U. N. Unicef, ). , W. H. , ]. , and W. B. , Levels and Trends in Child Malnutrition, 2018.

T. Khara, M. Mwangome, M. Ngari, and C. Dolan, Children concurrently wasted and stunted: A meta-analysis of prevalence data of children 6-59 months from 84 countries, Matern. Child Nutr, vol.14, p.12516, 2018.

H. Liu, Association of famine exposure with the risk of type 2 diabetes: A meta-analysis, Clin. Nutr, 2019.

J. H. Humphrey, Child undernutrition, tropical enteropathy, toilets, and handwashing, Lancet, vol.374, pp.1032-1035, 2009.

S. Budge, A. H. Parker, P. T. Hutchings, and C. Garbutt, Environmental enteric dysfunction and child stunting, Nutr. Rev, vol.77, pp.240-253, 2019.

J. Mayneris-perxachs, Protein-and zinc-deficient diets modulate the murine microbiome and metabolic phenotype, Am. J. Clin. Nutr, vol.104, pp.1253-1262, 2016.

L. A. Bartelt, D. T. Bolick, and R. L. Guerrant, Disentangling microbial mediators of malnutrition: Modeling environmental enteric dysfunction, Cell. Mol. Gastroenterol. Hepatol, vol.7, pp.692-707, 2019.

E. Salameh, F. B. Morel, M. Zeilani, P. Déchelotte, and R. Marion-letellier, Animal models of undernutrition and enteropathy as tools for assessment of nutritional intervention, Nutrients, vol.11, p.2233, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02470400

E. M. Brown, Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model, Nat. Commun, vol.6, p.7806, 2015.

J. Eyzaguirre-velasquez, Protein malnutrition during juvenile age increases ileal and colonic permeability in the rat, J. Pediatr. Gastroenterol. Nutr, vol.00, pp.1-7, 2016.

L. A. Bartelt, Cryptosporidium priming is more effective than vaccine for protection against cryptosporidiosis in a murine protein malnutrition model, PLoS Negl. Trop. Dis, vol.10, pp.1-29, 2016.

I. N. Núñez, Effect of a probiotic fermented milk on the thymus in Balb/c mice under non-severe protein-energy malnutrition, Br. J. Nutr, vol.110, pp.500-508, 2013.

B. P. Coutinho, Cryptospordium infection causes undernutrition and conversly, weanling undernutrition intensifies infection, J. Parasitol, vol.94, pp.1225-1232, 2008.

L. A. Bartelt, Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli, PLoS Pathog, vol.13, p.1006471, 2017.

D. I. Campbell, M. Elia, and P. G. Lunn, Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation, J. Nutr, vol.133, pp.1332-1338, 2003.

J. M. Lauer, Biomarkers of maternal environmental enteric dysfunction are associated with shorter gestation and reduced length in newborn infants in Uganda, Am. J. Clin. Nutr, vol.108, pp.889-896, 2018.

C. M. Mcdonald, Elevations in serum anti-flagellin and anti-LPS Igs are related to growth faltering in young Tanzanian children, Am. J. Clin. Nutr, vol.103, pp.1548-1554, 2016.

M. Nighot, Lipopolysaccharide-induced increase in intestinal permeability is mediated by TAK-1 activation of IKK and MLCK/MYLK gene, Am. J. Pathol, vol.189, pp.797-812, 2019.

Y. Han, Mitigation of indomethacin-induced gastrointestinal damages in fat-1 transgenic mice via gate-keeper action of $ømega$-3-polyunsaturated fatty acids, Sci. Rep, vol.6, p.33992, 2016.

C. M. Whitfield-cargile, The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy, Gut Microbes, vol.7, pp.246-261, 2016.

, Scientific RepoRtS |, vol.10, p.15581, 2020.

T. S. De-carvalho, Neuroprotection induced by energy and protein-energy undernutrition is phase-dependent after focal cerebral ischemia in mice, Transl. Stroke Res, vol.11, pp.135-146, 2020.

B. Savenije, J. Strubbe, and M. Ritshes-hoitinga, Nutrition, feeding and animal welfare, Care Manag. Lab. Other Res. Anim, pp.183-193, 2010.

S. Guo, R. Al-sadi, H. M. Said, and T. Y. Ma, Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14, Am. J. Pathol, vol.182, pp.375-387, 2013.

T. R. Neyestani, W. D. Woodward, and L. Hillyer, Serum levels of Th2-type immunoglobulins are increased in weanling mice subjected to acute wasting protein-energy malnutrition, Iran J. Allergy Asthma Immunol, vol.3, pp.1-6, 2004.

N. M. Grissom, R. George, and T. M. Reyes, Suboptimal nutrition in early life affects the inflammatory gene expression profile and behavioral responses to stressors, Brain Behav. Immun, vol.63, pp.115-126, 2017.

S. Horibe, T. Tanahashi, S. Kawauchi, S. Mizuno, and Y. Rikitake, Preventative effects of sodium alginate on indomethacin-induced small-intestinal injury in mice, Int. J. Med. Sci, vol.13, pp.653-663, 2016.

K. Narimatsu, Toll-like receptor (TLR) 2 agonists ameliorate indomethacin-induced murine ileitis by suppressing the TLR4 signaling, J. Gastroenterol. Hepatol, vol.30, pp.1610-1617, 2015.

M. Jacob, R. Foster, G. Sigthorsson, R. Simpson, and I. Bjarnason, Role of bile in pathogenesis of indomethacin-induced enteropathy, Arch. Toxicol, vol.81, pp.291-298, 2007.

X. Xiao, Gut microbiota mediates protection against enteropathy induced by indomethacin, Sci. Rep, vol.7, p.40317, 2017.

D. Clough, O. Prykhodko, L. Ra, and L. Ra, Effects of protein malnutrition on tolerance to helminth infection, 2016.

M. Kumar, Increased intestinal permeability exacerbates sepsis through reduced hepatic SCD-1 activity and dysregulated iron recycling, Nat. Commun, vol.11, p.483, 2020.

M. Vancamelbeke and S. Vermeire, The intestinal barrier: A fundamental role in health and disease, Expert Rev. Gastroenterol. Hepatol, vol.11, pp.821-834, 2017.

C. L'huillier, Glutamine, but not branched-chain amino acids, restores intestinal barrier function during activity-based anorexia, Nutrients, vol.11, p.1348, 2019.

P. Fança-berthon, Intrauterine growth restriction alters postnatal colonic barrier maturation in rats, Pediatr. Res, vol.66, pp.47-52, 2009.

A. Lan, High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon, J. Nutr. Biochem, vol.26, pp.91-98, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535233

A. Harusato, Inhibition of Bach1 ameliorates indomethacin-induced intestinal injury in mice, J. Physiol. Pharmacol, vol.60, issue.7, pp.149-154, 2009.

L. B. Costa, Cryptosporidium-malnutrition interactions: Mucosal disruption, cytokines, and TLR signaling in a weaned murine model, J. Parasitol, vol.97, pp.1113-1120, 2011.

M. Ilahi, J. Khan, Q. Inayat, and T. S. Abidi, Histological changes in parts of foregut of rat after indomethacin administration, J. Ayub. Med. Coll. Abbottabad, vol.18, pp.29-34, 2006.

A. T. Merchant, Water and sanitation associated with improved child growth, Eur. J. Clin. Nutr, vol.57, pp.1562-1568, 2003.

C. M. George, Enteric infections in young children are associated with environmental enteropathy and impaired growth, Trop. Med. Int. Health, vol.23, pp.26-33, 2018.

B. S. Ramakrishna, S. Venkataraman, and A. Mukhopadhya, Tropical malabsorption, Postgrad. Med. J, vol.82, pp.779-787, 2006.

N. Sugimura, High-fat diet-mediated dysbiosis exacerbates NSAID-induced small intestinal damage through the induction of interleukin-17A, Sci. Rep, vol.9, p.16796, 2019.

Y. Nadatani, Gastric acid inhibitor aggravates indomethacin-induced small intestinal injury via reducing Lactobacillus johnsonii, Sci. Rep, vol.9, p.17490, 2019.

A. M. El-lekawy, D. M. Abdallah, and H. S. El-abhar, Alanyl-glutamine heals indomethacin-induced gastric ulceration in rats via antisecretory and anti-apoptotic mechanisms, J. Pediatr. Gastroenterol. Nutr, vol.69, pp.710-718, 2019.

K. D. Tickell, H. E. Atlas, and J. L. Walson, Environmental enteric dysfunction: A review of potential mechanisms, consequences and management strategies, BMC Med, vol.17, p.181, 2019.

T. Liu, A novel histological index for evaluation of environmental enteric dysfunction identifies geographic-specific features of enteropathy among children with suboptimal growth, PLoS Negl. Trop. Dis, vol.14, p.7975, 2020.

E. Salameh, Chronic colitis-induced visceral pain is associated with increased anxiety during quiescent phase, Am. J. Physiol. Gastrointest. Liver Physiol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02324733

C. Charpentier, Dietary n-3 PUFA may attenuate experimental colitis, Mediators Inflamm, p.8430614, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02315973

C. Melchior, Magnetic resonance colonography for fibrosis assessment in rats with chronic colitis, PLoS ONE, vol.9, p.100921, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01141072