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Abstract

Amongaginginduced impairments, thos 2 affectioggnitive functions certainly represent
one the mosmajor challengeto face t=.mp ave elderly quality of life. In last decades, our
knowledge on changes in the morpho.>gy and function of neuronal netasskgiatedwvith
normal andpathological brain acin, Pas rapidly progressednitiating the development of
different pharmacolgical andk =haviaral strategiedo alleviate cognitiveaging In particular,
experimental evidences ha.= accumulated indicatiagthe communication between neurons
and its plasticity gradi'ally weakemgth aging Because of its pivotal role for brain functional
plasticity, he N-Methvl p-Aspartate receptor subtypof glutamate receptors (NMDAmas
gatheedmuch of the experimental intereBiMDAr activationis regulatedoy many mechanisms.
Among is the mandatorybinding of a ceagonist such ashe amino acid-sering in order to
activate NMDAr This minkreview presentthe most recent information indicatihgw D-serine
could contribute tomechanism®f physiologicalcognitiveagingandalso considers thelivergent

viewsrelative ofthe role of theNMDAr co DJRQLVW LQ $O]KHLPHUYV GLVHDVH
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1. Introduction

Beyond increasing life expectancy, improving health status of elderly is now one of
the mostF X UUHQW LPSRUWDQW FKDOOHQJH WHRg IDFRIFHY VWK R TI
Aging is a natural biological procesisataffects the entire bodyotably, while affecting the
brain cognitive declineand especiallymemory process alt. “atiors, would play apivotal
rolein thepoorquality of life of elders

Although initially associated with neuronal loss, unde. nin’iing mechanisbraia agingstill
remaindebated depite an extensive literatufg-5]. 7:ris maybe relatal in part to limits of
the initial stereological methds used to estimate .'e neuronal den@t§]. To date, the
theory that prevails does not consider t'ie cecraéaseells number as a hallmark of
physiologich aging but rather toits pathaicqical aspect such as Alzheimer disg#de)

affording neuronal and synaptic los$&S. 3-11].

Essential relay in the formation of mcny types of memory trabesippocampal formation
has beemparticularly studiegbothin 1rmans and animaJ&2-15]. Hence, in rodentfl6, 17]
adecreased ability to conso'iacte letggym memoryhas beerinked to aweaker capacity to
express longerm potentiatic (_TP) of synaptic transmissioaviewed in[18]). Besides, a
rapid decay of hippocz."na LTRas correlatedto poor spatial memoryperformancesn
aging rats, which prouwolycontributes tothe increased propensity to forget spatial
information [19]. Ove.dll, agenduced decreasén synaptic plasticity efficiency would
impaired capacity to encode and/or consolidate new memories and would fmertin
responsible for loss of prexisting one$20-22]. Thesesynapticfunctionalalterationsand the
subsequent cognitive deficitieave beerlinked in partto a progressivederegulationof the
activation of NMDA receptos (NMDAr). NMDAr is a subtype of glutamate receptors
generally views as criticab drive synaptic plasticity in many brain ar¢23-26]. In addition

to glutamate, NMDAr activation requires the binding of a -agonist atits specific site
Initially attributed to glycing27-29], subsequent studies showtbdt D-serine could also play
this role. Indeedboth the specific degradation of the amino aciddbine by the enzyme-D

amino acid oxidase (DAAQB0] and the genetic deletion @6 synthesizing enzyme serine



racemase (SHB1, 32] significantly deredNMDAr activation. These resultbereforeed to
consider Dserine as the main endogenousagonist of synaptic NMDAr and further
experiments confirmed the pivotal role tfis amino acidin the regulation bfunctional

plasticity at many synapses throughout the brawi¢wed in[33]).



2. D-serine in physiologicalaging

Alterationsof functional plasticityassociatedwvith cognitive impairments observed across
agingnaturally raised the question for a role®fserine Thereafter, it was observed that a
supplementatiorwith the amino acidwas able to prevenageinduced deregulation of
NMDAr activation and to restordippocampalsynaptic plasticity[34-37]. Beyond the
decrease iINMDAT density (or its subunits) itially evoked[38-41], these promising results
rather argue for a pivotal role of-8erinein functional mechanms underlying cognitive
aging[42, 43]

The keneficial effect of @-serinesupplementatiorouldrefle ta significant decrease in-D
serine levels with agessupported in rodent hippocamg dsa /434-36]. Interestingly, this
decrease is alsimundin human plasma leve[d4]. Anche. explanation could have been a
decreaseén the degree oNMDAr saturation but autacliographicstudiesperformedin aged
rodents @ not revealchanges in thepecific affin..\/ o1 theco-agonistbinding site[34, 35,
45]. Besides, otheresults from preclinical invosugationmerformedin rodents indicate that
the decrease in Berine levelcould rely o:1a **2akerSR expressiorboth at protein and
messenger RNA levelf34-36], thougt. wt ether the actiwt of the D-serine synthesizing
enzyme is altered at the same tim@n.'ns to be determined®dn the other hand, the
expression ofhe catabolizing enz) %, AO is not affected inagedanimals,indicatingthat
an acceleration of the degrad=*o.. of the andonm does not contribute tthe agerelated
decrease in Berine level$34 36,. The synapticavailability of D-serine is also dependent on
the activity of the Asd suvL‘vpe of neutral amino acid transporters, which supploet
release of Bserine from, ncurongl6, 47] A recen investigation indicates thétsc-1 activity
remairedunchanged . thaginghippocampu$48]. Considering thamechanisms underlying
the degradation and releasé D-serineare not alteredn physiologicalaging alteratiors in
synthesigherefore appears as the criticaéchanismunderlying the ageelateddecrease of
the NMDAr coagonistavailability [42, 43]

The decrease in SR expressiand D-serine production possiblgesults from the
development othe oxidative stresgOS) that normally occurswith aging [49-52]. Indeed,
both deficitsdo not occuin the LOU/C ra{36], amodel of successfdgingcharacterized by
a highdegree ofesistance t®©S[53-56]. They are also prevented in aged animatgiving a
long-term treatnentwith thereducing compound {dcetytcysteinein whichthe extenbf OS
is minimized[57]. An increased oxidation of sulfydryl groups of f] and/or changes in its

dimer active conformatiofb9] may beviewed as possiblemechanisms underlyinthe age



relatedSR deregulation by OSnterestingly,agedLOU/C rats shownot orly intact synaptic
plasticity and NMDAr activation but alsg@reserved memory abilities [55, 56, 60]
Compelling all thee available functional andehaviaral datathereforeindicatesthat a
preservation of SR activity aralrobustsynapticavailability of D-serine in cerebral tissues is
essential to maintain potent cognitive capacities in physiologigaig (Figure 1) It is
interesting to note thahe impaired learning of olfactory conditioning in aged drosophila,
which also display decreasedderine levels, was reversed by feeding flies with the amino
acid [61]. Neverthelessa supplementation with 8erine to prevent memory deficits in aged
mammals has not been considered yet although treatment with the related agonist D
cycloserine is clearlpeneficid in agedrodents[62, 63] This ‘s presumablpecausdong
term treatment with Berine induced serious sidéects ne,»hre and hepatdoxicity notably

[64, 65]

3.D-serinein $O]KHLPHUYV GLVH"VH

Although our knowledge opathonhy ~iologicainechanisms underlying the onset and
development ofAlzheimer's disease (,' ¥ as increased exponentially these last decatdes
aetiologyis far from beingfully clan:*ad. Indeed, ADis complex and multifactorial, with a
notable overlap between familial ar.. sporadic fortlsssymptomatologyhas been associated
with a convoluted and multipkiec,>anismsincludng anincrease irthe productionof the -
amyloid $ S HS W lafi.mvateddvdcellulaly while also aggregates iextracellular
deposits and enhancednu ane uronalneurofibrils with hyperphosphorylated TAU protein
These typical features aae ~ompanied with gliosis argynaptotoxicitythat finally results in
neuroral lossand brain ¢ trophysee[66] for areview)

The NMDAr represents one of the most predominant extracellular tafiqesD-related
pathology. Indeed, even though still matter of debates, impairments of NMDAr are viasved
core pathophysiological mechaniswisthe diseasg7-69]. Whereassynaptic glutamate loss
of availability is known to contribute to patholo§§0, 71] changs in D-serine levelsand

putativeunderlyingprocesses remaso farsubject of controversial views.

Thefirst link between Bserine and AD amefrom biochemicalnvestigations. Indeed,
either cerebrospinal fluid (CSF) or plasma changesnino acid levels were observed in AD
patierts [72-80]. Unfortunately divergentresults appear from one study to another, regarding

themagnitude but alsthedirection of these changéablel). One possibility to account for



the dscrepanciexould be foundon the Braak stag of the patientssampledsince D-serine

levels are thought to progressively increase in the CSF acrossotiressiorof the pathology

[78]. Further,increasedexpression ofthe D-serine synthetizing enzyme was found in the
hippocampus of Braak stage-IN AD patients[81]. However,a significantrise of the ce
agonistin the pathophysiology of the diseasasbeen questiced by a subsequeranalysis

but the Braak stage this studywas notclearly defined[72]. Finally, LWV ZRUWK PHQWL
that an increase level of extracellular transcript of the phosphoglycerate dehydrogenase
(PHGDH) was recently reporteih subjects at presymptomatic stage, i.e. before being
diagnosed AD[82]. PHGDH atalyzes serine biosynthesis in the braimm glucos¢83].
Therefore the elevatiorof its extracellular RNA may argue (v an increase eddbine brain

level during presymptomatic stage of theeadise.

Similarly, this issualoes not make consensu:itho feld of preclinical investigations
([78, 8486], seeTable 1) In fact, anincreaseof D-seine levelsn hippocampal tissudsas
been observed in sevemhimalmodels of AD inc'ua.~gthose withintraceebroventricular
injectiors of solubleoligomess of the $ pepiide $ Rand genetic strains bearing several
mutations associated with familiar forr.. o1 ALB]. Thus,preliminary resultsn the 5xFAD
mouse model of AD displayingigh D¢ s FKURQLF H ChaxgEsiowRIiQit&llbd R
significant increase in Berine leve's(Ploux et al, abstractIDAR 2019. It has been
previouslydemonstrateéh-vitro that $ Rouldpromote transcriptional expression of SR and
stimulate Dserine release frc:m buth activated microglial cf8®, 8§ and neurong70].
More recently, induction of Sr ex@®on has also bedoundin vitro in reactive neurotoxic
astrocyteq[89] and in-viva .~ the TgF344 rat modebf AD [81]. Quite interestingly, SR
knockoutmice disp.ov cionificant reduced brain lesion afteute injections of$ o [90].
Finally, our preliminars resultsindicate that the impairment of hippocampal synaptic
plasticity and memory deficits associatedh the increasd D-serine leved in 5XxFAD mice
arerescuedby a concomitantdeletion ofthe SR gene Altogether, tis st of resuls suppors
the view that Bserine is required for thimduction and development of th® Rdependent

pathophysiology

However, this view is not so straightforwardFigure 2).Indeed, observationsfrom two

transgenic mice modehave extened the debatento the preclinical field on how {3erine
contributes toAD. In fact a decreased synthesis ofskrine from glucos¢hough PHGDH
astocytic enzymehas recently beereportedin 3XTg-AD mice [84]. Astrcocytic L-serine was

proposed to regulate NMDAR activity to sustdimserine productiorby neurong91] that



would thus explairthe altered synaptic plasticity observed in AThe deficits of functional
plasticity in the hippocampus and memory impairraentthese 3xTgAD mice [84] are
rescued by longerm treatments with either-Dor L-serine, confirming the view of severe
metabolic dysfunction as a leading haditk and cause of AD as previously proposed (see
[92]).

Besides a weaker amount othe NMDAr coagonistwas observed in Amyloid
Precursor Protein (APP) knock out mif®3]. This sugged that in addition to changes
induced by increased synthesif soluble $ Rthe native protein is capable by itself to
regulate Dserine homeostasis
The question ofhe potential modification dd-serine levelsn ~.D and itsoppositedirectiors
foundin the literaturepoints outseveral important aspec s, natably due to predominant role
of D-serine as &NMDAr co-agonist,that remainto be sol'ed. Several explanations could
account for thecontroversial resultsesumed abovA-u t. asrecentlyemphasized94], the
quantificationof D-serinelevels must comply with ctricproceduresallowing a precise and
specific detection of dnaminoacid. However o’ studies aimed at quawiiig D-serine did
not fulfil all the validation criteriaSecond, asiscussedy Le Douce and colleagug84]),
results maydiffer from oneanimal mcde! (o anothersince each of themeproduce only
partially and differentlythe mechar:sms and severity AD-associateghathophysiologyAs
for exampls, the LQW U D Q H k ' RM@yb® véry diffBrgvitaitbngthe animal modelsf
amyloidogenesisAlso, levels o’sc'iule $ Rarenot defined in thestudy of Le Doucq84]
which may be too low toc impact SR activity. On the other hand, the wgliceand
carbohydrate statusf the 5x+AD miceused in the study of Ploux et bhs not yeteen
consideredthus questi nin putativechanges irL-serine availability Advantages and limits
of modelling the disease in animals has been largely considered in the literaturer but
review, even by focussing on the specific role e6€rine in AD,indicates that this question

still remains anmportant ancdpen issu¢95].

3. Conclusion

Together, the results of clinical and preclinical studies show an undeniable variation in D
serine levels in both physiological and pathologagihg Regardinghe first aspectstudies
agree on a decreasetire availability of the amino acithat woulddirectly impact functional
synaptic plasticity and memogapacities Thesedataare particularly stimulating to initiate

the search ofuture pharmacologicatreatmerd to compensate for the losé D-serine.In



contrast a therapeutiqerspectiveregarding the pathological aspect axfing still remains
utopic since theziew of how the amino acibehavesn both humas and animal modelsf
AD does not make consensideverthelessone may speculate thtte oppositedecreaser
increase irD-serinelevelsreportedalongAD-related studiesould be speculatedsreflecting
the slow development of the disease and particulaflits amyloid progressiaonin conditions
of low $ Rproduction, the alteration of glucose intakeand consequentlyhe reduced
production of the precursor-serine could be considered as a critical mechanisinat
decrease D-serine levelsin the early stages of the disease’y KHQ D \6 phoduidtiofi
elevates this mechanisntould be overpassed ltlge direct stimulation & SR activity thus
enhancingD-serine levels. Thisnteresting schema has ncw' be preciselyevaluated and
represents an essential milestone since it means that t.'e b2st effective therapeutiostrategy

delivery of the amino acid should closely depend orstage f the disease.

A further pointremains also to be consideréat ¢ evaluation of Bserine in AD. As
recently demonstrated, epigenagtnechanismglay -. ke’ rolen the regulation of cereldr®-
serine levelg96]. Therefore, the evaluation ©f ¢th2 impact of epigenetics in the expression of
D-serine degradation (DAAQO) and sy~."e_'s (SR) enzyme genes should represgot a m

issue in AD.

On the other handhis review ind:cates thahere isstill clearly a crucial need of animal
modelsreally PLPLFNLQJ WYXH VORZ SURJUHVVLRQ DQG WKH FKDC
of human AD Hopefully, a new generatiasf modelssuch as those currently developeith
viral-mediated gene transfgl7, 98] will certainly allow for more consistent results and

clearer understanding J1 v e involvement e§&ine in thepathophysiologyf AD.

Figure 1. Schematic representation afhanges inD-serine availability at CA3/CAl
hippocampasynapse during physiologicahging

Once formed from glucose in astrocytéise precursoil-serine shuttlesto the neuronal
compartment to be converta@ato D-serine byserine racemasgSR). After beingreleasd in

the synaptic cleft, Berine bind to NMDAr, together with glutamateallowing activation of
the receptor. Duringhe aging processesthe progressive installatioof the oxidative stress
decrease the expression othe dimerization of SR thus reducingD-serine synthesis.
ConsequentlyNMDAr activation is altered that impairsetlexpression diunctional plasticity

such as longerm potentiatiorin neuronal networks andltimatelyof thememoryencoding



Figure 2. Schematic representation afhanges inD-serine homeostasis at CA3/CAl
hippocampal synapses during the progressive installatiamgloid-relatedpathophysiology
of AD.

At early stages of the disease withw levelk of soluble A oligomers (left), glucose
catabolism ismpacted that decreastie synthesis of the precurdosserine thus reducingdp-
serine levels This leads to weaker NMDATr activation, impaired functionaplasticity in

neuronal networkand ultimately defick of memory processes.

As levels of soluble$ R L QF U H D ¥dttocydds bEddme 10active astdrtto express SR
and release high amount Dfserine Together with the i1.~re ase gynapticavailability of
glutamate the elevation of BserinedrivesNMDAr overe~tiv ation resulting in excitotoxicity,

neurodegeneration ampdofoundmemory deficits.
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Table 1: Comparison of the different clinical and preclinical studies aimed at measwing D
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Highlights:

x D-serine levels der rease in physiological aging
X In Alzheimer's disease, changes isddine levels remain unclear
x The direction of changes may depend on the stage of the disease
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