S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang et al., Transparent ceramics: Processing, materials and applications, Progress in Solid State Chemistry, vol.41, issue.1-2, pp.20-54, 2013.

J. Petit and L. Lallemant, Drying step optimization to obtain large-size transparent magnesium-aluminate spinel samples, Window and Dome Technologies and Materials XV, p.101790, 2017.

J. A. Salem, Transparent Armor Ceramics as Spacecraft Windows, Journal of the American Ceramic Society, vol.96, issue.1, pp.281-289, 2012.

M. Rubat-du-merac, H. Kleebe, M. M. Müller, and I. E. Reimanis, Fifty Years of Research and Development Coming to Fruition; Unraveling the Complex Interactions during Processing of Transparent Magnesium Aluminate (MgAl2 O4 ) Spinel, Journal of the American Ceramic Society, vol.96, issue.11, pp.3341-3365, 2013.

M. Sokol, M. Halabi, Y. Mordekovitz, S. Kalabukhov, S. Hayun et al., An inverse Hall-Petch relation in nanocrystalline MgAl 2 O 4 spinel consolidated by high pressure spark plasma sintering (HPSPS), Scripta Materialia, vol.139, pp.159-161, 2017.

A. Krell, J. Klimke, and T. Hutzler, Advanced spinel and sub-?m Al2O3 for transparent armour applications, Journal of the European Ceramic Society, vol.29, issue.2, pp.275-281, 2009.

A. C. Sutorik, G. Gilde, J. J. Swab, C. Cooper, R. Gamble et al., The Production of Transparent MgAl2O4 Ceramic Using Calcined Powder Mixtures of Mg(OH)2 and ?-Al2O3 or AlOOH, International Journal of Applied Ceramic Technology, vol.9, issue.3, pp.575-587, 2012.

A. Goldstein, A. Goldenberg, and M. Hefetz, Transparent polycrystalline MgAl2O4 spinel with submicron grains, by low temperature sintering, Journal of the Ceramic Society of Japan, vol.117, issue.1371, pp.1281-1283, 2009.

G. Bonnefont, G. Fantozzi, S. Trombert, and L. Bonneau, Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders, Ceramics International, vol.38, issue.1, pp.131-140, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01834904

M. Sokol, M. Halabi, S. Kalabukhov, and N. Frage, Nano-structured MgAl 2 O 4 spinel consolidated by high pressure spark plasma sintering (HPSPS), Journal of the European Ceramic Society, vol.37, issue.2, pp.755-762, 2017.

K. Morita, B. Kim, H. Yoshida, K. Hiraga, and Y. Sakka, Assessment of carbon contamination in MgAl<sub>2</sub>O<sub>4</sub> spinel during spark-plasma-sintering (SPS) processing, Journal of the Ceramic Society of Japan, vol.123, issue.1442, pp.983-988, 2015.

H. Hammoud, V. Garnier, G. Fantozzi, E. Lachaud, and S. Tadier, Mechanism of Carbon Contamination in Transparent MgAl2O4 and Y3Al5O12 Ceramics Sintered by Spark Plasma Sintering, Ceramics, vol.2, issue.4, pp.612-619, 2019.

G. R. Villalobos, J. S. Sanghera, and I. D. Aggarwal, Degradation of Magnesium Aluminum Spinel by Lithium Fluoride Sintering Aid, Journal of the American Ceramic Society, vol.88, issue.5, pp.1321-1322, 2005.

K. Rozenburg, I. E. Reimanis, H. Kleebe, and R. L. Cook, Chemical Interaction Between LiF and MgAl2O4Spinel During Sintering, Journal of the American Ceramic Society, vol.90, issue.7, pp.2038-2042, 2007.

K. Rozenburg, I. E. Reimanis, H. Kleebe, and R. L. Cook, Sintering Kinetics of a MgAl2O4Spinel Doped with LiF, Journal of the American Ceramic Society, vol.91, issue.2, pp.444-450, 2008.

G. Gilde, P. Patel, P. Patterson, D. Blodgett, D. Duncan et al., Evaluation of Hot Pressing and Hot Isostastic Pressing Parameters on the Optical Properties of Spinel, Journal of the American Ceramic Society, vol.88, issue.10, pp.2747-2751, 2005.

I. Chen and X. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, vol.404, issue.6774, pp.168-171, 2000.

C. Manière, G. Lee, J. Mckittrick, S. Chan, and E. A. Olevsky, Modeling zirconia sintering trajectory for obtaining translucent submicronic ceramics for dental implant applications, Acta Materialia, vol.188, pp.101-107, 2020.

M. N. Rahaman, Sintering of Ceramics, 2007.

R. M. German, Sintering Theory and Practice, 1996.

R. K. Bordia, S. Kang, and E. A. Olevsky, Current understanding and future research directions at the onset of the next century of sintering science and technology, Journal of the American Ceramic Society, vol.100, issue.6, pp.2314-2352, 2017.

C. Manière, L. Durand, A. Weibel, and C. Estournès, Spark-plasma-sintering and finite element method: From the identification of the sintering parameters of a submicronic ?-alumina powder to the development of complex shapes, Acta Materialia, vol.102, pp.169-175, 2016.

C. Manière, L. Durand, A. Weibel, and C. Estournès, A predictive model to reflect the final stage of spark plasma sintering of submicronic ?-alumina, Ceramics International, vol.42, issue.7, pp.9274-9277, 2016.

J. D. Hansen, R. P. Rusin, M. Teng, and D. L. Johnson, Combined-Stage Sintering Model, Journal of the American Ceramic Society, vol.75, issue.5, pp.1129-1135, 1992.

H. Su and D. L. Johnson, Master Sintering Curve: A Practical Approach to Sintering, Journal of the American Ceramic Society, vol.79, issue.12, pp.3211-3217, 1996.

J. Wang and R. Raj, Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania, Journal of the American Ceramic Society, vol.73, issue.5, pp.1172-1175, 1990.

C. P. Cameron and R. Raj, Grain-Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts, Journal of the American Ceramic Society, vol.71, issue.12, pp.1031-1035, 1988.

R. Marder, R. Chaim, and C. Estournès, Grain growth stagnation in fully dense nanocrystalline Y2O3 by spark plasma sintering, Mater. Sci. Eng. A, vol.527, pp.1577-1585, 2010.

C. H. Hsueh, A. G. Evans, and R. L. Coble, Microstructure development during final/intermediate stage sintering-I. Pore/grain boundary separation, Acta Metall, vol.30, pp.90145-90151, 1982.

M. A. Spears and A. G. Evans, Microstructure development during final/ intermediate stage sintering-II. Grain and pore coarsening, Acta Metall, vol.30, pp.90146-90154, 1982.

R. J. Brook, Pore-Grain Boundary Interactions and Grain Growth, Journal of the American Ceramic Society, vol.52, issue.1, pp.56-57, 1969.

J. Zhao and M. P. Harmer, Effect of Pore Distribution on Microstructure Development: I, Matrix Pores, Journal of the American Ceramic Society, vol.71, issue.2, pp.113-120, 1988.

J. Zhao and M. P. Harmer, Effect of Pore Distribution on Microstructure Development: II, First-and Second-Generation Pores, J. Am. Ceram. Soc, vol.71, pp.530-539, 1988.

J. Zhao and M. P. Harmer, Effect of Pore Distribution on Microstructure Development: III, Model Experiments, Journal of the American Ceramic Society, vol.75, issue.4, pp.830-843, 1992.

E. A. Olevsky, C. Garcia-cardona, W. L. Bradbury, C. D. Haines, D. G. Martin et al., Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability, J. Am. Ceram. Soc, vol.95, pp.2414-2422, 2012.

S. J. Park, P. Suri, E. Olevsky, and R. M. German, Master Sintering Curve Formulated from Constitutive Models, Journal of the American Ceramic Society, vol.92, issue.7, pp.1410-1413, 2009.

J. Besson and M. Abouaf, Grain growth enhancement in alumina during hot isostatic pressing, Acta Metall. Mater, vol.39, pp.2225-2234, 1991.

W. D. Kingery and B. Francis, Grain Growth in Porous Compacts, Journal of the American Ceramic Society, vol.48, issue.10, pp.546-547, 1965.

F. A. Nichols, Theory of Grain Growth in Porous Compacts, J. Appl. Phys, vol.37, pp.4599-4602, 1966.

R. J. Brook, Controlled Grain Growth, Treatise on Materials Science & Technology, pp.331-364, 1976.

R. Chaim, Activation energy and grain growth in nanocrystalline Y-TZP ceramics, Materials Science and Engineering: A, vol.486, issue.1-2, pp.439-446, 2008.

H. Riedel and J. Svoboda, A theoretical study of grain growth in porous solids during sintering, Acta Metall. Mater, vol.41, issue.93, p.90212, 1993.

M. I. Mendelson, Average Grain Size in Polycrystalline Ceramics, Journal of the American Ceramic Society, vol.52, issue.8, pp.443-446, 1969.

C. Manière, T. Zahrah, and E. A. Olevsky, Fluid dynamics thermo-mechanical simulation of sintering: Uniformity of temperature and density distributions, Appl. Therm. Eng, vol.123, pp.603-613, 2017.