C. S. Chim, S. K. Kumar, R. Z. Orlowski, G. Cook, P. G. Richardson et al., Management of relapsed and refractory multiple myeloma: Novel agents, antibodies, immunotherapies and beyond, Leukemia, vol.32, pp.252-262, 2018.

S. Gandolfi, J. P. Laubach, T. Hideshima, D. Chauhan, K. C. Anderson et al., The proteasome and proteasome inhibitors in multiple myeloma, Cancer Metastasis Rev, vol.36, pp.561-584, 2017.

T. A. Grigoreva, V. G. Tribulovich, A. V. Garabadzhiu, G. Melino, and N. A. Barlev, The 26S proteasome is a multifaceted target for anti-cancer therapies, Oncotarget, vol.6, pp.24733-24749, 2015.

C. Röllig, S. Knop, M. Bornhäuser, . Multiple, and . Myeloma, Lancet, vol.385, issue.14, pp.60493-60494, 2015.

C. T. Wallington-beddoe, M. Sobieraj-teague, B. J. Kuss, and S. M. Pitson, Resistance to proteasome inhibitors and other targeted therapies in myeloma, Br. J. Haematol, vol.182, pp.11-28, 2018.

S. Barrio, T. Stühmer, M. Da-viá, C. Barrio-garcia, N. Lehners et al., Spectrum and functional validation of PSMB5 mutations in multiple myeloma, Leukemia, vol.33, pp.447-456, 2018.

D. Acosta-alvear, M. Y. Cho, T. Wild, T. J. Buchholz, A. G. Lerner et al., Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits, vol.4, p.8153, 2015.

P. Tsvetkov, M. L. Mendillo, J. Zhao, J. E. Carette, P. H. Merrill et al., , p.8467

L. Catley, E. Weisberg, T. Kiziltepe, Y. T. Tai, T. Hideshima et al., Aggresome induction by proteasome inhibitor bortezomib and ?-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells, Blood, vol.108, pp.3441-3449, 2006.

N. Nikesitch, J. M. Lee, S. Ling, and T. L. Roberts, Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance, Clin. Transl. Immunol, 1007.

T. S. Hawley, I. Riz, W. Yang, Y. Wakabayashi, L. Depalma et al., Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1, Am. J. Hematol, vol.88, pp.265-272, 2013.

D. Dytfeld, M. Luczak, T. Wrobel, L. Usnarska-zubkiewicz, K. Brzezniakiewicz et al., Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy, Oncotarget, vol.7, pp.56726-56736, 2016.

S. Bustany, J. Bourgeais, G. Tchakarska, S. Body, O. Hérault et al., Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells, Oncotarget, vol.7, pp.45214-45224, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01762004

B. Bustany, J. Cahu, P. Guardiola, and B. Sola, Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway, BMC Cancer, vol.15, 2015.

A. Goel, D. R. Spitz, and G. J. Weiner, Manipulation of cellular redox parameters for improving therapeutic responses in B-cell lymphoma and multiple myeloma, J. Cell Biochem, vol.113, pp.419-425, 2012.

Y. H. Huang, O. Molavi, A. Alshareef, M. Haque, Q. Wang et al., Constitutive activation of STAT3 in myeloma cells cultured in a threedimensional, reconstructed bone marrow model, Cancers, vol.10, p.206, 2018.

S. V. Rajkumar, Multiple myeloma : 2016 update on diagnosis, risk-stratification and management, Am. J. Hematol, vol.91, pp.719-734, 2016.

S. Surget, D. Chiron, P. Gomez-bougie, G. Descamps, E. Ménoret et al., Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells, Cancer Res, vol.72, pp.4562-4573, 2012.

T. C. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method, Cancer Res, vol.70, pp.440-446, 2010.

S. Body, A. Esteve-arenys, H. Miloudi, C. Recasens-zorzo, G. Tchakarska et al., Cytoplasmic cyclin D1 controls the migration and invasiveness of mantle lymphoma cells, Sci. Rep, vol.7, p.13946, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01725070

F. Zhan, Y. Huang, S. Colla, J. P. Stewart, I. Hanamura et al., The molecular classification of multiple myeloma, Blood, vol.108, pp.2020-2028, 2006.

P. V. Raninga, G. Di-trapani, S. Vuckovic, M. Bhatia, and K. F. Tonissen, Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma, Oncotarget, vol.6, pp.15410-15424, 2015.

Z. Zheng, S. Fan, J. Zheng, W. Huang, C. Gasparetto et al., Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma, J. Hematol. Oncol, vol.11, p.29, 2018.

W. Fiskus, N. Saba, M. Shen, M. Ghias, J. Liu et al., Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia, Cancer Res, vol.74, pp.2520-2532, 2014.

J. Wang, J. Wang, E. Lopez, H. Guo, H. Zhang et al., Repurposing auranofin to treat TP53-mutated or PTEN-deleted refractory B-cell lymphoma, Blood Cancer J, vol.9, p.95, 2019.

P. V. Raninga, G. Di-trapani, S. Vuckovic, and K. F. Tonissen, TrxR1 inhibition overcomes both hypoxiainduced and acquired bortezomib resistance in multiple myeloma through NF-?? inhibition, Cell Cycle, vol.5, pp.559-572, 2016.

B. Tessoulin, G. Descamps, C. Dousset, and M. Amiot, Pellat-Deceunynck, C. Targeting oxidative stress with auranofin or Prima-1 Met to circumvent p53 or Bax/Bak deficiency in myeloma cells, Front. Oncol, vol.9, p.128, 2019.

R. R. Nair, M. F. Emmons, A. E. Cress, R. F. Argilagos, K. ;. Lam et al., HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells, Mol. Cancer Ther, vol.8, pp.2441-2451, 2009.

A. S. Michallet, P. Mondiere, M. Taillardet, Y. Leverrier, L. Genestier et al., Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells, PLoS ONE, 2011.

H. Sies and D. P. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol, vol.2020, pp.363-383

S. V. Rajkumar, Multiple myeloma: 2020 updtate on diagnosis, risk-stratification and management, Am. J. Hematol, vol.2020, pp.548-567

S. Nerini-molteni, M. Ferrarini, S. Cozza, F. Caligaris-cappio, and R. Sitia, Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib, Br. J. Haematol, vol.141, pp.494-503, 2008.

J. D. Lambeth and A. S. Neish, Nox enzymes and new thinking on reactive oxygen: A double-edged sword revisited, Ann. Rev. Pathol, vol.9, pp.119-145, 2014.

K. H. Shain, W. S. Dalton, and J. Tao, The tumor microenvironment shapes hallmarks of mature B-cell malignancies, Oncogene, vol.34, pp.4673-4682, 2015.

B. Tessoulin, M. Eveillard, A. Lok, D. Chiron, P. Moreau et al., Pellat-Deceunynck, C. p53 dysregulation in B-cell malignancies: More than a single gene in the pathway to hell, Blood Rev, vol.31, pp.251-259, 2017.

K. Salem, M. L. Mccormick, E. Wendlandt, F. Zhan, and A. Goel, Copper-zinc superoxide dismutasemediated redox regulation of bortezomib resistance in multiple myeloma, Redox Biol, vol.4, pp.23-33, 2015.

T. W. Kim, S. J. Lee, J. T. Kim, S. J. Kim, J. K. Min et al., Kallikrein-related peptidase 6 induces chemotherapeutic resistance by attenuating auranofin-induced cell death through activation of autophagy in gastric cancer, Oncotarget, vol.7, pp.85332-85348, 2016.

B. M. Oh, S. J. Lee, H. J. Cho, Y. S. Park, J. T. Kim et al., Cystatin SN inhibits auranofin-induced cell death by autophagic induction and ROS regulation via glutathione reductase activity in colorectal cancer, Cell Death Dis, 2017.

F. Radenkovic, O. Holland, J. J. Vanderlelie, and A. V. Perkins, Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation, Biochem. Pharmacol, vol.146, pp.42-52, 2017.

C. Gourzones, C. Bellanger, S. Lamure, O. G. Gadacha, E. Garcia-de-paco et al., Antioxidant defenses confer resistance to high dose melphalan in multiple myeloma cells, Cancers, vol.11, p.439, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02870153

M. Gonzalez-santamarta, G. Quinet, D. Reyes-garau, B. Sola, G. Roué et al., Resistance to the proteasome inhibitors: Lessons from multiple myeloma and mantle cell lymphoma, Proteostasis and Disease
URL : https://hal.archives-ouvertes.fr/hal-02971497

R. Barrio, J. D. Sutherland, M. S. Rodriguez, . Eds, and A. G. Springer-nature-switzerland, , vol.1233, pp.153-174

Q. Li, Y. Yue, L. Chen, C. Xu, Y. Wang et al., Resveratrol sensitizes carfilzomib-induced apoptosis via promoting oxidative stress in multiple myeloma cells, Front. Pharmacol, vol.9, p.334, 2018.