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Abstract

In this paper, we study the identification of Finite Impulse Response systems in a particular context: data on the input and the output are
obtained with one-bit quantizers, the thresholds of quantizers can be different from zero. A three-step identification algorithm is proposed
from these binary-valued measurements. This algorithm is based on the normal distribution of the input and noises. The algorithm is
appropriately analyzed: it is shown to be asymptotically unbiased, its asymptotic variance is also expressed. Numerical simulations are
provided to demonstrate the effectiveness of the proposed algorithm even in presence of noise and to validate the analysis.
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1 Introduction

1.1 The considered identification problem and prior works

In this paper we are interested in the identification of dy-
namical systems using binary measurements. This context
is justified by the fact that sometimes it is difficult to obtain
high resolution data. This is the case when no high reso-
lution sensor is available (does not exist or too expensive)
or when it is not possible to transmit high resolution data
(limited bandwidth for instance) or when the use of binary
data allows to preserve memory and battery capacities (on
a small wireless connected device for instance) or when we
want to analyze categorical data (detected/not-detected for
instance). We consider here the extreme case where we use
one-bit quantization both on the input and the output. Such
a situation occurs when we do not want or can not interfere
with the system. The only available information is the fact
that samples are lower or higher than a threshold of quanti-
zation. Note that this threshold can be different from zero.

The identification of dynamical systems using binary mea-
surements on the output has already been studied and sev-
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eral methods have been proposed. These methods address
the identification problem in different ways: some of them
use a periodic input signal ([14]), others use the knowledge
of the noise distribution function ([14], [16], [5], etc.) and
some approaches are based on a specific identification crite-
ria ([3], [10], [11], etc.). These previous solutions are dedi-
cated to the identification of Finite Impulse Response (FIR)
systems but there also exist some solutions for the identifi-
cation of Infinite Impulse Response (IIR) systems (see for
instance [13]). It might be noticed that all of these methods
require high resolution data on the input signal, consequently
they are not adapted to our framework. There are less solu-
tions in the case of one-bit quantization both on the input
and the output. In [6] only the case of a threshold equal to
zero is considered. [2] deals with the identification of FIR
linear systems assuming that both input and output mea-
surements are subjected to quantization. Two programming
techniques based algorithms are presented therein. Consid-
ering the identification with only binary measurements on
the input and output signals, [15] and [9] proposed algo-
rithms for the identification of a gain system. They are ex-
tended in [7] and [8] where it is assumed that the thresholds
of the one-bit quantizers can be adapted.

1.2 Contributions and paper outline

In this paper, we present an alternative for the identification
of dynamical systems using binary measurements both on
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the input and the output. We investigate here the case where
thresholds can be different from zero. The cornerstone of the
proposed algorithm is the estimation, in a first time, of the
correlation function of the input and the correlation func-
tion between the input and the output. These estimates are
then used, in a second time, for the estimation of the pa-
rameters. This paper continues the development of the algo-
rithm proposed in [1], this later algorithm being dedicated to
the identification of Auto-Regressive models for time-series
from one-bit quantized observation sequences.

The organization of the paper is given below. In section 2,
we formally state the problem under consideration, we intro-
duce some notations and assumptions. Section 3 is divided
into two parts: in subsection 3.1 we present our solution,
in subsection 3.2 an asymptotic analysis of this solution is
provided. Section 4 illustrates the proposed method with a
numerical example and confirms the analysis. Section 5 con-
cludes the paper. Proofs are given in Appendix.

2 Notation and problem formulation

Consider a discrete-time linear system whose dynamic is
given by yt = G(q)ut where ut is the input and yt is the
output. G(q) is a FIR system of order n. It is defined by its
impulse response {gk}k∈[0;n] as follows: G(q) = ∑

n
k=0 gkq−k

with q−1 the backward shift operator such that q−1ut = ut−1.
ut and yt are not known. As depicted on Fig. 1, the unique
information about ut and yt is given by xt and zt as follows:
xt = QCu(ut + vu

t ), zt = QCy(yt + vy
t ) where vu

t and vy
t are

additive noises assumed to be wide sense stationary. QC(.)

is the operator such that QC(at) =

{
1 if at

σa
≥C

0 if at
σa

<C
where C

is a constant relative threshold which can be different from
zero and σ2

a = E {a2
t } is the variance of at . Thresholds Cu and

Cy can be chosen independently if needed, however we use
C =Cu =Cy in the following for simplicity of presentation
and without lose of generality.

Objective: The objective is, using N samples of {xt} and
{zt}, to estimate the parameter vector θ ∈ Rn+1 defined by

θ T =
(

g0 g1 · · · gn

)T
.

In this paper, we use the following notations: ρab(i) =
E {atbt−i} and ρab(i) =

ρab(i)
σaσb

are respectively the corre-
lation function of lag i between {at} and {bt} and the
normalized correlation function of lag i between {at} and
{bt}. The following assumptions complete the description
of the problem:

Assumption 1: ut is a stationary sequence with normal
distribution with a zero mean.
Assumption 2: vu

t and vy
t are zero mean white noises, with

known variances σ2
vu and σ2

vy , uncorrelated to each other
and uncorrelated with ut and yt .

G(q)

+

ut yt

xt

vut vyt

QC(.)

+

zt

QC(.)

Fig. 1. The considered linear system with binary measurements
on the input and the output.

Assumption 3: Variances σ2
u and σ2

y are known.

Remark 1 Assumption 3 is a normalization assumption.
Such a normalization assumption is usual in system identi-
fication using binary measurements on the output. This nor-
malization assumption can take several forms: knowledge of
the static gain for instance or knowledge of g0 or assump-
tion on θ such that ‖θ‖2 = 1.

3 Identification algorithm

3.1 Identification algorithm

It is well known that, if the input is a quasi-stationary se-
quence, then ρyu(i) = σu

σy
∑

n
k=0 gkρuu(i−k). It follows that it

is possible to estimate parameters {gk}k∈[0;n] if ρyu(i) and
ρuu(i) are known for i ∈ [0;n]. The main difficulty here is
the fact that samples of {ut} and {yt} are unknown and then
ρyu(i) and ρuu(i) can not been directly estimated. In order to
overcome this difficulty we propose the following three-step
algorithm.

3.1.1 Step 1: Estimation of ρzx(i) and ρxx(i)

Define ρ̂zx(i) the estimate of the correlation function ρzx(i)
and ρ̂xx(i) the estimate of the correlation function ρxx(i). Us-
ing N samples of {xt} and {zt} it is possible to express ρ̂zx(i)
and ρ̂xx(i) for i ≥ 0 as follows: ρ̂zx(i) = 1

N−i ∑
N
t=i+1 ztxt−i,

ρ̂xx(i) = 1
N−i ∑

N
t=i+1 xtxt−i.

3.1.2 Step 2: Estimation of ρyu(i) and ρuu(i)

Consider first ρzx(i). ρzx(i) can be written as ρzx(i) =

Pr

{
yt+vy

t
σy+vy ≥C,

ut−i+vu
t−i

σu+vu ≥C
}

where σu+vu =
√

σ2
u +σ2

vu

and σy+vy =
√

σ2
y +σ2

vy . It follows that ρzx(i) corre-

sponds to the proportion of points (yt + vy
t ;ut−i + vu

t−i)

such that yt+vy
t

σy+vy ≥ C and
ut−i+vu

t−i
σu+vu ≥ C. This proportion

depends on ρ(y+vy)(u+vu)(i). From the fact that {yt + vy
t }

and {ut + vu
t } are normally distributed then this pro-

portion, denoted PC
(
ρ(y+vy)(u+vu)(i)

)
in the following,

can be expressed as follows: PC
(
ρ(y+vy)(u+vu)(i)

)
=

2



1
2π

√
1−ρ(y+vy)(u+vu)(i)2

∫ +∞

C
∫ +∞

C ψ((yt +vy
t ),(ut−i+vu

t−i)) d(yt +

vy
t )d(ut−i + vu

t−i) where ψ((yt + vy
t ),(ut−i + vu

t−i)) is the
following function

ψ(yt ,ut−i)= e
−

(yt+vy
t )

2+(ut−i+vu
t−i)

2−2ρ(y+vy)(u+vu)(i)(yt+vy
t )(ut−i+vu

t−i)

2(1−ρ(y+vy)(u+vu)(i)
2) .

(1)
PC
(
ρ(y+vy)(u+vu)(i)

)
is a continuous monotone strictly in-

creasing function of ρ(y+vy)(u+vu)(i), it is then possible
to define the function P−1

C (.) such that P−1
C (PC (a)) = a.

Define ̂ρ(y+vy)(u+vu)(i) the estimate of the normalized
correlation ρ(y+vy)(u+vu)(i). The second step of the al-

gorithm consists in computing ̂ρ(y+vy)(u+vu)(i) from
̂ρ(y+vy)(u+vu)(i) = P−1

C

(
ρ̂zx(i)

)
. Currently, for C 6= 0, there is

no analytical expression for P−1
C (.), consequently in prac-

tice ̂ρ(y+vy)(u+vu)(i) is computed minimizing the criterion

̂ρ(y+vy)(u+vu)(i) = ARGMINρ(y+vy)(u+vu)(i)

∣∣∣̂ρzx(i)−PC

(
ρ(y+vy)(u+vu)(i)

)∣∣∣. (2)

Then ρ̂yu(i) can be computed as follows:

ρ̂yu(i) =
σy+vyσu+vu

σyσu
̂ρ(y+vy)(u+vu)(i). (3)

Similarly, ρxx(i) can be expressed using ρ(u+vu)(u+vu)(i).
̂ρ(u+vu)(u+vu)(i) can then be computed minimizing the crite-

rion

̂ρ(u+vu)(u+vu)(i) = ARGMINρ(u+vu)(u+vu)(i)

∣∣∣̂ρxx(i)−PC

(
ρ(u+vu)(u+vu)(i)

)∣∣∣. (4)

and then

ρ̂uu(i) =
σ2

u+vu

σ2
u

̂ρ(u+vu)(u+vu)(i)−
σ2

vu

σ2
u

δ (i). (5)

where δ (i) the discrete-time impulse function.

3.1.3 Step 3: Estimation of {gk}k∈[0;n]

Denote M(ρyu(i))∈ R(n+1)×(n+1) and N(ρuu(i))∈ Rn+1 as
follows:

M(ρuu(i)) =



1 ρuu(1) . . . ρuu(n)

ρuu(1) 1 . . . ρuu(n−1)

.

.

.
.
.
.

.

.

.
.
.
.

ρuu(n) ρuu(n−1) . . . 1


; N

(
ρyu(i)

)
=


ρyu(0)

ρyu(1)

· · ·

ρyu(n)

 . (6)

θ can be expressed as follows: N(ρyu(i)) = σu
σy

M(ρuu(i))θ .

The third step consists in computing the estimate θ̂N as
follows:

θ̂N =
σy

σu
M
(

ρ̂uu(i)
)−1

N
(

ρ̂yu(i)
)
. (7)

The proposed algorithm is summarized in Algorithm 1.
ρ̂zx(i), ρ̂xx(i), ρ̂yu(i) and ρ̂uu(i) depend on N. For the sake
of simplicity, we omit this dependence on N in the notation.

Algorithm 1.
input: n, {xt}t∈[1;N], {zt}t∈[1;N]

1- Compute ρ̂zx(i) and ρ̂xx(i).
2- Compute ̂ρ(y+vy)(u+vu)(i) and ̂ρ(u+vu)(u+vu)(i) from (2) and

(4) and then compute ρ̂yu(i) and ρ̂uu(i) from (3) and (5).
3- Compute θ̂N from (7).

Table 1
Algorithm 1: a batch algorithm using {xt}t∈[1;N] and {zt}t∈[1;N]

Remark 2 For C = 0, from a result presented in [12], it can
be shown that ρ(u+vu)(u+vu)(i) = cos(π (1−2ρxx(i))).

3.2 Analysis and comments

An analysis of the asymptotical behavior of Algorithm 1 is
proposed in this section. Theorem 1 below shows that the
proposed algorithm is asymptotically unbiased.

Theorem 1 Consider assumptions of section 2. Algorithm
1 is such that

lim
N→∞

θ̂N = θ . (8)

The proof of this theorem is given in appendix A. We now
present some theorems in order to characterize asymptot-
ically the estimate θ̂N . Theorem 2 below establishes the
asymptotic variance of ρ̂zx(i) and ρ̂xx(i).

Theorem 2 Consider assumptions of section 2. Denote
ρ̂zx

T
=
(

ρ̂zx(0) · · · ρ̂zx(n)
)

and ρ̂xx
T
=
(

ρ̂xx(1) · · · ρ̂xx(n)
)
.

• The asymptotic distribution of ρ̂zx is N
(
ρzx,

1
N Σzx

)
where

Σzx denotes a (n+ 1)× (n+ 1) matrix. The element at
the (i+1)th line and ( j+1)th column, with i ∈ [0,n] and
j ∈ [0,n], is denoted σ

zx
i, j and defined by

σ
zx
i, j =

∞

∑
h=−∞

(
E
{

zt xt−izt+hxt+h− j
}
−E {zt xt−i}E

{
zt xt− j

})
. (9)

• The asymptotic distribution of ρ̂xx is N
(
ρxx,

1
N Σxx

)
where

Σxx denotes a n×n matrix. The element at the ith line and
jth column, with i ∈ [1,n] and j ∈ [1,n], is denoted σ xx

i, j
and defined by

σ
xx
i, j =

∞

∑
h=−∞

(
E
{

xt xt−ixt+hxt+h− j
}
−E {xt xt−i}E

{
xt xt− j

})
. (10)

• The covariance of ρ̂zx and ρ̂xx is 1
N Σ

zx/xx
i, j , a (n+ 1)× n

matrix. The element at the (i+1)th line and jth column,

3



with i ∈ [0,n] and j ∈ [1,n], is denoted σ
zx/xx
i, j and defined

by
σ

zx/xx
i, j =

∞

∑
h=−∞

(
E
{

zt xt−ixt+hxt+h− j
}
−E {zt xt−i}E

{
xt xt− j

})
. (11)

The proof of this theorem is given in appendix B. Let us no-
tice that E

{
ztxt−izt+hxt+h− j

}
= Pr{ yt+vy

t
σy+vy ≥ C,

ut−i+vu
t−i

σu+vu ≥

C,
yt+h+vy

t+h
σy+vy ≥C,

ut+h− j+vu
t+h− j

σu+vu ≥C} can be expressed with a

quadruple integral using ρ(y+vy)(u+vu)(i) and ρ(u+vu)(u+vu)(i)
for different lags i. It follows that Σzx can be computed if
the previous correlation function are known. The same ap-
plies for Σxx and Σzx/xx. Theorem 3 below focuses on the
asymptotic variance of ρ̂yu(i) and ρ̂uu(i).

Theorem 3 Consider assumptions of section 2. Denote

ρ̂yu
T
=
(

ρ̂yu(0) · · · ρ̂yu(n)
)

, ρ̂uu
T
=
(

ρ̂uu(1) · · · ρ̂uu(n)
)

and P−1′
C (a) = dP−1

C (a)
da .

• The asymptotic distribution of ρ̂yu is N
(
ρyu,

1
N Σyu

)
where

Σyu denotes a (n+ 1)× (n+ 1) matrix. The element at
the (i+1)th line and ( j+1)th column, with i ∈ [0,n] and
j ∈ [0,n], is denoted σ

yu
i, j and defined by

σ
yu
i, j =

σ2
y+vy σ2

u+vu

σ2
y σ2

u

(
P−1′

C (ρzx(i))
)

σ
zx
i, j

(
P−1′

C (ρzx( j))
)
. (12)

• The asymptotic distribution of ρ̂uu is N
(
ρuu,

1
N Σuu

)
where Σuu denotes a n× n matrix. The element at the
ith line and jth column, with i ∈ [1,n] and j ∈ [1,n], is
denoted σuu

i, j and defined by

σ
uu
i, j =

σ4
u+vu

σ4
u

(
P−1′

C (ρxx(i))
)

σ
xx
i, j

(
P−1′

C (ρxx( j))
)
. (13)

• The covariance of ρ̂yu and ρ̂uu is 1
N Σ

yu/uu
i, j , a (n+ 1)× n

matrix. The element at the (i+1)th line and jth column,
with i∈ [0,n] and j ∈ [1,n], is denoted σ

yu/uu
i, j and defined

by
σ

yu/uu
i, j =

σy+vy σ3
u+vu

σyσ3
u

(
P−1′

C (ρzx(i))
)

σ
zx/xx
i, j

(
P−1′

C (ρxx( j))
)
. (14)

The proof of this theorem is given in appendix C. Theorem
4 below establishes the asymptotic variance of θ̂N .

Theorem 4 Consider assumptions of section 2. Algorithm 1
is such that the asymptotic distribution of θ̂N is N

(
θ , 1

N Σθ
)

where Σθ denotes the (n+1)× (n+1) matrix

Σθ = ∑i∈[0;n], j∈[0;n]

(
∂θ

∂ρyu(i)

)
σ

yu
i, j

(
∂θ

∂ρyu( j)

)T

+∑i∈[1;n], j∈[1;n]

(
∂θ

∂ρuu(i)

)
σuu

i, j

(
∂θ

∂ρuu( j)

)T

+∑i∈[0;n], j∈[1;n]

(
∂θ

∂ρyu(i)

)
σ

yu/uu
i, j

(
∂θ

∂ρuu( j)

)T

+∑i∈[1;n], j∈[0;n]

(
∂θ

∂ρuu(i)

)
σ

uu/yu
i, j

(
∂θ

∂ρyu( j)

)T

. (15)

The proof of this theorem is given in appendix D. Theorem
5 below provides the mean square convergence rate of Al-
gorithm 1.

Theorem 5 Consider assumptions of section 2. Defining
‖.‖2 as the norm 2, Algorithm 1 is such that

E
{
‖θ̂N−θ‖2

2

}
= O

(
1
N

)
. (16)

The proof of this theorem is given in appendix E. Notice that
terms ∂θ

∂ρyu(i)
and ∂θ

∂ρuu(i)
in Theorem 4 can be analytically

evaluated with M(ρuu(i)), N(ρyu(i)) and θ . It is then pos-
sible to use these theorems so as to compute an a posteriori
estimate of the variance via the following process:

• Compute θ̂N with Algorithm 1.
• Compute σ

zx
i, j, σ xx

i, j and σ
zx/xx
i, j from (9), (10) and (11) using

̂ρ(y+vy)(u+vu)(i) and ̂ρ(u+vu)(u+vu)(i).

• Compute σ
yu
i, j , σuu

i, j and σ
yu/uu
i, j from (12), (13) and (14).

• Compute Σθ from (15) using θ̂N .

From these theorems we can conclude that:

• The asymptotic variance of θ̂N depends on N: the variance
is lower with a higher N.

• The asymptotic variance of θ̂N also depends on C and
this can be evaluated from (12), (13) and (14). It can be
shown that P−1′

C (ρzx(i)) = 1
P′C(ρyu(i))

with P
′
C(a) =

dPC(a)
da .

By depicting P
′
C (ρyu(i)) it can be seen that variance is

more important for high |C|.
• The asymptotic variance of θ̂N depends on the noise level.

This can be seen in (9), (10) and (11) from the fact that
σ

zx
i, j, σ xx

i, j and σ
zx/xx
i, j depends on σvy and σvu . It is quite

difficult to precisely interpret the impact of σvy and σvu .
Some numerical simulations proposed in section 4 show
that the variance increases for low Signal-to-Noise Ratio.

Remark 3 The estimation of θ and Σθ require the knowl-
edge of the variance of the noise, the input and the output.
About θ , this dependency justifies the normalization assump-
tion 3. About Σθ , the previous variances may significantly
influence the accuracy of the estimate of Σθ , especially since
it is often difficult to have precise values of these variances
in practical uses.

4 Numerical examples

This section provides some numerical results to illustrate
performance of the proposed method. Experimental data are
generated according to section 2. The system is the following
FIR system of order n = 3: G(q) = 0.8219+ 0.5011q−1 +

4
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Fig. 2. E = log10

(
‖θ −mean(θ̂N)‖

)
as a function of N and C.

N 400 800 1200 1600 2000

E (SNR=100dB) -3.09 -3.93 -4.52 -4.65 -4.98

E (SNR=5dB) -1.9 -2.90 -3.53 -4.02 -4.20
Table 2
E = log10

(
‖θ −mean(θ̂N)‖

)
as a function of N with C = 0, for

SNR= 100dB and SNR= 5dB.

0.2516q−2 + 0.1003q−3. The input sequence ut is a zero
mean random sequence with normal distribution and σu = 1.
Noises vu

t and vy
t are zero mean Gaussian random signal with

the same standard deviation chosen in order to test different
values of the Signal-to-Noise Ratio (SNR). In a first exper-
iment we investigate the influence of N. Two Monte Carlo
simulations, for C = 0 and C = 1.5, are carried out with
100 runs, vu

t = vy
t = 0 and for N from 500 to 10000. Per-

formance of the algorithm is evaluated by means of the size
of the parameter error vector E = log10

(
‖θ −mean(θ̂N)‖

)
.

Fig. 2 left presents E as a function of N. It appears that
performance increases for high N and depends on C. In a
second experiment we investigate the influence of C. Two
Monte Carlo simulations are carried out with 100 runs for
N = 50000 and N = 100000, in both cases with vu

t = vy
t = 0.

Fig. 2 right presents E as a function of C. It appears that
performance degrades for high |C|. In a third experiment we
investigate the influence of SNR. Two Monte Carlo simu-
lations, for SNR= 100dB and SNR= 5dB, are carried out
with 100 runs and for N from 200 to 2000. The threshold is
C = 0. Tab. 2 presents E as a function of N. These results
show that: (1-) the proposed algorithm is asymptotically un-
biased in presence of noise, (2-) the proposed algorithm has
better performance for high SNR. About the variance, Fig.
3 presents, without and with noise, the experimental value
of N ∑i∈[1;n] σ

2
θ̂N(i)

as a function of C and its theorical value

obtained with Theorem 4, i.e. trace
(
Σθ
)
. The correspon-

dence between experimental and theorical results confirms
analysis of subsection 3.2.

5 Conclusion and Future work

In this paper we have proposed an identification algorithm
for FIR systems using binary measurements both on the in-
put and the output. The proposed algorithm is an offline
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Fig. 3. V = N ∑i∈[1;n] σ
2
θ̂N(i)

as a function of C for N = 50000 and

N = 100000 without and with noise.

algorithm. It is organized as follows: first, the correlation
function of the input and the correlation function between
the input and the output are estimated. Second, the parame-
ters of the model are computed. The proposed algorithm is
shown to be asymptotically unbiased. Simulation results are
included to validate the proposed identification algorithm
and to confirm the variance analysis. Some first extensions
of the algorithm can be the following: the proposition of an
online version of the algorithm, the extension to IIR sys-
tems, the extension to other distribution on the input signal.

A Proof of Theorem 1

From the fact that ut , vu
t and vy

t are stationary sequences,
xt and zt are also stationary sequences. It follows that
for all i we have limN→∞ ρ̂xx(i) = E {xtxt−i} = ρxx(i) and
limN→∞ ρ̂zx(i) = E {ztxt−i}= ρzx(i) which means that ρ̂xx(i)
is an asymptotically unbiased estimation of ρxx(i) and ρ̂zx(i)
is an asymptotically unbiased estimation of ρzx(i) for all i.
ρ̂uu(i) and ρ̂yu(i) are directly computed from P−1

C

(
ρ̂xx(i)

)
and P−1

C

(
ρ̂zx(i)

)
. P−1

C (.) is a continuous function, it fol-
lows limN→∞ ρ̂uu(i) = ρuu(i) and limN→∞ ρ̂yu(i) = ρyu(i).,

then we have limN→∞ M
(

ρ̂uu(i)
)

= M(ρuu(i)) and

limN→∞ N
(

ρ̂yu(i)
)
= N(ρyu(i)). It follows from (7) that θ̂N

satisfies limN→∞ θ̂N = θ which concludes the proof.

B Proof of Theorem 2

From proof of Theorem 1 the estimation of ρzx is asymptot-
ically unbiased. The covariance on the estimate ρ̂zx is a (n+
1)×(n+1) matrix. In this matrix, the element at the (i+1)th

line and ( j+1)th column is denoted Covzx(i, j) and is defined
by Covzx(i, j) = E

{(
ρ̂zx(i)−ρzx(i)

)(
ρ̂zx( j)−ρzx( j)

)}
. We

have

Covzx(i, j)= 1
(N−i)(N− j) ∑

N
t=i+1 ∑

N
t′= j+1

(
E
{

zt xt−izt′ xt′− j

}
−ρzx(i)ρzx( j)

)
(B.1)

From [4] we have asymptotically

limN→∞ NCovzx(i, j)=∑
∞
h=−∞(E{zt xt−izt+hxt+h− j}−ρzx(i)ρzx( j)) (B.2)
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The asymptotic covariance on the estimate ρ̂zx is then a
matrix 1

N Σzx where Σzx is a matrix with elements σ
zx
i, j given

by (9). Similarly, it is possible to characterize the asymptotic
distribution of ρ̂xx and the covariance between ρ̂zx and ρ̂xx.

C Proof of Theorem 3

From proof of Theorem 1 the estimation of ρyu is asymp-
totically unbiased. ρ̂yu(i) is computed from ρ̂yu(i) =
σy+vy σu+vu

σyσu
P−1

C

(
ρ̂zx(i)

)
where P−1

C (.) is continuously differ-

entiable. Using a first order Taylor approximation on P−1
C (.)

it follows that the asymptotic covariance of ρ̂yu is a (n+1)×
(n+1) matrix where the (i+1)th line and ( j+1)th column
corresponds to E

{(
ρ̂yu(i)−ρyu(i)

)(
ρ̂yu( j)−ρyu( j)

)}
=

1
N

σ2
y+vy σ2

u+vu

σ2
y σ2

u
(P−1′

C (ρzx(i)))σ zx
i, j(P

−1′
C (ρzx( j))). Similarly, it is

possible to characterize the asymptotic distribution of ρ̂uu

and the covariance between ρ̂yu and ρ̂uu.

D Proof of Theorem 4

From Theorem 1 the estimation of θ is asymptoti-
cally unbiased. Moreover θ̂N is computed with θ̂N =
σy
σu

M
(

ρ̂uu(i)
)−1

N
(

ρ̂yu(i)
)

. From the fact that θ is a con-
tinuous differentiable function of ρyu and ρuu, it follows
from Taylor’s theorem that θ̂N−θ can be written has

θ̂N−θ= ∑i∈[0;n]

(
∂θ

∂ρyu(i)

)(
ρ̂yu(i)−ρyu(i)

)
+∑i∈[1;n]

(
∂θ

∂ρuu(i)

)(
ρ̂uu(i)−ρuu(i)

)
+‖ρ̂−ρ‖22ε(ρ̂−ρ)

(D.1)
where ρ

T =
(

ρyu
T

ρuu
T
)
∈R2n+1, ‖.‖2 is the norm 2 and

ε(.) a function from R2n+1 to Rn+1 such that limρ→∞ ε(ρ) =

0. From Theorem 3 we know E
{(

ρ̂yu(i)−ρyu(i)
)(

ρ̂yu( j)−ρyu( j)
)}

,
E
{(

ρ̂uu(i)−ρuu(i)
)(

ρ̂uu( j)−ρuu( j)
)}

, E
{(

ρ̂yu(i)−ρyu(i)
)(

ρ̂uu( j)−ρuu( j)
)}

and E
{(

ρ̂uu(i)−ρuu(i)
)(

ρ̂yu( j)−ρyu( j)
)}

. Moreover, from the

proof of Theorem 1 we have limN→∞ ρ̂ = ρ , it follows that

E

{(
θ̂N−θ

)(
θ̂N−θ

)T
}
= 1

N Σθ with

Σθ= ∑i∈[0;n], j∈[0;n]

(
∂θ

∂ρyu(i)

)
σ

yu
i, j

(
∂θ

∂ρyu( j)

)T

+∑i∈[1;n], j∈[1;n]

(
∂θ

∂ρuu(i)

)
σuu

i, j

(
∂θ

∂ρuu( j)

)T

+∑i∈[0;n], j∈[1;n]

(
∂θ

∂ρyu(i)

)
σ

yu/uu
i, j

(
∂θ

∂ρuu( j)

)T

+∑i∈[1;n], j∈[0;n]

(
∂θ

∂ρuu(i)

)
σ

uu/yu
i, j

(
∂θ

∂ρyu( j)

)T

(D.2)

where σ
yu
i, j , σuu

i, j , σ
yu/uu
i, j and σ

uu/yu
i, j are given in Theorem 3.

E Proof of Theorem 5

Theorem 5 is a consequence of Theorem 4. From Theorem 4

we have E

{(
θ̂N−θ

)(
θ̂N−θ

)T
}
= 1

N Σθ . It follows that

E
{
‖θ̂N−θ‖2

2

}
= 1

N trace(Σθ ). This gives (16).
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