °C to the deposited carbonaceous species [58].

3. RESULTS AND DISCUSSION
3.1 Structural properties of FER-type zeolites synthesized with different OSDA

X-ray patterns as a function of crystallization time of En-FER, Py-FER, and THF-FER are reported in Figure 1A-C. Crystal growth kinetics of En-FER is relatively slow (see Figure 1A) as traces of FER phase are observed after 3 days and after 6 days the crystalline phase is dominant. A crystallization time of 10 days can be considered as optimal to obtain high crystalline En-FER since, for longer time (12 days), traces of kaetite phase appear. A faster crystal growth kinetic is observed for the system containing pyrrolidine (Py-FER) (see Figure 1B). Although no crystalline phases were observed after 15 hours, the onset of FER-phase crystallization is evident after 30 hours and is completed in the range 60-90 hours. The obtained results are in good agreement with Chen et al. [33], except for some minor differences in terms of crystallization time values that usually arise when different autoclaves volumes are adopted. Furthermore, the addition of sodium lauryl sulphate (SLS-Py-FER) does not affect crystallinity as can be seen in Figure S.1.

Nevertheless, some differences may be noted after 15 h crystallization. In fact, SLS-Py-FER seems to have a higher crystallinity than Py-FER. The presence of surfactant may be responsible of formation of microdroplets that mimic crystallization favouring nucleation [59]. The higher nucleation rate may be responsible of the formation of smaller crystals in SLS-Py-FER sample as later reported.

Guo et al. [55] showed that, for a THF-containing system, crystallization of FER phase occurs in time range 8-12 days, without mentioning any information about the crystallinity evolution over time. Therefore, the crystal growth kinetics of THF-FER was studied and the results are presented in Figure 1C. XRD results show that the THF-containing system yields FER-type phase, but the crystallization time is a key parameter
to be properly chosen, in order to maximise the phase purity. In fact, after 6 days, FER X-Ray peaks appear still with a significant amount of amorphous phase and crystallization time of 8 days can be suggested as optimal value to obtain high crystalline and pure ferrierite (THF-FER sample). Longer crystallization time causes the formation of competitive phases such as MOR and MFI. The formation of MOR phase in this system can be attributed to the higher sodium concentration in the THF-containing synthesis gel (Na/Al=4.3 mol/mol) higher than the previous investigated systems (En-FER, Na/Al=1.85; Py-FER, Na/Al=1.6).

The replacing of En with DAO reduce the induction period as reported in Figure 1-D. In fact, in presence of DAO, FER-phase is almost completely crystallized after 3 days whilst only traces of crystalline product is observed when ethylenediamine is used as OSDA.

Figure 2 shows representative SEM micrographs revealing that all samples exhibit the typical of ferrierite plat-like morphology with a well-developed {1 0 0}. However, the crystals differ in size and the level of agglomeration. The En-FER crystals (Figure 2A) have the following characteristics: length 2-3 µm, length/width ratio around 2 and thickness 100 nm, while DAO as OSDA generates smaller crystals with size around 1 µm and lower length/width ratio (around 1.3) as reported in Figure 6D. Py-FER sample shows larger crystals with length 5-6 µm, length/width ratio around 1.6 and thickness 100 nm (Figure 2B). Completely different crystal morphology was observed for THF-FER sample (Figure 2C) where uniform agglomerates of 10-15 µm are observed, as each agglomerate consists of stacked plat-like crystals with thickness around 150 nm. For THF-containing system, it should be reminded that the crystallization is relatively long and the XRD study reveals the presence of other solids (Figure 1.C). Accordingly,
SEM micrographs after 6 and 12 days of crystallization, reported in Figure S.2, confirm the presence of an amorphous phase after 6 days, whilst MFI and MOR phases are clearly present after 12 days. The attribution of crystals to MFI rather MOR phases was carried out referring to SEM analysis reported by Qian et al. [60].

SEM and TEM pictures of SLS-Py-FER sample are reported in Figure 3. They are significantly smaller that the sample synthesised without sodium lauryl sulphate (Figure 6B). The morphology is plate-like and the size below 500 nm. Thus the addition of the surfactant inhibits the growth of the crystals, but retains the high crystallinity of the zeolite (vide supra).

The results of N$_2$ adsorption analysis are summarized in Table 1. Micropore volume follows the order THF-FER<DAO-FER<Py-FER≈SLS-Py-FER<En-FER. The lower micropore volume values observed for THF-FER and DAO-FER can be related to the higher amount of sodium cations in zeolite channels. Figure S.3 (Supporting Information) highlights the adsorption/desorption isotherms of synthesised samples in protonic form. All of the investigated structure exhibit the pattern of type I isotherm typical of microporous materials [33].

Figure 2 shows the 27Al MAS NMR spectra of the H-form FER-type zeolites obtained in En-, Py-, DAO- and THF-containing systems. They are dominated by a signal centered at around 55 ppm, characteristic of tetra-coordinated aluminium species in zeolite framework. The presence of a second peak at around 62 ppm for Py-FER sample can be associated with tetrahedral aluminium species with a different Al-O-Si bond angle [68]. A relatively weak signal at around 0 ppm revealing the presence of octahedral extra-framework aluminium (below 10%). The observed quadrupolar line
broadening can be caused by distortions of the octahedral symmetry of AlO$_6$ sites. No octahedral aluminium species were observed on THF-FER sample by NMR analysis.

It is well-known that the zeolite structure is generated by a network of SiO$_4$ and AlO$_4$-tetrahedral linked together by a shared oxygen atom. Due to the presence of trivalent atoms (e.g. aluminium) in the tetrahedral units, the framework offers a negative charge which needs to be balanced with non-framework exchangeable cations that are generally elements of the group IA and group IIA as sodium, potassium, magnesium and calcium [69]. In this work, sodium is used to synthesise FER-type materials, and this is the cation that balances negative charges associated with aluminium atoms.

Furthermore, the high quantity of tetrahedral aluminium species detected by NMR analysis, suggests that the Na/Al ratio should be around one. Strikingly, the chemical analysis reported in Table 1 shows that Na/Al is about 0.10 for Py-FER and En-FER, 0.6 for DAO-FER and 0.9 for THF-FER. These results disagree with the previous theoretical assumption, suggesting that sodium cations do not balance an important amount of aluminium species in tetrahedral position. Vuono et al. [67] reported a Na/Al ratio value below to unity (around 0.60) for MCM-49 materials synthesised in the presence of hexamethylenimine despite aluminium was mainly tetra-coordinated as in our case. Forbes et al. [71, 72] report that during the synthesis of ZSM-5/Theta-1 materials in the presence of diethanolammine, the organic molecules were considered to have both a pore-filling role and charge compensatory role. Furthermore, Rollmann et al. [73] assert that protonated amine (e.g. ethylamine, pyrrolidine, hexamethylenimine) play the role as counterion of negative charge associated to tetrahedral aluminium atoms located into zeolite framework, also for FER-type materials. Therefore, because in this work, aluminium atoms are mainly present in tetrahedral coordination, protonated
organic molecules can be reasonably present to compensate negative charge of zeolite lattice. THF-FER exhibits a relative higher Na/Al ratio (around 0.9) showing that AlO$_4^-$ species needs to the presence of sodium cations to be balanced because THF is not able to play a role of counterion [74]. Nevertheless, also for THF-FER, the Na/Al ratio is not equal to one, suggesting the presence of extra-framework aluminium species not detected by the NMR analysis. This aspect will be elucidated during FT-IR results discussion.

3.2 Zeolite acidity

The NH$_3$-TPD profiles are reported in Figure 9 for all the synthesised samples displaying three main peaks characterised by different ammonia maximum desorption temperatures peaks (T_M) as an indicator of different acid sites family (the higher is T_M, the stronger is the acid sites). No differences in NH$_3$-TPD profiles can be observed between Py- and SLS-Py-FER (see Figure S. 4), indicating that the presence of surfactant affects crystal morphology rather than acid properties.

As suggested by Niwa and Katada [76, 77], the interpretation of peaks with $T_M<300$ °C may be quite misleading since the desorption effect may also be related to physically adsorbed ammonia interacting via a hydrogen bond with the NH$_4^+$ ions adsorbed onto acid sites. In this condition, having comparable desorption energy, the presence of weak acid sites, may be partially hidden by physisorbed ammonia. On the contrary, the peaks with 300°C<T_M<500 °C are associated with ammonia molecules desorbed from strong acid sites (both Brønsted and Lewis acid sites). The peak with $T_M>700$ °C can be associated to dehydroxylation phenomena [78, 79] since it is detected either in NH$_3$-
TPD experiments or in the corresponding “blank” TPD experiments performed over the same catalyst and under the same experimental conditions, without NH3 feed (see Figure S.5 of supplementary information). Weight loss above 700 °C was also detected via TG analysis (Figure S. 6for THF-FER) for the protonic form of the sample revealing that the dTG peak above 700°C as a dehydroxylation phenomena.

Quantitative results of NH3-TPD measurements reported in Table 2 indicates how the total acid sites concentration follows the Si/Al ratio on the solid.

Figure 10 depicts the FT-IR spectra of H-ferrierite samples in the OH-stretching region. Two main bands observed at 3745 cm⁻¹ and 3600 cm⁻¹ are associated with terminal silanol Si-OH and Brønsted acid sites Al-OH-Si groups, respectively [80, 81]. A shoulder at around 3645 cm⁻¹ is also present. Similar result was reported already [34, 82], but the peak is not well-identified. Peixoto et al. [83] suppose that the observed shoulder can be associated to a silanol group anchored on extra-framework aluminium species (e.g., octahedral aluminium) as reported also by Rachwalik et al. [84] even though in the investigated samples, NMR analysis suggests that octahedral aluminium species are nearly absent. It is known from the literature that aluminium in highly distorted coordination might become NMR silent and the observed band at 3645 cm⁻¹ can be associated to OH groups connected to the so called ‘invisible’ aluminium species [85, 86] that can play a role of Lewis acid sites [87, 88]. The presence of these species could explain the non-stoichiometric Na/Al ratio discussed above.

Curves of Figure 10 indicate that THF-FER sample seems to possess a lower concentration of both terminal silanol Si-OH and Al-OH groups compared with the other samples. Figure S.7 (Supporting Information) reveals that PY-FER and SLS-PY-
FER samples exhibit similar FT-IR spectra in the OH-stretching region except for a slightly lower Si-OH concentration for the surfactant-free sample.

In order to discriminate between Lewis and Brønsted acid sites, deuterated acetonitrile (CD$_3$CN) was used as a probe molecule following the FT-IR procedure discussed above. FT-IR spectra of adsorbed CD$_3$CN at different desorption temperatures (ranging between 25°C and 300°C) are reported in Figure 11. The presence of two main bands at about 2296 cm$^{-1}$ and 2322 cm$^{-1}$ reveals the presence of both Brønsted and Lewis acid sites, respectively, in all catalysts. Smaller bands at lower wave length associated with physisorbed acetonitrile are also presents [64]. The concentration of Brønsted and Lewis sites were obtained from the integral intensities of the IR bands of adsorbed CD$_3$CN at 2296 cm$^{-1}$ and 2322 cm$^{-1}$, respectively, by using the extinction factor coefficients reported in Section 2. Brønsted and Lewis site distribution of the investigated samples was calculated from the area of bands recorded at 25 °C, and quantitative results in terms of Lewis acid site percentage are summarized in Table 2. Results show that OSDA significantly effects acid sites distribution: the En-FER and DAO-FER exhibit a high Lewis acid sites concentration (around 40%) while the lowest value was 15% of THF-FER. The addition of surfactant did not affect the acid sites distribution as both Py-FER and SLS-Py-FER samples exhibit the same concentration of Lewis acid sites (around 33%). Therefore, considering NH$_3$-TPD profiles, it is possible to conclude that Py-FER and SLS-Py-FER have a very similar acidity in terms of concentration, distribution, and typology of acid sites, but substantially different crystal size.

In order to estimate the number and the strength of Brønsted and Lewis acid sites the desorption profiles shown in Figure S. 8 were analyzed and the results are reported in
Figure 11. The set of data show that Lewis acid sites are stronger than Brønsted ones for all the samples. The desorption of Brønsted sites becomes significant above 150°C while the Lewis sites are still occupied above 300°C. Only EN-FER sample seems to exhibit slightly weak Lewis acid sites since the desorption of probed molecule starts at a lower temperature. On the contrary, for Brønsted acid sites the acetonitrile molecules desorption starts from 50°C and no occupied sites are present above 250°C. EN-FER, PY-FER and DAO-FER exhibit a similar trend, whilst THF-FER had Brønsted acid sites weaker than the other catalysts. In fact, at 100 °C the 60% of the Brønsted acid sites are desorbed for THF-FER compared with 30% for the other samples.

By considering as strong Lewis acid sites fraction, the value of Lewis acid sites still occupied by CD$_3$CN molecules at 300 °C, it is possible to calculate the the fraction of Strong Lewis sites reported in (Table 2, last column). The concentration of strong Lewis acid sites follows the order DAO-FER>En-FER>Py-FER (∼SLS-Py-FER)>THF-FER suggesting that synthesis system affect both typology and strength of acid sites. The observed Lewis acid sites can be associated with extra-framework, NMR silent, Al-OH species.

3.4 Catalytic tests

The catalytic activity of synthesised samples was investigated by performing Methanol to dimethyl ether reaction. Figure 13 shows the methanol conversion at different reaction temperatures. The data were calculated as an arithmetic media over three independent measurements during 30 min of Time-On-Stream, always resulting in conversion relative variation below 10%.
The catalytic data show that differences in textural and chemical properties lead to
different catalytic activity, except for THF-FER, exhibiting the lowest value of
methanol conversion on the investigated reaction conditions. Significant differences in
conversion between the samples, excluding THF-FER, which shows substantially lower
activity, can be found only at a temperature below 200°C. The lower activity of THF-FER
is attributed to the large crystal size, increasing the mass transfer limitation. The
effect of crystal size is also evident by comparing Py-FER and SLS-Py-FER that exhibit
similar acidity (acid sites concentration and distribution) but different activity. At the
reaction temperature of 180°C, methanol conversion on Py-FER is 15% lower than on
SLS-Py-FER but the effect tends to disappear when increasing the temperature. DME
selectivity data reported in Figure 14 suggest that over both THF-FER and DAO-FER
sample only DME is formed at 180 °C whilst a slightly lower selectivity is observed
over the others sample. For all the samples, DME selectivity progressively decreases as
the reaction temperature increases, and methane, ethylene, propylene and butenes
appear in the reaction products.

In order to assess the catalyst stability, the methanol conversion was monitored for
about 1000 minutes at 240°C (Figure 15). FER-type catalysts synthesised employing
amines as OSDA (En-FER, Py-FER, and DAO-FER), offer high stability in the
considered time range. On the contrary, THF-FER shows a progressive deactivation
with a conversion drop of about 10% at the end of the test.

The higher deactivation rate observed for THF-FER sample can be attributed to the
amount of deposited coke, significantly higher for this sample, as reported in Figure 16.
The higher carbon deposit level and the consequent rapid deactivation can be promoted
by both largest presences of Brønsted acid sites or by bigger crystal size as both
characteristics are present in THF-FER sample. On the contrary, despite the similar acidic properties, the carbon deposit level exhibited by SLS-Py-FER lower than Py-FER can be attributed to nano-sized crystals retarding coke formation [92, 93]. In this direction also goes DAO-FER sample showing a carbon deposit lower that the others micro-sized samples, despite its higher acid sites concentration.

4. CONCLUSIONS

FER-type crystals were synthesized employing pyrrolidine (Py) ethylenediamine (En), tetrahydrofuran (THF) as OSDA with the goal to vary the chemical, physical and textural properties of the zeolite. For the first time, 1,8-diaminooctane (DAO) was used as OSDA, and its role in the formation of FER-type structure was studied combining experimental and theoretical methods. A surfactant (sodium lauryl sulphate - SLS) was used in order to tune the crystal size Py-FER and thus nano-sized crystal were synthesized. SLS-obtained nanosized crystals showed similar acidity and improved catalytic activity with respect to the micron-sized Py-FER counterpart. Differences in crystal size and morphology were also found when changing the OSDA, from very large crystals in the case of THF-FER to a typical morphology of ferrierite obtained with amino-containing OSDA. Despite similar Si/Al ration of the initial gels the use of different organic structure directing agents leads to variation of the zeolite framework composition. The OSDA impacts on the Al distribution resulted in catalysts with significant differences in acid sites distribution and strength (Lewis and Brønsted). This result provides new opportunities in tailoring the acid characteristics of FER-type catalysts. This statement is fully supported by the results obtained in the methanol dehydration to DME. Both acidity and crystal size strongly affect the DME selectivity
and resistance towards deactivation. A higher coke amount is deposited on bigger crystals, while the utilization of nano-sized crystals strongly retard coke formation. In the light of acidity analysis, one can state that the higher is Lewis acid sites concentration the better performing is the catalyst for DME production. On the other side the large presence of Brønsted acidity seems to promote the abundant coke formation.

ACKNOWLEDGMENTS

The authors gratefully acknowledge dr. Eddy Dib, Catalysis and Spectroscopy Laboratory LCS ENSICAEN, for NMR analysis and dr. Francesco FRUSTERI, CNR-ITAE “Nicola Giordano” - Messina, for TEM micrographs.

REFERENCES

TABLES CAPTIONS

Table 1 Chemical composition, pore volume and surfaces characteristics of synthesised FER-type materials.

Table 2 Acidic properties of investigated catalysts.

Table 3 Calculated binding energies and lengths for the investigated SDA-FER systems from DFT simulation.
FIGURES CAPTIONS

Figure 1 XRD pattern of FER samples synthesized with the following templates: (A) ethylenediammine, (*) indicates the presence of Kaetite phase; (B) pyrrolidine; (C) tetrahydrofuran, (▼) and (♦) denote the presence of MOR and MFI phase, respectively; (D) 1,8-diaminoctane (DAO).

Figure 2 SEM micrographs of FER-type materials synthesised with En (A), Py (B), THF (C) and DAO (D).

Figure 3 SEM (left) and TEM (right) micrographs of FER-type materials synthesised by adding SLS to a Py-containing system.

Figure 4 27Al MAS NMR spectra of the H-forms of ferrierite synthesized with En (a), Py (b), THF (c) and DAO (d).

Figure 5 NH$_3$-TPD profiles of En-FER (a), Py-FER (b), THF-FER (c) and DAO-FER (d).

Figure 6 FT-IR spectra of OH groups of En-FER (a), Py-FER (b), THF-FER (c) and DAO-FER (d) after evacuation at 300 °C for 4h.

Figure 7 Fraction of Brønsted (●) and Lewis (■) acid sites free of adsorbed D$_3$CN molecules as a function of desorption temperature; En-FER (A), Py-FER(B), THF-FER(C) and DAO-FER(D).

Figure 8 Methanol conversion as a function of reaction temperature over the investigated samples; WHSV= 4.5 h$^{-1}$.

Figure 9 DME selectivity as a function of reaction temperature over the investigated samples; WHSV= 4.5 h$^{-1}$.

Figure 10 Methanol conversion versus Time on Stream observed at 240 °C and WHSV= 4.5 h$^{-1}$.
Figure 11 Carbon deposit over the investigated sample after 1000 min of TOS at 240 °C and WHSV= 4.5 h⁻¹.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>$\text{Na/Al}_{\text{bulk}}^a$</th>
<th>$\text{Si/Al}_{\text{bulk}}^a$</th>
<th>S_{BET}^b</th>
<th>V_{mic}^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Py-FER</td>
<td>0.1</td>
<td>8.4</td>
<td>329</td>
<td>0.131</td>
</tr>
<tr>
<td>En-FER</td>
<td>0.1</td>
<td>7.4</td>
<td>306</td>
<td>0.140</td>
</tr>
<tr>
<td>THF-FER</td>
<td>0.9</td>
<td>7.7</td>
<td>280</td>
<td>0.115</td>
</tr>
<tr>
<td>DAO-FER</td>
<td>0.6</td>
<td>6.6</td>
<td>287</td>
<td>0.125</td>
</tr>
<tr>
<td>SLS-Py-FER</td>
<td>0.1</td>
<td>8.4</td>
<td>340</td>
<td>0.133</td>
</tr>
</tbody>
</table>

a Atomic absorption

b BET superficial area

c Micropore volume calculated by t-plot method

Table 1
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>NH\textsubscript{3}-uptake</th>
<th>(T_{M,LT}a)</th>
<th>(x_{LT}b)</th>
<th>(T_{M,HT}c)</th>
<th>(x_{HT}d)</th>
<th>Lewis acid sitese</th>
<th>Strong Lewis acid sitesf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Py-FER</td>
<td>965</td>
<td>232</td>
<td>0.35</td>
<td>454</td>
<td>0.65</td>
<td>0.34</td>
<td>0.14</td>
</tr>
<tr>
<td>En-FER</td>
<td>1052</td>
<td>245</td>
<td>0.30</td>
<td>436</td>
<td>0.70</td>
<td>0.41</td>
<td>0.16</td>
</tr>
<tr>
<td>THF-FER</td>
<td>929</td>
<td>236</td>
<td>0.31</td>
<td>474</td>
<td>0.69</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>DAO-FER</td>
<td>1418</td>
<td>231</td>
<td>0.40</td>
<td>455</td>
<td>0.60</td>
<td>0.40</td>
<td>0.24</td>
</tr>
<tr>
<td>SLS-Py-FER</td>
<td>965</td>
<td>235</td>
<td>0.33</td>
<td>458</td>
<td>0.67</td>
<td>0.32</td>
<td>0.13</td>
</tr>
</tbody>
</table>

aTemperature of maximum desorption of NH\textsubscript{3} between 100 and 300°C

bFractional population of sites between 100 and 300°C

cTemperature of maximum desorption of NH\textsubscript{3} above 300°C

dFractional population of sites above 300°C

eEstimated by FT-IR analysis of adsorbed D\textsubscript{3}-acetonitrile at 25°C

fEstimated by FT-IR analysis of adsorbed D\textsubscript{3}-acetonitrile at 300°C

Table 2
Figure 1
Figure 2
Figure 6
Figure 7
Figure 8

![Bar chart showing methanol conversion at different temperatures (180 °C, 200 °C, 220 °C, 240 °C) for five different samples: En-FER, Py-FER, SLS-Py-FER, THF-FER, DAO-FER. The chart displays the conversion efficiency for each sample at each temperature.]
Figure 9
Figure 10

[Graph showing methanol conversion over time for different samples: En-FER, Py-FER, SLS-Py-FER, THF-FER, DAO-FER. The x-axis represents time on stream in minutes, and the y-axis represents methanol conversion.]