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Figure 1: Our approach is able to generate a compressed representation of a generic, nonparametric, smooth RGB → RGB

mapping, modeled as a 3D CLUT (a). We extract a set of relevant keypoints (b,c) that sparsely describes the CLUT structure,
and provides a related CLUT decompression algorithm from those keypoints. Thus, hundreds of such color mappings can be stored
at low cost. (e) shows the application of the original (left) and compressed (right) versions of the 3D CLUT (a) to color image (d).
No perceptual difference is noticeable.

Abstract

3D CLUTs (Color Look Up Tables) are popular digital models used in artistic image and video processing,
for color grading, simulation of analog films, and more generally for the description and application of generic
nonparametric color transformations. The relatively large size of these models leads to high data storage
requirements when trying to distribute them on a large scale (e.g. several hundred at a time). In this article,
an effective technique based on a multiscale anisotropic diffusion scheme is proposed, for the lossy compression
of generic CLUTs regularly sampled on a 3D grid. Our method exhibits high average compression rate, while
ensuring visually indistinguishable differences with the original (uncompressed) CLUTs. In a second step, a
variation of our algorithm for exemplar-based generation of CLUTs is developed, in order to create a complete
CLUT from a single pair of before/after images that accounts for the color transformation.
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1 Introduction

Color retouching tools are commonly used in the fields of digital photography, video processing and other artistic
disciplines, to allow artists to set up a particular color mood for their creations. In this context, nonparametric
3D CLUTs (Color Look Up Tables) are among the most popular and versatile models for color enhancement or
alteration of digital images and videos.

Let RGB be the continuous domain [0, 255]3 ⊂ R
3 representing the 3D color cube of discretized resolution

2563. This 2563 resolution is chosen for the sake of simplicity, but in practice, other resolutions are actually
considered. A CLUT is simply a compact color function on RGB , modeled as a 3D associative array encoding
the precomputed transformation of all existing RGB colors ([10] and Fig. 2a).

(a) A CLUT is a 3D function RGB

→RGB , here visualized with
semitransparent colored spheres for each

point of RGB)

(b) Original image (c) Image after applying
CLUT

Figure 2: Application of a 3D CLUT to a 2D image for a color alteration (here, to simulate vintage color fading).

Let F : RGB → RGB be a 3D CLUT . Applying F to a color image I : Ω → RGB (defined on a rectangular
domain Ω ⊂ R

2) is done as follows:

∀p ∈ Ω, Imodified
(p) = F(IR(p), IG(p), IB(p))

where IR, IG and IB are the RGB color components of I. It should be noted that a CLUT is a volumetric
function that is, most often, fully or piecewise continuous with inflection points (Fig. 2a).
Fig. 3 exhibits a small set of various colorimetric changes that can be made with CLUTs, taken from the CLUT
packs [19, 21, 26]. It illustrates the large diversity of effects that CLUTs allow, e.g. color fading, chromaticity
boost, color inversion, hue shift, black-and-white conversion, contrast enhancement, etc.

In practice, for image and video retouching purposes, a CLUT is usually available, either as an ASCII zipped
file (extension .cube.zip) that describe the mapping of color triples F(X) for each voxel X of the RGB cube
(with a floating-point syntax), or as a .png image corresponding to the set of all transformed colors F(X) of RGB ,
unrolled as a 2D image (Fig. 4b). In both cases, the high number of color voxels composing the RGB cube leads
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Original image “60’s” “Color Negative” “Orange Tone”

“Ilford Delta 3200” “Backlight Filter” “Bleach Bypass”

“Late Sunset” “Rotate Vibrant” “Futuristic Bleak 4”

Figure 3: Generic nature of color transformations allowed by the use of 3D CLUTs.

to a quite large storage size for a single CLUT : For instance, a 2563-sized CLUT , which represents 48 megabytes
(Mb) of uncompressed data, would be stored as a ≈ 2 Mb file in .png format (with lossless compression), and as
a 176 Mb file in .cube.zip format (the latter being known to be an inefficient format in terms of storage space).
Hence, CLUTs are generally downscaled to a regularly subsampled RGB space (typically with resolutions
173, 333, 483, 643, . . . ) in order to lower the number of color voxels and thus, the file size. Missing color en-
tries are further estimated by 3D linear or tricubic interpolations.
ICC profiles [14] are another file format that can be used for describing color mappings. ICC is an industry
standard mainly used to characterize the color conversions when dealing with inputs/outputs of external devices
(scanners, monitors, printers, etc.). It generally deals with parametric color conversions but can also store non-
parametric CLUT transformations, through the ICC device-link profiles. These profiles do not explicitly handle
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compressed colorimetric transformations, although the compression of such profiles has recently been considered
[27]. As a result, a CLUT in an ICC device-link profile is stored as a uncompressed array of raw data (32bits-float
for each RGB component of the CLUT voxels).

(a) CLUT visualized in 3D (b) Storage as a 2D .png image

Figure 4: Storage of a downscaled CLUT as a .png file: The 643 colors of the CLUT are unrolled as a 5122 image. Despite the
apparent continuity of the 3D function, the resulting image exhibits lots of discontinuities, which make its harder to compress in
2D.

Actually, only a few references about CLUT compression can be found in the literature. Most existing meth-
ods [2, 3, 25] deal with lossless compression and are based on two different predictive coding schemes: [2, 3]
propose differential hierarchical coding while [25] deals with cellular interpolated predictive coding. In both cases,
a prior preprocessing step for data reorganization is needed. However, experiments are only made on small-sized
CLUTs (resolution 173), which somehow limits the complexity of color variations these CLUTs can handle. Such
lossless compression techniques lead to average compression rates (≈ 30% that are below what the storage in
compressed .png generally offers, which is around 70 − 75%). To our knowledge, there are only a few existing
lossy compression techniques targeted on CLUTs [27, 31]. In [27], a DCT-quantization scheme in 3D is proposed
to compress CLUT data, in a very similar way to JPEG compression. In our previous conference paper [31], we
proposed a CLUT compression technique that relies on the storage of a set of sparse color keypoints in RGB ,
associated to a fast interpolation algorithm performing a dense 3D reconstruction using anisotropic diffusion
PDEs (Fig. 1). This method is able to obtain high average compression rates (≥ 95%), while reconstructing
CLUTs with very few artefacts when comparing them with the original data. It should be noted that the idea
of compressing/decompressing image data by diffusion PDEs has already been proposed for 2D images in [12],
but the discontinuous aspect of natural images used for the experiments makes it actually harder to achieve high
compression rates. In the case of CLUT data, the non-linear diffusion model proposed in [31] proves to be very
well suited for interpolating colors in the RGB cube, thanks to the overall smooth aspect of the 3D dense color
functions we are considering for compression. Moreover, the free localization of keypoints allows to capture,
when needed, local geometric discontinuities.

In this article, our previous work [31] is reviewed and extended, and two different image processing applications
are tackled:

1. CLUT compression, for storing and delivering large sets of nonparametric CLUT files (several hundreds
at a time). To achieve this goal, we first review the technique for generic CLUT compression/reconstruction
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proposed in [31] (section 2). This compression algorithm takes a CLUT F as input and generates a much smaller
representation Fc such that F can be reconstructed from Fc at its full resolution. The compression scheme
is said to be lossy [24], as the reconstructed CLUT F̃ slightly differs from F, but with an error that remains
small enough. Then, the study is extended to new experiments and comparisons between different color metrics
and keypoint determination methods as well as comparisons with other alternatives for data reconstruction
(resampling, harmonic functions, RBFs), in sections 3.1 and 3.2. Finally, an experimental validation of the
compression of more than 500 CLUTs is done, yielding a global compression rate higher than 99%.

2. Exemplar-based CLUT generation, i.e the construction of a complete CLUT from a unique pair of
before/after images that exibits the color transformation. It enables an artist doing color calibration or retouching
to generate his own CLUT only from a single processed example, so that the customized colorimetric transform
is easily reproducible by other users, with different image/video retouching software. Note that this is a slightly
different task than doing color transfer between images (as done for instance in [11, 22, 20]), since the purpose
here is not to explicitly transfer colors from one image to another (this transformation has already been done
manually by the artist), but rather to extract a CLUT that can reproduce the same kind of color transformations
on a whole series of images (section 4).
Finally, conclusions are drawn in the last section 5.

2 A PDE-based approach to 3D CLUT compression

In this section, the approach described in our previous work [31] for the compression of CLUT is detailed. The
proposed compression algorithm relies on two distinct steps, that are: 1. a 3D CLUT reconstruction algorithm,
based on a diffusion scheme working on a set of keypoints, and 2. a keypoint determination step, designed as a
simple iterative greedy algorithm. Since the reconstruction method is a prerequisite to the compression stage,
let us start by the former.

2.1 Reconstruction from a set of sparse color keypoints

First, let us consider we already have a set K of colored keypoints Kk ∈ RGB × RGB, defined as ordered pairs:

Kk = (Xk,Ck) = ((xk, yk, zk), (Rk, Gk, Bk))

where Xk = (xk, yk, zk) is the 3D keypoint position in the RGB cube and
Ck = (Rk, Gk, Bk) its associated RGB color.
We assume that the set K = {K1,K2, . . . ,KN} already provides a sparse representation of a given CLUT F.

2.1.1 Diffusion scheme

In order to reconstruct F from K, we propose to propagate/average the colors Ck of the keypoints in the whole
RGB domain through a specific diffusion process. Using diffusion is indeed a natural way to ensure smoothness
of the reconstructed CLUT . Let dK : RGB → R

+ be the distance function, giving for each point X = (x, y, z) of
RGB , the Euclidian distance to the set of keypoints K, i.e.

∀X ∈ RGB, dK(X) = mink∈0...N‖X−Xk‖.

We propose to reconstruct F by solving the following anisotropic diffusion PDE :

∀X ∈ RGB,
∂F

∂t
(X) = m(X)

∂2F

∂η2
(X), (1)
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where η =
∇dK(X)

‖∇dK(X)‖
and m(X) =

{
0 if ∃k, X = Xk

1 otherwise

At each point, the diffusion strength m(X) is chosen to be maximal (i.e. constant), it only vanishes on the
location of known keypoints, where the diffusion process must be locally stopped to ensure each keypoint color
keeps its values over time.

From an algorithmic point of view, this PDE can classically be solved by an Euler method, starting from
an initial estimate Ft=0 as close as possible to a solution of (1). Actually, one can get a quite good estimate
for Ft=0 by propagating the colors Ck inside the Voronoï cells associated to the set of points Xk (for instance
by watershed -like propagation [4]), then by smoothing it by an isotropic 3D gaussian filter (Fig. 5b). A more
efficient multiscale scheme for estimating Ft=0 is detailed hereafter (section 2.1.4).

From a geometric point of view, the diffusion PDE (1) can be seen as a local color averaging filter [30] along
the lines connecting each point X of the RGB cube to its nearest keypoint This filtering is done for all points X

of RGB , except for the known keypoints Xk which keep their initial color Ck throughout the diffusion process.
In particular, this kind of diffusion PDEs ensures that the min/max values of the resulting colors remain within
the [min,max] range of the original values, which naturally avoids the generation of out-of-gamut values. It
should also be noted that the color components reconstructed by this diffusion process are real numbers (∈ R).
In practice, it is thus possible to generate CLUTs with a color depth greater than 8 bits per channel (10 or 12
bits, as typically found in post-production). Fig. 5 below shows the reconstruction of a dense CLUT with (1),
from a set K composed of 6 colored keypoints.

2.1.2 Spatial discretization

Numerically, dK is efficiently computed (in linear time) by a distance transform, such as the one proposed in [18].
The discretization of the diffusion directions η requires some care, as the gradient ∇dK is not formally defined on
the whole RGB domain. Actually, dK is not differentiable at the peaks of the distance function, i.e. at the points
that are local maxima. Therefore, the following numerical scheme for the discretization of ∇dK is proposed:

∇dK(X) =




maxabs(∂ for
x dK, ∂

back
x dK)

maxabs(∂ for
y dK, ∂

back
y dK)

maxabs(∂ for
z dK, ∂

back
z dK)


 (2)

where

maxabs(a, b) =

{
a if |a| > |b|
b otherwise

and
∂ for
x dK = dK(x+1,y,z) − dK(x,y,z)

∂ back
x dK = dK(x,y,z) − dK(x−1,y,z)

are the discrete forward and backward first derivative approximations of the continuous function dK along the x

axis. We proceed similarly along the y and z axes.

By doing so, one avoids locally misdirected estimations of η on the local maxima of dK, which systematically
happen with the centered, forward or backward numerical schemes classically used for estimating the gradient,
as shown on Fig. 6 below; classical gradient estimation schemes (b,c,d) result in inaccurate gradient orientations
on local maxima, whereas with our scheme (e), we get an accurate orientation everywhere.
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(a) Set K of known keypoints (b) Initial state Ft=0

(c) Diffusion orientations η (d) State at convergence

Figure 5: Reconstruction of a 3D CLUT F from a set of keypoints K using anisotropic diffusion PDE (1) (here, from 6 keypoints).

In practice, complying to our spatial discretization scheme (2) has a great influence, both on the reconstruction
quality of the CLUT F (usual discretization schemes introduce visible artifacts on reconstructed structures), and
on the effective time of convergence towards the solution of (1) (a stable state is reached more quickly). This is
particularly true with the use of the multiscale scheme described hereafter, where reconstruction errors may be
amplified when switching from a low resolution scale to a more detailed one.

2.1.3 Temporal discretization

For the sake of algorithmic efficiency, the explicit Euler scheme corresponding to the evolution of (1) is trans-
formed to the following semi-implicit scheme:

F
t+dt

(X)
−Ft

(X)

dt
= m(X)

[
Ft

(X+η) + Ft
(X−η) − 2 Ft+dt

(X)

]

which leads to:

Ft+dt
(X) =

Ft
(X)+dt m(X)[Ft

(X+η)+Ft
(X−η)]

1+2 dt m(X)
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(a) Keypoints and
distance function dK

(b) Estimation of η

using forward scheme ∂ fordK

(c) Estimation of η
using backward scheme

∂ backdK

(d) Estimation of η using
centered scheme

1
2 (∂

fordK + ∂ backdK)

(e) Estimation of η using
proposed scheme (2)

Figure 6: Influence of our numerical schemes for estimating the diffusion orientations η (shown here on a small 40× 40 crop of a
2D distance function dK). Hues displayed at each point represent the estimated orientations η.

A major advantage of using such a semi-implicit scheme to implement the evolution of (1) is that you can
choose dt arbitrarily large, without loss of stability or significant decrease in quality on the diffusion process (as
studied in [8, 32]). Therefore, by choosing dt large enough, we end up with the following simplified temporal
discretization scheme:

Ft+dt
(X) =





Ft
(X) if m(X) = 0

1
2

[
Ft

(X+η) + Ft
(X−η)

]
otherwise

(3)

where Ft
(X+η) and Ft

(X−η) are accurately estimated using tricubic spatial interpolation. Starting from Ft=0, the

scheme (3) is iterated until convergence (Fig. 5d). It should be noted that, for each iteration, the computation
of (3) can be advantageously parallelized, as the calculations are done independently for each voxel X of RGB .

2.1.4 Multiscale solving

As with most numerical schemes involving diffusion PDEs [30], it can be observed that the number of iterations
of (3) required to converge towards a stable solution of (1) quadratically increases with the 3D resolution of the
CLUT F to be reconstructed. In order to limit this number of iterations for high resolutions of CLUTs, we
therefore suggest to solve (1) by a multiscale ascending technique.
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Rather than initializing Ft=0 by watershed -like propagation for computing the diffusion at resolution (2s)3,
Ft=0 is estimated as a trilinear upscaling of the CLUT reconstructed at half resolution (2s−1)3. The latter
is closer to the stable state of the PDE (1) at resolution (2s)3, and the number of necessary iterations of (3)
to reach convergence is considerably reduced. By performing this recursively, it is even possible to start the
reconstruction of F at resolution 13 (by simply averaging the colors of all keypoints), then applying the diffusion
scheme (3) successively on the upscaled results obtained at resolutions 23, 43, 83 . . . , until the desired resolution
is reached (Fig. 7).

Note also that for each different resolution, the coordinates Xk of the color keypoints are downscaled accord-
ingly, and rounded to the nearest integers.

Figure 7: Multiscale reconstruction scheme: A reconstructed CLUT at resolution (2s)3 is linearly upscaled and used as an
initialization for applying the diffusion scheme at a higher resolution (2s+1)3.

2.2 A greedy compression algorithm

Now that the reconstruction of a dense CLUT F from a set of color keypoints K has been detailed, let us consider
the inverse problem, i.e. given only F, is it possible to find a sparse set of keypoints K that allows a good quality
reconstruction of F?

First of all, it is worth mentioning that a CLUT being practically stored as a 3D discrete array, it is always
possible to build a set K allowing an exact discrete reconstruction from F at resolution r3, by simply inserting all
the r3 color voxels from F as keypoints in K. But as a CLUT is most often a continuous function, it is actually
feasible to represent it fairly accurately by a set of keypoints K the size of which is much less than the number
of voxels composing the discrete cube RGB . K then gives a compressed representation of F.
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2.2.1 Generation of 3D color keypoints

The compression algorithm detailed hereafter generates a set K of N keypoints representing a given input CLUT
F, such that the CLUT F̃N reconstructed from K is close enough to F. Our approach is bottom-up: it starts
from an empty set K and iteratively add keypoints to it. At any given iteration, we denote by EN : RGB → R

+

the point-to-point error measurement between the original CLUT F and the CLUT F̃N reconstructed from K,
using the algorithm previously described in Section 2.1. For the sake of simplicity EN is defined here as the
L2-error between F and F̃N , i.e.

∀X ∈ RGB, EN(X) = ‖F(X) − F̃N(X)‖

The set K is populated until two reconstruction quality criteria are met, which are Emax ≤ ∆max, the maximum
reconstruction error allowed at one point of RGB , and Eavg ≤ ∆avg, the average reconstruction error for the
entire CLUT F, with

Emax = max
X∈RGB

EN(X), and Eavg = ĒN .

∆max ∈ R
+ and ∆avg ∈ R

+ are the two main parameters of the compression method, and are chosen in our
experiments as ∆max = 8 and ∆avg = 2. Note that more perceptual metrics will be considered afterwards (section
3.1).
The algorithm to construct the keypoint set K then consists of the following steps:

a. Initialization:

K is initialized with the 8 keypoints located at the vertices of the RGB cube, with the colors of the CLUT
to be compressed, i.e. K = {(Xk,F(Xk)) | k = 1 . . . 8}, for all Xk whose coordinates in x, y and z are either 0 or
255.

b. Adding keypoints:

As long as Emax > ∆max or Eavg > ∆avg, new keypoint KN+1 = (XN+1,FN+1(XN+1)) is added to the set
K, located at coordinates XN+1 = argmaxX(EN ) of the maximum reconstruction error. In practice, one can
observe that these keypoints added iteratively are scattered throughout the entire RGB domain, so as to jointly
minimize the two criteria of reconstruction quality ∆max and ∆avg (Fig. 8b).
Fig. 8 illustrates the iterative construction of the set of keypoints K for one example CLUT . The reconstruction
error is displayed below each k-point reconstruction, with the location of its maximal error, which is added as a
new keypoint at the next iteration. As the iterations progress, the reconstruction error is visibly reduced. In the
cases the CLUT contains discontinuities or inflection points, we observe that newly inserted keypoints are natu-
rally located on either sides of these discontinuities, or on the inflection points, to ensure a correct reconstruction
of the discontinuous CLUT (Fig. 9).

2.2.2 Removal of keypoints

Often, the addition of the last keypoint at step b leads to a CLUT reconstructed with an actual higher quality
than expected, i.e. with Emax < ∆max − ǫ and/or Eavg < ∆avg − ǫ where ǫ > 0 is not negligible. There is usually
a subset of K that also verifies both reconstruction quality criteria, with an ǫ closer to 0.

We can therefore try to increase the compression rate while maintaining the desired quality of reconstruction,
by removing a few keypoints from K. This is simply achieved by iteratively going through all the keypoints
Kk of K (in the order of their insertion, k = 1 . . . N), and checking whether the deletion of the kth keypoint
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(a) Iterative construction of the keypoint set K to compress a CLUT F. Top: Reconstructed CLUT with all keypoints, Bottom:

Reconstruction error and location of the max-error point (i.e. the next keypoint to be inserted in K).

(b) Evolution of the error of the reconstructed CLUT F̃N with respect to the target CLUT F. Left: Evolution of the maximum error

Emax (in green) and average error Eavg (in red), Right: Evolution of the PSNR.

Figure 8: Overview of the first 100 iterations of our proposed algorithm to compress a 3D CLUT .

Kk allows to reconstruct a CLUT F̃N with quality constraints that still hold. If this is the case, the keypoint
Kk is discarded from K and the deletion process is resumed from where we left it. According to the degree of
smoothness of the CLUT , this third step sometimes allows to withdraw up to 25% of keypoints in K (it also
happens that no keypoint can be removed this way). It is interesting to note that in our experiments, none of
the original 8 vertices has ever been deleted in this phase, for the hundreds of CLUTs we tried to compress.

At the end of these three steps, we get a set of keypoints K representing a compressed lossy version of a
CLUT F, such that a minimum quality of reconstruction is guaranteed.
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(a) Original bimodal CLUT ,
showing a discontinuity at the

middle

(b) Location of the estimated
keypoints for compression

(c) Reconstruction error

Figure 9: Dealing with discontinuous CLUTs. During compression, color keypoints are automatically inserted at either side of the
discontinuity, to ensure a good CLUT reconstruction. No visible seam appears in the reconstruction error.

3 Contributions: method analysis and improvements

In this section, a further analysis of this CLUT compression method is proposed: some possible alternatives are
investigated and performances of the corresponding algorithms are compared, both in terms of visual quality and
compression rate.

3.1 Considering other colorimetric spaces and color fidelity measures

Until now, and for simplicity reasons, we only considered the usual sRGB color space during the CLUT com-
pression and decompression steps.

Let us now investigate other colorimetric spaces, both for CLUT reconstruction and sparse representation.
In particular, the impact of different color representations on the performances of CLUT compression is experi-
mentally tested, in order to get an answer to the following questions :

1. Is there a preferred colorimetric space for the reconstruction of CLUTs by our anisotropic diffusion PDE
(1)?

Since a PDE can be seen as a local averaging process, three colorimetric spaces where the averaging of
close colors remain an acceptable operation are compared : sRGB , Linear-RGB and L∗a∗b∗ [14].

2. What error criterion EN(X) should be preferred to visually minimize the effects of compression, from a
perceptual point of view?

In addition to the above L2 error measure (denoted by L2-sRGB hereafter), two additional criteria are
considered

∀X ∈ RGB, EN(X) = ∆E{76 or 00}(F(X), F̃N(X))
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defined for each voxel of the RGB cube to be reconstructed, and based on measurements of the ∆E76

and ∆E00 perceptual color differences [16], computed from the original CLUTs F and their reconstructed

versions F̃.

The experiment consists in compressing a set of different CLUTs with varied contents, with a prescribed number
of keypoints (here, 500 keypoints). One can thus compare the performance of the compression algorithm, for
different spaces and different error measures. Table 10 shows the results of these comparisons, first for two single
CLUTs (Faded 47 and Sprocket 231), then for a set of 31 separate CLUTs (displaying the median values for
that set in the table).

Several observations can be drawn :

• For a given CLUT , it sometimes happens that the algorithm does not generate a compressed CLUT where
the average of the error criterion used for the compression is minimal compared to other measured criteria
(for instance, CLUT Faded 47 compressed with the L2-sRGB metric does not have the best average
measure for the L2-sRGB criterion).

• However, such cases are infrequent, and the chosen error criterion is generally the one that is minimized,
as clearly shown by the median values obtained on a sample of 31 different CLUTs.

• The sRGB color space used for the reconstruction often produces the best compression rates.

• The choice of a perceptual color difference as the error criterion does not require more points than L2-sRGB ,
for reasonable values of compression constraints (∆max = 1.25 and ∆avg = 0.75).

To conclude with these experiments, we found it optimal to keep the sRGB color space for reconstruction, and
∆E00 as the error criterion, which allows to minimize the perceptual color difference between the original CLUT
F and its compressed version F̃. This is what is done in the following.

3.2 Comparison with other related compression methods

3.2.1 Resampling

Since a CLUT is generally a rather smooth volumetric function, one might be tempted to regularly downsample
its original definition domain (of size N3) to get a smaller CLUT (of size P 3, typically P = N

2 or N
4 ), with the

hope that reinterpolating the latter to the original size (N3) will build a CLUT that is visually equivalent, e.g.
leading to direct compression rates %Rate of 87.5% (for a ×23 downsampling) or 98.4% (for a ×43 downsampling).
The compression rate is here calculated as:

%Rate = 100

(
1−

Size of compressed data

Size of input data

)

Indeed, such an idea both looks trivial to implement and promising. Unfortunately, although it may work in
a few very special cases (i.e. very smooth CLUTs without inflection points), this technique does not hold for
general CLUT data that often exhibit a few local discontinuities (such as the one showcased in Fig. 9). To
demonstrate that, the following experiment has been conducted for 6 different CLUTs taken from the [19] set:
from each CLUT of size N3 (with N varying from 17 to 128), a smaller one of size P 3 is generated with 3D
moving average, P being 17 or 33 (typical sizes used in CLUT packs for storing small CLUTs). Then this small
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CLUT
name

Space
used for
recon-

struction

Error
measure

minimized
for

compression

PSNR
(in dB)

L2-sRGB
(avg/max)

∆E76

(avg/max)
∆E00

(avg/max)

Faded
47

sRGB L2-sRGB 45.66 2.08 / 5.34 1.03 / 3.36 0.59 / 3.02

sRGB ∆E76 45.56 2.01 / 7.64 0.93 / 2.79 0.54 / 2.48
sRGB ∆E00 45.42 2.01 / 8.5 0.88 / 3.9 0.48 / 1.33

Linear RGB L2-sRGB 43.22 2.9 / 6.58 1.12 / 4.78 0.7 / 3.2
Linear RGB ∆E76 40.52 3.83 / 12.52 1.3 / 3.52 0.86 / 3.11
Linear RGB ∆E00 42.63 3 / 9.92 1.11 / 4.99 0.66 / 1.35

L∗a∗b∗ L2-sRGB 44.29 2.5 / 5.06 1.04 / 3.72 0.62 / 2.65
L∗a∗b∗ ∆E76 42.75 2.86 / 9.41 1.07 / 3.07 0.68 / 2.67
L∗a∗b∗ ∆E00 43.58 2.61 / 9.97 1.02 / 4.98 0.58 / 1.35

Sprocket
231

sRGB L2-sRGB 45.5 2.22 / 5.04 1.02 / 3.39 0.51 / 2.22

sRGB ∆E76 44.99 2.27 / 6.4 0.78 / 1.78 0.44 / 1.46
sRGB ∆E00 46.15 1.97 / 11.09 0.8 / 3.64 0.39 / 0.8

Linear RGB L2-sRGB 42.58 3.15 / 5.63 1.23 / 4.6 0.67 / 2.28
Linear RGB ∆E76 41.94 3.23 / 11.86 0.99 / 2.04 0.62 / 1.87
Linear RGB ∆E00 42.35 3.13 / 12.85 1.13 / 4.23 0.59 / 1.14

L∗a∗b∗ L2-sRGB 44.66 2.48 / 4.37 1.06 / 3 0.56 / 1.86
L∗a∗b∗ ∆E76 43.25 2.72 / 11.59 0.96 / 1.75 0.54 / 2.26
L∗a∗b∗ ∆E00 44.34 2.44 / 10.44 0.96 / 3.45 0.47 / 0.88

Set of
31

CLUTs
(median
values)

sRGB L2-sRGB 43.63 2.64 / 6.54 1.16 / 4.79 0.61 / 3.93

sRGB ∆E76 42.09 2.94 / 16.82 1.07 / 2.76 0.68 / 2.94
sRGB ∆E00 40.4 3.28 / 23.78 1.24 / 6.39 0.64 / 1.73

Linear RGB L2-sRGB 39.21 4.56 / 9.21 1.71 / 7.02 0.97 / 5.85
Linear RGB ∆E76 37.76 5.12 / 21.73 1.52 / 3.85 0.89 / 3.8
Linear RGB ∆E00 36.09 5.72 / 29.56 1.75 / 7.67 0.88 / 2.26

L∗a∗b∗ L2-sRGB 40.12 4.05 / 8.8 1.66 / 6.67 0.92 / 5.45
L∗a∗b∗ ∆E76 39.1 4.3 / 21.92 1.41 / 3.39 0.74 / 3.57
L∗a∗b∗ ∆E00 37.53 4.8 / 29.43 1.66 / 7.88 0.76 / 1.83

Figure 10: Comparing performances of CLUT compression/reconstruction for different colorspaces and error criteria (best scores
in bold).

P 3 CLUT is re-interpolated to its original size N3, by tricubic interpolation. Finally, the differences between
the re-interpolated and the original CLUTs are computed using three different metrics (PSNR, ∆E00(avg) and
∆E00(max)).

Fig. 11 summarizes these differences: are highlighted in red the cases where the difference measurements
fall below the acceptable quality threshold defined for our own compression method, described in section 3.1
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(i.e. ∆max = 1.25 and ∆avg = 0.75). While the average ∆E00(avg) effectively remains below a visually indistin-
guishable threshold (∆E00(avg) < 1), this is far from being the case for the maximum ∆E00(max), which grows
larger and larger as the downsampling factor increases: local discontinuities in CLUTs are obviously destroyed
by downsampling, and re-interpolation locally generates very different colors from the original CLUT , leading
to visually discernible differences between the two color functions.

Therefore, CLUT compression by downsampling is not a viable idea unless the CLUTs under consideration
show absolutely no local discontinuities, which almost never actually happens.

CLUT name Hypressen Expired69 Amstragram
Prussian

Blue Street Cinematic

Mexico

Resolution 173 333 483 483 643 1283

Downsampling to 173

Downsampling factor ×1 ×1.93 ×2.83 ×2.83 ×3.83 ×7.53

PSNR ∞ 42.2 42.2 39 40 39.7
∆E00(avg) 0 0.67 0.71 0.86 0.81 0.95

∆E00(max) 0 2.48 2.64 3.7 3.1 4.05

%Rate/uncomp. 0% 86.3% 95.6% 95.6% 98.1% 99.8%
Downsampling to 333

Downsampling factor - ×1 ×1.53 ×1.53 ×1.93 ×3.93

PSNR - ∞ 50.8 49 48.1 46.2
∆E00(avg) - 0 0.34 0.32 0.37 0.51
∆E00(max) - 0 2.49 2.67 2.17 3.23

%Rate/uncomp. - 0% 67.5% 67.5% 86.3% 98.3%

Figure 11: Performances of CLUT compression by resampling.

3.2.2 Harmonic functions

Here are given some arguments for considering an anisotropic diffusion equation such as (1) to reconstruct
CLUTs, rather than an extension by harmonic functions, that in fact corresponds to the solution of the following
isotropic diffusion PDEs:

∀X ∈ RGB,
∂F

∂t
(X) = m(X) ∆F(X) (4)

Fig. 12 shows an example of reconstruction of a function F from a set of color keypoints K, defined here on a
2D rather than 3D domain (for better illustration purpose). The 3D elevation is computed for each point as the
norm of the RGB vector. The isotropic/anisotropic nature of the various reconstructions we get is pretty clear.
The resulting colorimetric variations of the anisotropic scheme (3) appear to be closer to the variations that are
observed in CLUTs in practice, thus justifying the use of the anisotropic model, that has the same algorithmic
complexity as the isotropic one (Fig. 12b,d).

3.2.3 Radial basis functions

The reconstruction of a dense function from a set of isolated keypoints is an interpolation problem which has
been already well documented in the literature [1, 28]. Some other traditional solutions to this problem propose
to model the function to be reconstructed as a weighted sum, whose number of terms is equal to the number
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of available keypoints. For instance, the popular RBF (Radial Basis Function) method, applied to CLUT
reconstruction, would estimate each color component Fi of F (i = R,G or B) by:

∀X ∈ RGB, Fi
(X) =

N∑

k=1

wi
k φ(‖X−Xk‖), (5)

with φ : R+ → R, a given RBF function (e. g. φ(r) = r2 ln r, for a thin plate spline interpolation [9]). Then, one
get weights wi

k by solving a linear system, involving the known values of the keypoints Ck and a matrix whose
coefficients are φ(‖Xp −Xq‖), calculated for all possible pairs (p, q) of keypoints. This reconstruction technique
generates 3D interpolations of good quality, and is simple to implement, as it can be calculated directly at full
resolution (Fig. 12c).

As far as we know, CLUT design using RBFs-based interpolation has been first proposed by the Darktable
open-source project in 2016, within a specific image modification module of the software allowing to build user-
personalized CLUTs from a set of 292-max color keypoints [6]. It might therefore seem appropriate to replace our
CLUT reconstruction step from a set of keypoints, as presented in section 2.1, by a RBF -based reconstruction.
Unfortunately, the algorithmic complexity of RBFs is expressed as O(N3 + N r3) for the reconstruction of a
CLUT of resolution r3 from N keypoints: O(N3) for the nonsparse matrix inversion and O(N r3) for estimating
the interpolated values in 3D. Although each of these two steps can be implemented by parallel calculations,
the computing time becomes prohibitive when the number of keypoints increases notably (e.g. N > 300, which
happens very frequently in our application of CLUT compression, see Fig. 15).

Conversely, the complexity of one single iteration of our diffusion scheme (3) is expressed as O(r3), regardless
of the number of keypoints. Thanks to our multiscale approach that speeds up convergence towards a stable state,
no more than twenty diffusion iterations per reconstruction scale are necessary in practice. This ensures a recon-
struction of a decent size CLUT (e.g. resolution 643) in less than one second on a standard multicore computer
(for several tens of seconds with a comparable RBF approach), and this, with an equally good reconstruction
quality.

Fig. 13 illustrates the fact that for some CLUTs, the number of keypoints required to accurately represent the
data is indeed smaller when using the RBF approach (first column). In practice, one should notice that the RBF
reconstruction works remarkably well to compress CLUTs that do not exhibit complex local geometric structures,
i.e. those with a 3D gradient norm that remains small enough over the whole RGB cube. On the other hand,
when more keypoints are needed to capture all the small color discontinuities in CLUTs whose gradient norm is
high everywhere, our PDE approach shows better performance, both in terms of the number of keypoints and
the computation time to get these points (particularly when considering the removal step of our compression
algorithm). Looking at the sharper structures reconstructed by our diffusion PDEs in Fig. 12d may be a part
of the explanation.

3.2.4 Keypoints thinning

Our simple method to determine the set of color keypoints that represents a CLUT , described in section 2.2.1, is
a straightforward greedy bottom-up approach: it tries to minimize the number of keypoints necessary to achieve
a high enough quality for the reconstruction of the CLUT , as well as the number of full CLUT reconstructions
required to compare them with the original CLUT data to be compressed (this 3D reconstruction step being
indeed the one with the highest algorithmic complexity). Note that our method is totally deterministic and does
not involve any random choice: for the same input CLUT , the set of keypoints obtained by our compression
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(a) Color keypoints K in 2D

(b) Reconstruction with Harmonic Functions (4), and its 3D elevation E

(c) Reconstruction with RBFs (5), and its 3D elevation E

(d) Reconstruction with our anisotropic PDE (1), and its 3D elevation E

Figure 12: Comparisons between the proposed anisotropic PDE (1), the harmonic functions (4) and the Radial Basis Functions
approach (5), for the reconstruction of a dense function from a set of sparse color keypoints (here in the 2D domain, for illustration
purpose). Displayed 3D elevation E is computed at each point as E =

√
R2 +G2 +B2.
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CLUT name
Tension Green-1

(173)
Cinematic-1

(173)

3D view

3D view of
the gradient norm

Keypoint construc-
tion with RBFs

177 keypoints
(obtained in 14s)

936 keypoints
(obtained in 30m 11s)

Keypoint construc-
tion with PDEs

446 keypoints
(obtained in 57s)

823 keypoints
(obtained in 1m 42s)

Figure 13: Experimenting PDEs and RBFs-based approaches for determining keypoints, on two CLUTs with
very different local structures.

algorithm will always be the same (for prescribed quality criteria).

The search for a minimal subset of keypoints for the reconstruction of image data is a problem that has al-
ready been addressed in the literature, e.g. for the purpose of compression or inpainting of 2D natural images, as
in [7, 13, 15, 17]. In these papers, the keypoint determination methods are stochastic and can therefore generate
different sets of points at each run, from the same input image. Several strategies are studied: In [7], the authors
propose a top-down thinning approach which consists in initializing the set of keypoints with all points of the
image to be compressed, a set which is iteratively reduced by removing optimal elements among a set of randomly
chosen keypoints. In [17], a genetic algorithm is proposed. Starting from a set of a few hundred keypoints, this
set is iteratively and slightly modified according to a few different rules (point displacement, addition, removal,
etc.) and only improved sets are kept over time, until convergence towards a stable state. In [15], a bottom-up
approach based on a dithering method of the error map is proposed to add new keypoints, followed by a pixel
exchange step. In [13], a similar idea is used, with stochastic sparsification of image laplacian halftoning.
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The main difference of all these methods compared to ours is the need to evaluate the data reconstructed from the
keypoints more often: Indeed, the stochastic aspect of these methods imposes an iterative selection among sev-
eral candidate keypoints at each iteration (and thus several reconstructions of the image data at each iteration),
whereas our method requires only one reconstruction step per iteration (the number of iterations corresponding
exactly to the number of selected keypoints).

Here our keypoint determination method is compared to the approach of [7], as it is one of the most different
approaches from ours (top-down approach, while ours is bottom-up). The experiments are limited to 173 CLUTs
since it already represents an initializing set of 173 = 4913 keypoints, which is far above the desired number of
keypoints. Compared to the original algorithm described in [7], the following adjustments have been made to
make the comparison with our approach relevant:

• The algorithm has been extended to CLUT datasets defined in 3D, rather than 2D images.

• We do not compute the Delaunay tetrahedrization of the 3D point set, as doing it in 3D requires complex
computations. At each iteration, the selection of the keypoint candidates to be suppressed in the same
neighborhood is simplified by randomly selecting about ten candidates that are close enough to each other,
according to the Euclidean distance.

• The 3D CLUT reconstruction step thus does not use a linear reconstruction of the keypoints based on the
3D Delaunay tetrahedrization anymore, but uses our PDE-based method, as described in section 2.1.

• The algorithm is stopped when the reconstructed CLUT no longer satisfies the quality constraints, given
by ∆max = 1.25 and ∆avg = 0.75.

Fig. 14 shows the compression results for a set of 6 different CLUTs already used in section 3.2.1 (but downsized
to 173). To take into account the stochastic aspect of the thinning approach, we have kept the minimal set
of keypoints after launching the algorithm three times in a row (the displayed timings correspond to a single
execution of the algorithm though). The number of keypoints obtained with our keypoint determination approach
is also displayed for comparison purposes.

CLUT name Hypressen

(173)
Expired69

(173)
Amstragram

(173)

Prussian

Blue

(173)

Street

(173)

Cinematic

Mexico

(173)

Thinning approach
# Keypoints 732 596 359 816 704 521
Compression time 80m 26s 118m 37s 82m 50s 127m 15s 104m 13s 112m 50s
Keypoints in .png 3.35 Kb 2.48 Kb 1.79 Kb 3.39 Kb 3.13 Kb 3.6 Kb
Our approach
# Keypoints 417 373 271 553 338 352

Compression time 52s 45s 33s 50s 42s 44s
Keypoints in .png 2 Kb 1.59 Kb 1.37 Kb 2.35 Kb 1.64 Kb 1.78 Kb
%Rate/thinning 40.3% 35.9% 23.5% 30.7% 47.6% 50.6%

Figure 14: Experimenting keypoint thinning algorithm [7] for 3D CLUT compression, and comparison with our proposed method.
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One can see that the thinning algorithm works satisfactorily and returns a number of keypoints with an order
comparable to what we get with our method (a few hundred). Our method always generates slightly smaller
sets of keypoints. However, the paramount thing is the compression time, which is really not of the same order
of magnitude (a few tens of seconds for our method, versus approximately a hundred minutes for the thinning
approach). This timing difference would be obviously even more visible for larger CLUTs.

Actually, limiting as much as possible the number of CLUT reconstructions needed to converge to an accept-
able set of keypoints is in our case much more important than finding the smallest set of keypoints, because the
CLUT data to be processed naturally compresses very well. It is therefore irrelevant to significantly increase the
algorithmic complexity for the compression algorithm. We also think that the very smooth general appearance
of the CLUTs to be compressed, with only a few important inflection points to be taken into account, makes
a bottom-up approach better suited than a top-down approach (which is not necessarily the case for natural
images).

Our algorithm has not been compared to other bottom-up approaches to determining key points (e.g [13, 15]).
Indeed, the stochastic aspect of these methods means that the number of 3D reconstructions will generally be
greater. Keeping an algorithm that minimizes the number of reconstructions is of the utmost importance in
order to make CLUT compression usable in practice.

3.3 Final compression results

The performance of our compression method has been evaluated on publicly available datasets (including
[19, 21, 26]) for a total of 552 CLUTs at various resolutions (ranging from 173 to 1443), encoding very di-
verse color transformations. The 35 Free LUTs [26] is a collection of CLUTs for video color grading, that are
available as .cube files. The Hald CLUTs [21] is a collection of 517 CLUTs for film simulation profiles, that
are available in the RGB color space, 8-bit per channel, in .png format. The PIXLS.US CLUTS [19] is a similar
collection of 31 CLUTs, specifically proposed by the PIXLS.US community, dedicated to the use of free software
for photographic retouching.

The set of all the original CLUT data occupies 708 Mb of disk storage (including 593 Mb in .png format
and 115 Mb in .cube.zip format). The compression of this large dataset by our algorithm generates 552 sets of
keypoints, stored in a single 2.5 Mb file, representing then an overall compression rate of 99.65% (despite the
fact that the input dataset itself is already in a compressed form). A statistical study of the 552 sets of keypoints
indicates that the average number of keypoints is 888 (minimum: 10, maximum: 2047, standard deviation: 714),
which is high enough to make our fast PDE -based reconstruction technique more suitable than RBFs for CLUT
decompression.

The table in Fig. 15 provides individual compression measurements for a sample of 6 CLUTs taken from [19].
It shows the compression rates for various CLUTs at different resolutions (our sets of N keypoints being stored
as color .png images at resolution 2 × N), with respect to the input CLUT data stored in the usual way, i.e.
uncompressed raw files or compressed files in .png, .cube.zip and .icc.zip formats. Computational time have
been obtained on a standard 24-core PC. It is interesting to note that the number of generated keypoints does not
depend on the resolution of the CLUT to be compressed, but rather on its degree of smoothness (the keypoints
being naturally located on the less differentiable areas of the CLUTs (Fig. 9). By limiting the reconstruction error
average and maximal values of ∆E00, we ensure a perceptually indiscernible difference between the decompressed
CLUT F̃ and the original one F. For the purpose of scientific replicability, our CLUT compression/decompression
algorithms have been integrated into the G’MIC software [29], a full-featured open-source framework for image
processing, used by thousands of people around the world.
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CLUT name Hypressen Expired69 Amstragram
Prussian

Blue Street Cinematic

Mexico

Resolution 173 333 483 483 643 1283

Size uncomp. (8bits) 14.4 Kb 105 Kb 324 Kb 324 Kb 768 Kb 6 Mb
Size uncomp. (float) 57.6 Kb 421 Kb 1.3 Mb 1.3 Mb 3 Mb 24 Mb
Size of .cube.zip 130 Kb 712 Kb 604 Kb 598 Kb 1.3 Mb 7.3 Mb
Size of .png 8.5 Kb 30.4 Kb 83.4 Kb 78.7 Kb 151 Kb 947 Kb
Size of .icc.zip N3 49.7 Kb 359 Kb 1.1 Mb 1.1 Mb 2.5 Mb 19 Mb
Size of .icc.zip 173 49.7 Kb 49.9 Kb 49.6 Kb 49.9 Kb 49.8 Kb 50 Kb
Size of .icc.zip 333 358 Kb 359 Kb 356 Kb 360 Kb 358 Kb 357 Kb
# of keypoints 417 300 300 506 393 651
PSNR 40.9 dB 42.3 dB 44.1 dB 42.2 dB 42.3 dB 43.3 dB
∆E2000(avg) 0.6 0.51 0.52 0.53 0.52 0.5
∆E2000(max) 1.25 1.25 1.25 1.25 1.25 1.25
Compression time 52.3s 2m 33s 15m 14s 9m 19s 15m 31s 210m 8s
Decompression time 37ms 137ms 227ms 247ms 462ms 5725ms
Keypoints in .png 2 Kb 1.5 Kb 1.7 Kb 2.6 Kb 2.2 Kb 3.6 Kb
%Rate/uncomp.8b 86.3% 98.5% 99.5% 99.2% 99.7% 99.9%
%Rate/.cube.zip 98.5% 99.8% 99.7% 99.6% 99.8% ≈ 100%
%Rate/.png 77% 95% 98% 96.8% 98.6% 99.6%
%Rate/.icc.zip N3 96% 99.6% 99.8% 99.8% 99.9% ≈ 100%
%Rate/.icc.zip 173 96% 96.9% 96.6% 94.9% 95.7% 92.8%
%Rate/.icc.zip 333 99.4% 99.6% 99.5% 99.3% 99.4% 99%

Figure 15: Results of our CLUT compression algorithm, on different CLUTs from [26] (with ∆max = 1.25 and ∆avg = 0.75).

4 Exemplar-based CLUT generation

We now describe a second application of our fast reconstruction method of CLUTs, which solves the following
problem: an artist gives a particular colorimetric mood to one of his creations Ioriginal

0 (photography or illustra-
tion). Using his custom color manipulation tools, he manages to generate a modified version of it, Imodified

0 that
he is satisfied with and that he archives. Later on, the same artist decides to give the same colorimetric mood
to another of his images, Ioriginal

1 , but without exactly remembering all the steps taken to transform Ioriginal

0 into
Imodified

0 and the precise setting of all parameters he had to set in his color retouching tools. Consequently he
cannot reapply his color transformation identically to Ioriginal

1 .

A variation of the problem can be stated as follows: how can an artist ensure that the colorimetric mood he
has just created can easily be reproduced by users of other image manipulation software (which therefore have
probably different color retouching tools, or at least different parameter settings)?

Let us remind this is a different issue from color transfer between images: the purpose here is not to guess
how to transfer colors from one image to another (this transformation has already been done by the artist),
but to be able to extract a full-filled CLUT that reflects this transformation, and then apply it possibly to a
whole series of images. Indeed, the transformation performed beforehand by the artist provides a pixel-to-pixel
correspondence between the original and the transformed images. Of course, having this pair of example images
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eases the construction of the CLUT (hence the term Exemplar-based to name this process).

Since a generic color transformation can be modeled by a CLUT , this problem can be solved by determining
the 3D dense function F : RGB → RGB that verifies the following two constraints:

a. Data attachment constraint:

The example transformation Ioriginal

0 → Imodified

0 must be preserved, which implies that the application of CLUT
F to image Ioriginal

0 must result exactly in Imodified

0 . It means that the values of F are already known for all points
of RGB which are actual colors of Ioriginal

0 :

∀p ∈ Ω, F(Ioriginal

0(p) ) = Imodified

0(p) (6)

b. Density and regularity constraint:

If one wants to apply F to another image Ioriginal

1 , the values F(X) must be defined for at least all colors X

existing in Ioriginal

1 (so, ideally for all possible colors of RGB). Since CLUTs are most often piecewise continuous
functions, colorimetric discontinuities in unknown parts of F must be avoided. Therefore the known colors of
Imodified

0 have to be continuously interpolated throughout the whole RGB space.

Both constraints can naturally be taken into account by generating F with our anisotropic diffusion method
(1) described in section 2.1, applied to the set K of the following keypoints:

K =
{
(Ioriginal

0(p) , Imodified

0(p) ) | p ∈ Ω
}

where Ω is the spatial discretized definition domain of images Ioriginal

0(p) and Imodified

0(p) . Here, the number of keypoints

N = card(Ω) is potentially quite high, which makes our fast multiscale PDE -based reconstruction method all
the more valuable, compared to a RBF approach.

Hence, the interpolated CLUT F exactly reproduces transformation
Ioriginal

0 → Imodified

0 , and its application to Ioriginal

1 generates consistent colors with respect to the colors of Imodified

0 ,
so as to get a similar colorimetric mood, as shown in images (c, d, h) of Fig. 16.

c. Attachment term to colors missing in the original image:

However, when image Ioriginal

1 has tones that are not close to the colors of Ioriginal

0 (for instance, the blue sky
in image of Fig. 16g, last row) one may wish to control the degree of transformation of such colors in the CLUT
under construction.

To this end, an additional parameter α is introduced, for attachment to missing colors to Ioriginal

1 , acting on
these specific colors whose transformation is a priori not well defined. We then propose to estimate the global
color transformation by a distance-blended CLUT , denoted by Fα, and calculated as follows :

∀X ∈ RGB, Fα(X) = βα
(X) F(X) + (1− βα

(X)) X

where

βα
(X) = exp

(
−
d2K(X)

2α2

)
and dK(X) = mink∈0...N‖X−Xk‖
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The term βα
(X) allows to locally weight the influence of colors F(X) of the interpolated CLUT , with respect

to the distance of color X to all the existing colors of image Ioriginal

0
(Fig. 16, (e), (f), (i)). Taking into account

βα
(X) has a visible effect only when image Ioriginal

1
has no similar colors present in Ioriginal

0
(here, the blue sky).

Otherwise, the application of interpolated and distance-blended CLUTs gives visually equivalent results (Fig.
16, (h), (i)).

This technique for generating CLUTs enables any purely colorimetric transformation to be extracted from a
single pair of before/after images. It can then be easily reapplied later, or distributed in a standardized form, so
that anyone can reproduce it on other images or software. Finally, it should be noted that it is still possible to
compress Fα afterwards, by the CLUT compression algorithm described in section 2.2.

5 Conclusion

The CLUT compression/decompression technique presented in this paper is surprisingly effective. This is mainly
due to the adequacy of the proposed 3D diffusion model (1) to the type of data processed (smooth, volumetric,
color-valued).

As a result, all the 552 CLUTs compressed by our method and integrated into G’MIC [29], could be integrated into
any image editing software to offer photographers and illustrators the greatest diversity of color transformations,
and this, for a minimal storage cost (2.5 Mb). In addition, our reconstruction method applied to exemplar-based
CLUT generation can greatly help artists to build and distribute personalized CLUTs.

We are convinced that the integration of these algorithms into other image or video processing software would
allow the distribution of CLUT -based color transformations at a much larger magnitude scale than current
standards. At the present time, there is no image retouching software offering several hundreds of artistic
nonparametric color transformations that can be applied on images or videos. In essence, our method allows to
automatically re-parameter any kind of color transformations with a quite minimal set of parameters modeled
as keypoints.
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Figure 16: Exemplar-based CLUT generation: principles and comparison between interpolated and distance-blended CLUTs.
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