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Yoann Pigné1, and Eric Sanlaville1

1 Normandie Univ, UNIHAVRE, UNIROUEN, INSA Rouen, LITIS, Le Havre, France
{stefan.balev,juanlu.jimenez, yoann.pigne, eric.sanlaville}@univ-lehavre.fr

2 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Zografou, Greece

ilamprou@di.uoa.gr

Abstract. We examine the classic game of Cops and Robbers played
on dynamic graphs, that is, graphs evolving over discrete time steps.
At each time step, a graph instance is generated as a subgraph of the
(static) underlying graph. The cops and the robber take their turns on
the current graph instance. The cops win if they can capture the robber
at some point in time. Otherwise, the robber wins.
In the offline case, the players are fully aware of the evolution sequence,
up to some finite time horizon T . We provide a O(n2k+1T ) algorithm to
decide whether a given evolution sequence for an underlying graph with
n vertices is k-cop-win via a reduction to a reachability game.
In the online case, there is no knowledge of the evolution sequence, and
the game might go on forever. Also, each generated instance is required
to be connected. We provide a nearly tight characterization for sparse
underlying graphs with at most a linear number of edges. We prove λ+1
cops suffice to capture the robber in any underlying graph with n−1+λ
edges. Furthermore, we define a family of underlying graphs with n−1+λ
edges where λ− 1 cops are necessary (and sufficient) for capture.

Keywords: cops and robbers · dynamic graphs · offline · online · sparse.

1 Introduction

Cops and robbers is a classic pursuit-evasion combinatorial game played on a
graph. There are two opposing players aiming at winning the game: a cop player
controlling k cop tokens and a robber player controlling one robber token. Ini-
tially, the k cops are placed at vertices of the graph. Subsequently, the robber is
also placed at a graph vertex. The two players proceed (possibly ad infinitum)
by taking turns alternately commencing with the cops. During a cops’ turn, each
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cop may move to a vertex adjacent to its current one; note that cops are pre-
sumed to move simultaneously. Similarly, during a robber’s turn, the robber may
move to a vertex adjacent to its current placement. The cops win, if at least one
of them manages to eventually lie at the same vertex as the robber, i.e., captures
the robber. Otherwise, the robber wins if it can indefinitely avoid capture.

Cops and robbers applications are found in many fields, for example in motion
planning [36], routing [23], network security [11], and distributed computing [6].

Thus far, Cops and Robbers literature has focused on (several variations
of) the game taking place on static graphs. Little is known with respect to
Cops and Robbers games played on dynamic graphs. Dynamic graphs, sometimes
called temporal networks [28] or time-varying graphs [13], have received a lot of
attention as they capture realistic scenarios where a graph evolves over time
periodically or intermittently. Several models have been considered, for example
see [12, 19, 29]. In this paper, we introduce Cops and Robbers taking place on
dynamic graphs in the following setting. A dynamic graph is represented by
a (possibly infinite) sequence of subgraphs of the same static graph, which is
the underlying graph. In other words, the (connected) underlying graph evolves
over a series of discrete time steps under a set of evolution rules. We consider
an offline and an online case. In the latter, in order to avoid trivial cases, we
impose the natural constraint that the graph produced at each time step has to
be connected.

Related Work. The preliminary question in mind is to compute the minimum
number of cops needed to capture the robber on some (static) graph family.

Definition 1. The cop number of a graph G, denoted c(G), is the minimum
number of cops needed to ensure that the robber is eventually captured, regardless
of the robber’s strategy.

Problems related to the cop number have been studied heavily over the last
four decades. Originally, Quillot [34], and independently Nowakowski and Win-
kler [32], characterized graphs with cop number equal to 1, otherwise referred
to as cop-win graphs. The set of (di)graphs with cop number equal to k > 1
was characterized in [14, 18]. Building on these notions, a general framework for
characterizing discrete-time pursuit-evasion games was developed in [10].

There is a lot of literature regarding the cop number of specific graph classes.
Aigner and Fromme [2] proved c(G) ≤ 3 for any planar graph G. Frankl [17]
proved a lower bound for graphs of large girth. Other works include [3, 16, 26].

Moving onto general graphs, Meyniel conjectured
√
n cops are always suf-

ficient to capture the robber in any graph. The current state of the art is
O(n/2(1−o(1))

√
logn) proved independently in [24, 35]. Yet, the conjecture remains

unresolved. On the contrary, the conjecture was proved positive for binomial ran-
dom graphs [33]; relevant works include [7, 11, 25]. The cop number is also related
to various width parameters, for an example see [1]. Finally, there exists a book
[8] capturing all recent activity on Cops & Robbers.

The computational complexity of the corresponding decision problem is also
worth a note. Given a graph G and an integer k, does c(G) ≤ k hold? Recently,
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Kinnersley [22] answered the question by proving EXPTIME-completeness. With
respect to algorithmic results, for a fixed constant k, there is a polynomial time
algorithm to determine whether c(G) ≤ k [4]. Other algorithmic results include
[9] (capture from a distance), and [10] (generalized Cops and Robbers).

With respect to Cops and Robbers games played on dynamic graphs, there
is preliminary work by Erlebach and Spooner [15]. They examine the game on
edge-periodic graphs, where each edge e is present at time steps indicated by
a bit-pattern of length le used periodically and ad infinitum as evolution rule.
Let LCM(L) denote the least common multiple for input lengths le. The paper
presents a O(LCM(L) · n3) algorithm to determine whether the graph is 1-cop-
win as well as some other results on cycle graphs. Later on, in [30], NP- and
W[1]-hardness results are provided for (parametrizations of) Cops and Robbers
played on temporal edge-periodic graphs. Further bounds and hardness results
for cycle graphs in this model are given in [31].

Our Results. We consider two dynamic graph scenarios and present preliminary
results for a (classic-style) Cops and Robbers game taking place in them. At
each discrete time step of evolution, the current graph instance is fixed, then the
cops take their turn, and finally the robber takes its turn. Note that movement
may be restricted due to the possibly limited topology of each instance.

In the offline case, the cop and the robber know the whole evolution sequence
(up to some finite time horizon T ) a priori. For an underlying graph on n vertices,
we prove that deciding whether it is 1-cop-win can be done in time complexity
O(n3T ); see Theorem 3. To do so, we employ a reduction to another game,
a reachability game, played now on the configuration graph (Lemma 1). Our
results extend to deciding k-cop-win graphs (Corollary 1), and an exponential
time algorithm for determining the exact value of the cop-number (Corollary 2).

In the online case, no knowledge is given to the players regarding graph
dynamics. The only restriction imposed is that, at each time step, the realized
graph instance needs to be connected. We consider sparse graphs and show that
the cop number is at most λ+ 1 for underlying graphs with n− 1 + λ edges; see
Theorem 4. Moreover, we demonstrate a (nearly tight) graph family where λ−1
cops are necessary (and sufficient) to ensure cop victory; see Theorem 5.

Outline. In Section 2, we present introductory notions and notation on the
dynamic graphs used and on the game of Cops and Robbers played on them.
In Sections 3 and 4, we formalize our definitions for the respective scenario: In
Section 3, we consider the offline case, whereas in Section 4, we consider the
online case. In Section 5, we make concluding remarks.

2 Preliminaries

Dynamic Graphs. Let G = (V,E) stand for a (static) graph to which we refer to
as the underlying graph of the model. We assume G is simple, i.e., not containing
loops or multi-edges, and connected, i.e., there exists a path between any two
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vertices in G. No further assumptions are made on the topology of G. An edge
from vertex v ∈ V to vertex u ∈ V is denoted as (v, u) ∈ E, or equivalently
(u, v) ∈ E. We refer to the edges of the underlying graph as the possible edges of
our model. We denote the number of vertices of G by n = |V | and the number
of its edges by m = |E|. For any vertex v ∈ V , we denote its open neighborhood
by N(v) = {u : (v, u) ∈ E} and its closed neighborhood by N [v] = N(v) ∪ {v}.
The (static) degree of v ∈ V in G is given by d(v) = |N(v)|.

The dynamic graph evolves over a sequence of discrete time steps t ∈ N. We
consider two cases with respect to time evolution. First, t = 1, 2, 3, . . . , T , that
is, t takes consecutive values starting from time 1 up to a time horizon T ∈ N
given as part of the input. In this case, we define a dynamic graph G with a time
horizon T as G = (G1, G2, . . . , GT ) (Section 3). Second, t = 1, 2, 3, . . ., that is,
we consider the sequence of time steps t evolving ad infinitum (Section 4).

For any t, let Gt = (Vt, Et) be the graph instance realized at time step t,
where Vt = V and Et ⊆ E: all vertices of the underlying graph G are present at
each time step, whereas a possible edge e ∈ E may either be present/alive, i.e.,
e ∈ Et, or absent/dead, i.e., e /∈ Et at time t. For any vertex v ∈ V , we denote
by Nt(v) = {u : (v, u) ∈ Et} its available neighborhood at time t. Similarly, let
Nt[v] = Nt(v) ∪ {v} refer to the available closed neighborhood at time t.

Cops and Robber on Dynamic Graphs. We play a game of Cops and Robbers
on a dynamic graph evolving under the general model defined above. There are
two players: C controlling k ≥ 1 (k ∈ N) cop tokens and R controlling one
robber token. Initially, C places its k tokens on the vertices of the underlying
graph. Notice that we allow multiple cops to lie on the same vertex. Afterward,
R chooses an initial placement for the robber. Round 0 is over. From now on, for
every t ≥ 1, first, the current graph instance Gt is fixed and, second, a round of
the game takes place. A round consists of two turns, one for C and one for R, in
this order of play. C may move any of its cops lying on a vertex v to any vertex
in Nt[v]. Note that all cops controlled by C move simultaneously during C’s turn.
After C’s turn is over, R may move the robber lying on a vertex u to any vertex
in Nt[u]. C wins the game if, after any player’s turn, the robber lies on the same
vertex as a cop. R wins if it can perpetually prevent this from happening.

A cop-strategy, respectively a robber-strategy, is a set of movement decisions
for the cops, respectively the robber. Having knowledge of the current positions,
and the current graph instance Gt (as well as all future graph instances only in
the offline case), the cops/robber decide on a move for round t according to the
rules of the game. A dynamic graph is called k-cop-win, if there exists a cop-
strategy such that k cops win the game against any robber-strategy. For k = 1,
we say that such a dynamic graph is cop-win.

3 Offline Case

In the offline case, we are given a dynamic graph G with a time horizon T ,
namely G = (G1, G2, . . . , GT ), where both C and R have complete knowledge of
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the evolution sequence. That is, both players are aware of Gt = (V,Et), for all
t = 1, 2, . . . , T , a priori. Let coff (G) stand for the temporal cop number (offline
case), the worst-case minimum number of cops required to capture a robber when
the whole sequence G = (G1, G2, . . . , GT ) is given as input to both players. If the
robber is not captured within T rounds, for any cop strategy, then the dynamic
graph is robber-win. Overall, this is a Cops and Robbers game on a dynamic
graph with bounded time horizon. From now on, we refer to it as the offline
case. The results presented in this section can be viewed by the reader as an
extension/completion of the work in [15] on edge-periodic graphs.

Configuration Graph. The task we tackle in the offline case is to characterize the
set of given inputs (G, T ), which are cop-win, i.e., one cop can always capture
the robber within the T rounds of play. To do so, we first construct a directed
configuration graph capturing the cop and robber motion on G. Then, we can play
another game, a reachability game [21] to be defined later, on the configuration
graph which corresponds to the original cop and robber game played on G and
derive our result this way. We define the directed configuration graph as P =
(S,A), where S refers to configuration states (vertices) and A to arcs from one
state to another state which is a feasible potential next state.

The vertex set S consists of all four-tuples of the form (c, r, p, t), where t ∈
{1, 2, . . . , T} indicates the time step or round of play t, p ∈ {C,R} indicates
whether it is the cop’s or the robber’s turn to play, c ∈ V is the position of the
cop just before p’s turn takes place in round t, and r ∈ V is the position of the
robber just before p’s turn takes place in round t.

The arc set A contains the arcs below, for all x, y ∈ V and t ∈ {1, 2, . . . , T},
such that both the dynamics of the graph and the game moves are represented:

(1) if z ∈ Nt[x] and t ∈ {1, 2, . . . , T}, then ((x, y, C, t), (z, y,R, t)) ∈ A, and
(2) if z ∈ Nt[y] and t ∈ {1, 2, . . . , T − 1}, then ((x, y,R, t), (x, z, C, t+ 1)) ∈ A
Case (1) arcs represent the cop’s turn at round t, where the cop moves within
its closed neighborhood available at time t, the robber retains its position, and,
after the cop moves, it is the robber’s turn at round t. Respectively, case (2)
arcs represent the robber’s turn at round t, where the robber moves within its
closed neighborhood available at time t, the cop retains its position, and, after
the robber moves, it is the cop’s turn, but at the next round, namely round t+1.

Let us now consider the size of P . By the definition of the states s ∈ S, it
holds for the number of vertices |S| ∈ O(n2T ). Considering the set of arcs A,
each vertex in S has at most n arcs leaving it, therefore we obtain |A| ∈ O(n3T ).

Before we proceed utilizing the configuration graph, let us add some auxiliary,
yet necessary, states and arcs to capture the round of initial cop and robber
placement, that is, round 0. This way, we ensure the full correspondence of the
reachability game played on P to the cop and robber game played on G. Note
that all state and arc additions discussed hereunder do not affect the order
of magnitude of the size of P . Let S contain also the states (∅, ∅, C, 0), and
(x, ∅,R, 0), for all x ∈ V . State (∅, ∅, C, 0) captures the situation at round 0
before the cop’s turn: neither the cop nor the robber have been placed yet on V .
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States (x, ∅,R, 0) capture the situation at round 0 before the robber’s turn: the
cop has been placed and it is the robber’s turn to be placed. Overall, we have
added an extra n+ 1 states in S. We now proceed adding the necessary arcs in
A to make the transitions from one turn to the next. For each x ∈ V , we add an
arc ((∅, ∅, C, 0), (x, ∅,R, 0)) ∈ A, that is, n extra arcs in total. For each x, y ∈ V ,
we add an arc ((x, ∅,R, 0), (x, y, C, 1)) ∈ A, that is, n2 extra arcs in total.

Reachability. We now employ the configuration graph P constructed above by
playing another two-player game on it referred to in literature as a reachability
game [5, 21, 27]. The goal is to define a reachability game, which corresponds
exactly to the Cops and Robbers game (offline case), and so be able to utilize
known results in this area to prove our cop-win characterization (Theorem 3).
The connection of a (classic) Cops and Robbers game to a reachability game
was first identified in [20]. Other results, in [11, 18], on cop-win characterizations
employ similar tools without explicitly stating the reduction to reachability.

A reachability game is played by two players, C andR, where we maintain the
notation such that it corresponds to players in the game of Cops and Robbers.
The two players play alternately on a directed graph D = (VD, AD), where VD
is partitioned into two player-respective subsets, that is, VD = VC ∪ VR and
VC ∩ VR = ∅. Moreover, VC , respectively VR, is a pairwise non-adjacent set of
vertices, that is, for any x, y ∈ VC , respectively x, y ∈ VR, it holds (x, y) 6∈ AD
and (y, x) 6∈ AD. A single token is initially placed on a vertex v ∈ VD. If v ∈ VC ,
then C plays and moves the token to a vertex u ∈ VR for which it holds (v, u) ∈
AD. Then, it is R’s turn: R chooses to move the token to a vertex w ∈ VC
for which it holds (u,w) ∈ AD. Note that either player has to move the token
across an available arc in AD. The game proceeds in this fashion for an indefinite
number of rounds. Player C wins, if the token eventually arrives to a designated
target vertex set Tar ⊆ VD. Otherwise, if for any C-strategy a vertex in Tar can
never be reached, then R wins. In a nutshell, the reachability game played on
D = (VD, AD) is defined by the tuple (VC , VR,Tar). Theorem 1 demonstrates
that, depending on the initial token placement, there exists a winning strategy
for one of the two players for any input (VC , VR,Tar) and D. Moreover, by
Theorem 2, it can be decided in time linear to the size of the directed graph D.

Theorem 1 ([5, 27]). Consider a reachability game (VC , VR,Tar) played on a
directed graph D = (VD, AD). VD can be partitioned into two sets WC and WR
such that, if the token is initially placed on w ∈Wp, then there exists a winning
strategy for player p ∈ {C,R}.
Theorem 2 ([5, 21]). There exists an algorithm computing winning sets WC
and WR for a reachability game (VC , VR,Tar) played on a directed graph D =
(VD, AD) in time O(|VD|+ |AD|).

Let us now consider a reachability game taking place in our constructed
configuration graph P : let D = P , VD = S, and AD = A. For any (c, r, p, t) ∈ S,
let (c, r, p, t) ∈ Vp where p ∈ {C,R}. Finally, let Tar = {(x, x, p, t) | x ∈ V, p ∈
{C,R}, t ∈ {1, . . . , T}}. We can now use the just defined sets VC , VR,Tar to
prove Lemma 1 and then, as a consequence, our main result in Theorem 3.
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Lemma 1. G = (G1, G2, . . . , GT ) is cop-win, if and only if, for a reachability
game (VC , VR,Tar) played on P = (S,A), where Vp = {(c, r, p, t) ∈ S | c, r ∈
V, t ∈ {0, 1, . . . , T}}, for p ∈ {C,R}, and Tar = {(x, x, p, t) ∈ S | x ∈ V, p ∈
{C,R}, t ∈ {0, 1, . . . , T}}, it holds (∅, ∅, C, 0) ∈WC.

Proof. If G is cop-win, the cop has a winning strategy s∗, which for any input
cop position c, robber position r, and time step of evolution t before the cop’s
turn, provides the next placement for the cop token, say c′. Moreover, eventually,
for some t ≤ T , the cop is guaranteed to lie at the same vertex as the robber.
Using the above strategy, Player C playing the reachability game on P also has a
winning strategy: If the token lies at state (c, r, C, t) ∈ S, then C moves the token
to (c′, r,R, t). Note that, since s∗ is a feasible (winning) strategy for the Cops
and Robbers game, by construction of P it holds ((c, r, C, t)), (c′, r,R, t)) ∈ A.
Also, since in s∗ the cop eventually lies at the same vertex as the robber, the
reachability token eventually reaches a vertex (x, x, p, t) ∈ Tar , for some x ∈ V ,
p ∈ {C,R}, and t ≤ T . Hence, C wins the reachability game.

On the other hand, if (∅, ∅, C, 0) ∈WC , by Theorem 1, there exists a winning
strategy for C when the token lies on (∅, ∅, C, 0). For any ((c, r, C, t)), (c′, r,R, t)) ∈
A chosen by C as part of its winning strategy, by construction of P , the cop has
a feasible move from c to c′ at time t. Since C’s strategy is winning, the token
eventually traverses an arc ((c, x, C, t)), (x, x,R, t)) ∈ A, where (x, x,R, t) ∈ Tar .
Respectively, the cop will traverse (c, x) ∈ Et and capture the robber. ut

Theorem 3. Given a dynamic graph G = (G1, G2, . . . , GT ) in the offline case,
we can decide if coff (G) = 1, that is, if G is cop-win, in time O(n3T ).

Proof. By Lemma 1, it holds coff (G) = 1, if and only if, for a reachability game
(VC , VR,Tar) played on P = (S,A), where VC , VR,Tar are defined according to
the statement of Lemma 1, it holds (∅, ∅, C, 0) ∈ WC . By Theorem 2, we decide
whether (∅, ∅, C, 0) ∈WC in time O(|S|+ |A|) = O(n2T + n3T ) = O(n3T ). ut

An important remark is that, in Theorem 1 [5, 21], the winning strategy derived
for player p ∈ {C,R} is memoryless; see Proposition 2.18 in [27]. In other words,
it only depends on the current position of the token, and not on any past moves.
By the reduction presented in Lemma 1, the winning strategy for the cop/robber
is also memoryless: it only depends on the current positions of the cop, the
robber, and the time step of evolution.

Let us conclude this part by explaining how the above framework can be
generalized, and therefore used to determine whether a dynamic graph G =
(G1, G2, . . . , GT ) is k-cop-win, when k > 1. Since k cops are placed on V through-
out the game, it suffices to expand our definition of states by substituting the
cop position by a k-tuple of cop positions. That is, the state set S of the config-
uration graph P now contains tuples of the form ((c1, c2, . . . , ck), r, p, t), where
ci, for i ∈ {1, 2, . . . , k}, denotes the location of the i-th cop in V . For the arc set,
with respect to C, we add (((c1, c2, . . . , ck), r, C, t), ((c′1, c′2, . . . , c′k), r,R, t)) ∈ A,
if for each i ∈ {1, 2, . . . , k} it holds c′i ∈ Nt[ci]. With respect to R, we get
(((c1, c2, . . . , ck), r,R, t), ((c1, c2, . . . , ck), r′, C, t + 1)) ∈ A, if it holds r′ ∈ Nt[r].



8 S. Balev et al.

Again, we include auxiliary states and arcs to cater for the initial placements.
Overall, we now get |S| ∈ O(nk+1T ), and |A| ∈ O(n2k+1T ), since for the
dominant-in-magnitude number of C-turn arcs there exist at most n2k cop transi-
tions from (c1, c2, . . . , ck) to (c′1, c

′
2, . . . , c

′
k). By reapplying the whole framework

with Tar = {((c1, c2, . . . , ck), r, p, t) | ci = r for some 1 ≤ i ≤ k} we conclude:

Corollary 1. Given a dynamic graph G = (G1, G2, . . . , GT ) and an integer k ≥
1 in the offline case, we can decide if coff (G) ≤ k, i.e., if G is k-cop-win, in time
O(n2k+1T ).

We may now run a search utilizing the result in Corollary 1 and derive an
exponential time algorithm to determine the exact value of coff (G).

Corollary 2. For some dynamic graph G, with an associated time horizon T ,
the problem of determining the exact value of coff (G) is in EXPTIME.

4 Online Case

In the online case, we are given an underlying graph G = (V,E) and an indefinite
number of discrete time steps of evolution t = 1, 2, 3, . . ., that is, time evolution
may take place ad infinitum. At each time step t, an instance Gt = (Vt, Et) is
realized, where Vt = V , Et ⊆ E. The only assumption we make on the topology
of generated instances, is that we require each Gt to be connected. Note that this
is a widely used assumption in several dynamic graphs appearing in literature
[12, 28]. Removing this assumption could lead to trivial cases where, for instance,
the k cops or the robber lie indefinitely on isolated vertices.

Initially, the cops and then the robber place themselves on V before the
appearance of G1. In the general case, neither the cops nor the robber have any
knowledge about the evolution sequence. The cops and the robber, taking turns
in this order, make their respective moves in Gt, then Gt+1 is generated, and
so forth. Similarly to the offline case, a token at vertex v moves to a vertex in
Nt[v] (all the cops move simultaneously). Let ct(G) stand for the temporal cop
number, the worst-case minimum number of cops required to capture a robber for
an underlying graph evolving like described above. In our analysis, we consider
worst-case scenarios for the temporal cop number; a different type of analysis is
left for future work. In other words, for our bounds to follow, one may assume
the robber controls the dynamics of G to its advantage. Hence, at round t, the
robber defines instance Gt according to the aforementioned restrictions.

Preliminary Bounds. As a warm up, let us consider two special cases for the
topology of the underlying graph: a tree, and a complete graph.

Proposition 1. For any tree T , it holds ct(T ) = 1.

Proof. Since, for any time step t, Gt must be connected, it follows Gt = T .
Since the topology of the tree remains static over time, it holds ct(T ) = c(T ). It
suffices to verify c(T ) = 1 for any T [26]. ut
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Proposition 2. For any complete graph Kn, n ≥ 2, it holds ct(Kn) = n− 1.

Proof. It holds ct(Kn) ≤ n− 1, since we can initially place n− 1 cops on n− 1
distinct vertices at Kn. The robber places itself on the only cop-free vertex. Then,
G1 is realized: since G1 is connected, there exists at least one edge connecting a
cop-vertex to the robber-vertex. The corresponding cop traverses that edge and
captures the robber at the first cop turn.

We now demonstrate ct(Kn) > n − 2. The n − 2 cops are initially placed
on vertices of V . The robber places itself on a cop-free vertex. Regardless of
the cops placement, at any time, there are always at least two cop-free vertices.
Without loss of generality, for each time t, Gt is a path v1, v2, . . . , vn−1, vn with
the currently cop-free vertices at one end of the path. For example, the robber lies
on v1, and v2 (and possibly other vertices) are cop-free. The cops move during
their turn, but they cannot capture the robber: Since the number of cop-free
vertices is at least two, a cop can only reach a vertex at distance at least one
from the robber (v2). The robber remains at its position indefinitely and avoids
capture. ut

The above propositions cast some intuition on the relationship between the
(static/classical) cop number c(G) and our introduced temporal cop number
ct(G). For the static case, it is easy to see that if G is either a tree or a clique
then c(G) = 1. However, in the temporal case ct(T ) = 1 for a tree T , and
ct(Kn) = n − 1 for any clique on n ≥ 2 vertices. Intuitively, the denser the
underlying graph is, the more leeway there is for the robber due to worst-case
dynamics. Overall, for any graph G, ct(G) ≤ n − 1, since initially placing the
n− 1 cops on distinct vertices guarantees an edge between a cop-vertex and the
robber-vertex in G1 due to connectedness. Thus, for the ratio of the two cop
numbers, we get 1 ≤ ct(G)/c(G) ≤ n− 1.

We now provide a preliminary bound on ct(·) by considering a subset of
sparse graphs, that is, underlying graphs with at most linear number of edges.

Theorem 4. For any graph G = (V,E), m = n− 1 + λ, it holds ct(G) ≤ λ+ 1.

Proof. To describe the cop-winning strategy, let us define a partition of the
vertices into VC and VR such that V = VC ∪ VR and VC ∩ VR = ∅. Intuitively,
VC stands for the cop-secured vertices, i.e., vertices the robber will never be able
to visit, whereas VR stands for the vertices (possibly) still within the eventual
reach of the robber. More precisely, the cop strategy below builds a sequence
of partitions (VC , VR) where VC is a set of vertices the robber will never be
able to visit, VR contains the other vertices and the cardinality of VR strictly
decreases at each time step. This strategy may not be the fastest as VR may
contain robber-unreachable vertices, but this is not required for the proof.

Consider the situation before some round t. Let T denote some (arbitrary)
spanning tree of G. We refer to the edges of T as the black edges and to any path
consisting only of black edges as a black path. We refer to all other edges, which
are exactly λ, as the blue edges. Suppose there is one cop at one extremity of
each blue edge. Note that several cops may lie on the same vertex. We refer to
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these cops as the blue cops. One last cop, the black cop, is placed on some other
(blue-cop free) vertex, say x ∈ V . The robber is on a cop-free vertex, say r ∈ V .
For a visual assistance for the rest of the proof, please refer to Figure 1.

Consider the spanning tree T : there exists a unique (black) path from x to
r. Let (x, x′) be the first edge of this path. If this edge is removed from the
black tree T , T is split into two black subtrees containing x and x′ respectively,
namely Tx and Tx′ . Then, let VC = V (Tx) and VR = V \ VC = V (Tx′). Notice
that it holds r ∈ VR with this partition.

By construction, the cut associated to (VC , VR) contains exactly one black
edge, (x, x′), plus (possibly) some blue edges. Since Gt is connected for all time
steps t, at least one edge associated to the cut is present in Et. If the black edge
(x, x′) is present, then the black cop moves from x to x′ during the cops turn.
Otherwise, if only a blue edge, say (v, v′), where v ∈ VC , is present, then the
associated cop moves from v to v′ (or remains at v′ if it were already there).
Now, we swap the role of the two edges. That is, (v, v′) becomes a black edge,
and its associated cop becomes the black cop, whereas (x, x′) becomes a blue
edge, and its associated cop becomes a blue cop. By construction, the set of
black edges defines a new black spanning tree T ′: the unique black path from
v to v′ is replaced by the new black edge (v, v′). (Notice that, in the previous
swap-less case, we trivially had T ′ = T ). Afterwards, the robber may move at
its turn; we still refer to its position by r. Even after the robber moves, it holds
r ∈ VR\{v′}: there is no edge the robber could use to reach VC since all cut-edges
are protected, and v′ is occupied by the black cop.

Before the next round of the game, let us now reapply the method used
to obtain the partition on Gt+1. Let x = v′ stand for the black cop’s current
position, and set T = T ′. Consider again the unique black path from x to r, and
denote by (x, x′) its first edge. By construction of T , there is a unique black path
from x to all vertices of VC . Hence, if T is split as before into two subtrees after
removing edge (x, x′), the resulting subtree Tx contains x and also all vertices
of former VC (and possibly more vertices). Then, let us set VC = V (Tx) and
VR = V \ VC = V (Tx′). As there is still one cop on one extremity of each blue
edge, the vertices of VC are unreachable by the robber.

Let us now consider the very first step. We start from an arbitrary spanning
tree, denoted by T , whose edges are the black ones, the other being the blue
ones. For the initial positions, let us place one cop at one extremity of each blue
edge. One last cop, the black cop, is placed on some other (blue-cop free) vertex,
say x ∈ V . Then, the robber chooses a cop-free vertex, say r ∈ V , for its initial
place. Edge (x, x′), and sets VC and VR are similarly defined, hence the vertices
of VC are unreachable by the robber. The cardinality of VR is at most n− 1.

If we inductively apply the above method for the cops, it follows that after
each round, the number of vertices of VR, which contains the vertices reachable
by the robber, is strictly decreased. It will eventually reach the value of zero and
the robber will be captured in at most n rounds. ut

The above result provides a better upper bound than the easy to see ct(G) ≤
n − 1, for sparse graphs when λ ≤ n − 3. For λ = 1, cycle graphs are a tight
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x x'

robber space
cop space

Fig. 1: A depiction for the proof of Theorem 4. The black cop lies on x, with x′

at the other side of the cut. Colored vertices/edges indicate blue cops/edges.

example. We demonstrate the result is nearly tight for certain graph families,
see Theorem 5 in the next part of this section.

A nearly tight graph family for sparse graphs. We hereby consider the graph
family G = {Gλ | λ mod 2 = 1 ∧ λ ≥ 5} for sufficiently large odd values of λ ∈ N.
We define the vertex set as V (Gλ) = {v1, v2, . . . , v2λ−2, v′1, v′2, . . . , v′2λ−2}. For i =
1, 2, . . . , 2λ−2, let (vi, v(i+1) mod (2λ−2)) ∈ E(Gλ) and (vi, v

′
i) ∈ E(Gλ). Note, we

assume v0 ≡ v2λ−2 for the use of modulo above. Also, for i = 1, 3, 5, . . . , 2λ−3, let
(v′i, v

′
i+1) ∈ E(Gλ). Overall, it holds n = |V (Gλ)| = 4λ− 4 and m = |E(Gλ)| =

2(2λ−2)+(2λ−2)/2 = 5(2λ−2)/2 = 5λ−5 = n−1+λ. Intuitively, Gλ is a cycle
on 2λ−2 vertices where another λ−1 disjoint 4-cycles are attached. An example
depiction is given in Figure 2. Notice that Gλ becomes a tree by the removal of
λ edges, for example, the λ − 1 edges (v′i, v

′
i+1), for i = 1, 3, 5, . . . , 2λ − 3 and

another edge (vj , vj+1) for some j ∈ {1, 2, . . . , 2λ− 3}.
Theorem 5. For any Gλ ∈ G, it holds ct(Gλ) = λ− 1.

This theorem is a direct consequence of the two lemmata that follow, which
demonstrate the corresponding (worst-case) upper and lower bound strategies.

Lemma 2. For any Gλ ∈ G, it holds ct(Gλ) ≤ λ− 1.
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v1 v′1

v2

v′2v3

v′3

v4

v′4

v5

v′5

v6

v′6

v7v′7

v8

v′8
v9

v′9

v10

v′10

v11

v′11

v12

v′12

Fig. 2: The graph G7 ∈ G.

Proof. We present a strategy for λ − 1 cops to win against the robber under
any dynamics and/or robber strategy. Initially, the λ − 1 cops are placed as
follows: place one cop at vi for each i = 2, 6, 10, . . . , 2λ − 4 and for each i =
3, 7, 11, . . . , 2λ−3. To verify, since there are two sequences of cops using a distance
4 step, overall the number of cops is 2(2λ − 2)/4 = λ − 1. For an example
placement on G7, see Figure 3. Then, the robber places itself at some cop-free
vertex. By symmetry of Gλ and cop placement, without loss of generality, we
assume the robber places itself on some vertex in R := {v4, v5, v′3, v′4, v′5, v′6}. In
the cop strategy we will now propose, the robber will never be able to escape
this set of vertices. Therefore, we restrict the proof to the subgraph induced by
{v2, v3, v4, v5, v6, v7, v′3, v′4, v′5, v′6}, see Figure 4a, and will demonstrate how the
four cops in this subgraph can always capture a robber with an initial placement
within R. For all robber turns below, we assume the robber always remains
within R; by our strategy, it is impossible for the robber to move outside R since
it would mean “jumping” over a cop.

The cops’ strategy is the following. Since the instance needs to be connected
at each time step, at least one edge in {(v2, v3), (v6, v7)} is available. By symme-
try, without loss of generality, assume (v6, v7) is present and the cop on v7 moves
to v6, see Figure 4b. It suffices to prove that the cops have a winning strategy
starting from this configuration.

In the next round (following Figure 4b), the cops move as follows. If (v6, v
′
6)

is available, then one of the cops moves to v′6 (Case 1, Figure 5a). Otherwise,
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v′6

v7v′7
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1

1

1

1

1

1

Fig. 3: The initial positions for cops in graph G7 ∈ G. In all figures, an integer
within a vertex stands for the number of cops currently placed on the vertex.

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

1111

(a) Initial positions for cops in subgraph.

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

112

(b) After the first move: a cop moved
from v7 to v6.

Fig. 4: The first move of the cop strategy

if (v6, v
′
6) is not available, in order to ensure connectivity of the instance, either

(v6, v5) is available, and one cop moves to v5 (Case 2, Figure 6a), or (v2, v3) is
available and one cop moves to v3, so that two cops lie on v3 (Case 3, Figure 7a).
In all cases, the robber takes its turn in R.

In Case 1, at least one cop can move to vertex v′5 (Case 1a, Figure 5b), v5
(Case 1b, Figure 5c), or v3 (Case 1c, Figure 5d) by connectivity of the instance.
In Case 1a, either one cop can move to v5 or to v3, otherwise the instance is
disconnected. If a cop moves to v5, the robber lies within {v4, v′3, v′4} and at the
next step a cop traverses either (v5, v4) (hence the robber is trapped on v′3 or
v′4 and loses within the next two rounds) or (v2, v3) (hence at the next round
either a cop arrives at v4 and the robber is blocked or a cop arrives at v′3 and
the robber loses at the following round). In Case 1b, the robber loses if it was
on v′5. Otherwise, a cop can traverse either (v5, v4) or (v2, v3) and the rest of the
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strategy is the same as for Case 1a. In Case 1c, at least one cop can move to a
vertex in {v5, v′5, v4, v′3}. Similarly to above, in all subcases, it is easy to see that
the cops win in at most two steps against any robber position/movement.

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

111

1

(a) Case 1

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

111

1

(b) Case 1a

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

111

1

(c) Case 1b

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

21

1

(d) Case 1c

Fig. 5: Case 1 analysis for the proof of Lemma 2

In Case 2, if the robber lies on v′5 or v′6, it is easy to see the cops win in at
most two steps, since connectivity to the rest of the graph must be maintained.
Instead, if the robber lies in {v4, v′3, v′4}, then a cop traverses either (v5, v4) (Case
2a, Figure 6b) or (v2, v3) (Case 2b, Figure 6c). In Case 2a, we arrive to 4-cycle
{v3, v4, v′3, v′4} with cops on v4 and v3, and as before, the cops win in at most
two steps. In Case 2b, again by preservation of connectivity, at least one edge in
{(v5, v4), (v3, v4), (v3, v

′
3)} must be available and one cop moves to either v4 or

v′3. In either case, the cops win in at most another two steps.

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

111 1

(a) Case 2

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

111 1

(b) Case 2a

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

211

(c) Case 2b

Fig. 6: Case 2 analysis for the proof of Lemma 2
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v2v3v4v5v6v7

v′6 v′5 v′4 v′3

22

(a) Case 3

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

21

1

(b) Case 3a

v2v3v4v5v6v7

v′6 v′5 v′4 v′3

21 1

(c) Case 3b

Fig. 7: Case 3 analysis for the proof of Lemma 2

In Case 3, before they take this new turn, two cops lie on v6 and another two
cops lie on v3. By preservation of connectivity, at least one cop can reach a vertex
in {v′6, v5, v4, v′3}. By symmetry, it suffices to consider the worst-case scenarios
where a cop arrives on v′6 (Case 3a, Figure 7b) and v5 (Case 3b, Figure 7c). We
notice Case 3a is the same as Case 1c and Case 3b the same as Case 2b. ut

To help us with the matching lower bound to follow, we hereby provide
some useful definitions and claims on cop movement restrictions on Gλ incurred
by worst-case dynamics. From now on, all vertex indices are assumed to be
modulo 2λ − 2 with v0 ≡ v2λ−2. For i = 1, 2, . . . , λ − 1, let loop Li refer to
the 4-cycle with V (Li) = {v2i−1, v2i, v′2i−1, v′2i} and let its edge-set be defined
as E(Li) = {(v2i−1, v2i), (v′2i−1, v′2i), (v2i−1, v′2i−1), (v2i, v

′
2i)}. We say that Li is

cop-occupied if at least one cop lies at some vertex in V (Li), otherwise, Li is
cop-free. We say that a cop crosses Li if, starting from vertex v2i−1 (cross-
start vertex), it can eventually arrive to vertex v2i (cross-end vertex), or vice
versa. We refer to a (counterclockwise-movement) crossing from v2i−1 to v2i as
a cc-crossing and to a (clockwise-movement) crossing from v2i to v2i−1 as a c-
crossing. A cop trivially cc-crosses Li if it already lies on v2i or v2i+1, i.e., the
counterclockwise neighbor of v2i. Respectively, a cop trivially c-crosses Li if it
already lies on v2i−1 or v2i−2, i.e., the clockwise neighbor of v2i−1. The intuition
behind Proposition 3 is that, while a number of cops crosses a loop, at least one
of them must stay behind, that is, will not be able to ever cross the loop due to
worst-case dynamics.

Proposition 3. Assume we focus on a given loop Li ⊂ V (Gλ) and at most one
edge in E(Li) is not present at each time step of evolution. In the worst case, at
most ρ cops can cross Li, if ρ+ 1 cops are present at the cross-start vertex.

Proof. Without loss of generality, consider loop L1 = {v1, v2, v′1, v′2} and suppose
ρ + 1 cops lie on v1 and wish to cross to v2. The dynamics of the graph evolve
as follows: for each t, if at the end of round t there is at least one cop on v1,
then (v1, v2) 6∈ Et+1. Otherwise, (v′1, v

′
2) 6∈ Et+1. In other words, as long as

there is a cop on v1, the edge to v2 is blocked. The cops could take advantage
of this situation such that at most ρ of them reach v2 via the available path
v1, v

′
1, v
′
2, v2. If at any time v1 is cop-free, then the above path is blocked and

(v1, v2) is available, however no cop is there to traverse it and cross the loop.
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The last remaining cop cannot cross since it would mean that, at some point
in time, either v1 is cop-occupied and (v1, v2) is available or v1 is cop-free and
(v′1, v

′
2) is available, a contradiction to the specified dynamics. ut

Assume strictly fewer than λ−1 cops initially place themselves at the vertices
of Gλ. Since there are λ − 1 loops, there exists at least one cop-free loop Li.
In general, after the cops are initially positioned, Gλ can be partitioned into
alternating sequences of cop-occupied and cop-free loops Li. Let O1, . . . , Op,
respectively F1, . . . , Fp, stand for the sequences of cop-occupied, respectively cop-
free loops, where F1 is set arbitrarily, and we assume Fi is between Oi (clockwise)
and Oi+1 (counterclockwise). Moreover, for i = 1, 2, . . . , p, let |Fi| = fi and
|Oi| = oi. The cardinality p of the two sequence sets is the same, since two non-
maximal adjacent cop-occupied subsequences, i.e., with no cop-free loop between
them, form one bigger cop-occupied sequence; a similar observation holds for
cop-free sequences. By the reasoning above, it holds p ≥ 1. An example initial
placement on G7 is given in Figure 8: The sequences of cop-occupied and cop-free
loops formed are O1 = {L6, L1, L2}, F1 = {L3}, O2 = {L4}, and F2 = {L5}.

v1 v′1

v2

v′2v3

v′3

v4

v′4

v5

v′5

v6

v′6

v7v′7

v8

v′8
v9

v′9

v10

v′10

v11

v′11

v12

v′12

1

1

1

1

1

1

L1

L2

L3

L4

L5

L6

Fig. 8: An example initial placement of λ− 2 = 5 cops on G7.

The following proposition provides us with a necessary condition in order for
the cops to win against a robber placed on some cop-free sequence of loops. For
a sequence F = {L1, L2, . . . , Lf}, let V (F ) = ∪fi=1V (Li).
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Proposition 4. Let F = {L1, L2, . . . , Lf} be a cop-free sequence of loops with
the robber lying on some vertex within V (F ) not adjacent to a cop. Let Lcc,
respectively Lc, stand for the cop-occupied loop adjacent to the counter clockwise
of F , respectively to the clockwise of F . At least f+1 cops must be able to c-cross
Lcc, and another f + 1 cops to cc-cross Lc, in order for the cops to win.

Proof. In contradiction, and without loss of generality, assume whenever f + 1
cops can cc-cross Lc at most f cops can c-cross Lcc. Assume Lf is counter-
clockwise adjacent to Lcc, Li+1 is counterclockwise adjacent to Li for i =
1, 2, . . . , f−1, and Lc is counterclockwise adjacent to L1; see Figure 9. From now
on, consider that the dynamics of the graph force the single edge connecting Lc
to L1 to be unavailable in all graph instances. So, no cop may leave Lc and reach
L1 in F by moving counterclockwise and each graph instance remains connected.

LcL1L2Lf−1LfLcc · · ·

Fig. 9: Loop numbering for a cop-free sequence F = {L1, L2, . . . , Lf}. Left stands
for counterclockwise direction in Gλ, respectively right for clockwise direction.

Having crossed Lcc, the f cops may all move to Lf . By Proposition 3, at
most f −1 cops can c-cross Lf . For some i ≥ 1, assume f − i cops have c-crossed
Lf+1−i. Then, by Proposition 3, at most f − i− 1 = f − (i+ 1) cops can c-cross
Lf+1−(i+1). Overall, by induction, at most f − i cops are able to c-cross Lf+1−i.
For i = f − 1, at most f − (f − 1) = 1 cop is able to c-cross L2.

To win, the robber has a feasible strategy to evade indefinitely, that is, to be
placed at the vertex in L1 connected by the (always unavailable) edge to Lc as
discussed above. No cop can arrive to L1 from Lc due to the missing edge, and
since at most 1 cop can c-cross L2, no cop can ever c-cross L1. ut

Now, we are ready to show, in Proposition 5, how the robber can identify a
cop-free sequence to employ the winning strategy demonstrated in Proposition 4.

For integers i, wi, w
′
i, where 1 ≤ i ≤ λ − 1, 0 ≤ wi ≤ p − 1, 0 ≤ w′i ≤

p − 1, let Fc(i, wi) = {Fi, Fi−1, . . . , Fi−wi
} stand for the set including Fi and

the wi cop-free sequences nearer to Fi in clockwise fashion, and Fcc(i, w
′
i) =

{Fi, Fi+1, . . . , Fi+w′
i
} stand for the set including Fi and the w′i cop-free se-

quences nearer to Fi in counterclockwise fashion. In a similar manner, for the
cop-occupied sequences, let Oc(i, wi) = {Oi, Oi−1, . . . Oi−wi

} and Occ(i, w
′
i) =

{Oi, Oi+1, . . . , Oi+w′
i
}. For a cop-occupied sequence Oi, we say that oi = |Oi|

cops (choosing one per loop in Oi) are its occupant cops. If strictly more than oi
cops lie at vertices of Oi, then this surplus of cops are referred to as extra cops.

Proposition 5. If there exists a cop-free sequence Fi in Gλ such that at least
one of the following holds:
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(a) strictly fewer than
∑
Fj∈Fc(i,wi)

fj extra cops lie within vertices in Oc(i, wi),
for all integers wi, where 0 ≤ wi ≤ p− 1,

(b) strictly fewer than
∑
Fj∈Fcc(i,w′

i)
fj extra cops lie within vertices in Occ(i +

1, w′i), for all integers w′i, where 0 ≤ w′i ≤ p− 1,

then the robber wins.

Proof. Assume the cops are initially placed and the robber is able to identify
a cop-free sequence Fi = {L1, . . . , Lfi}, where, for i = 1, 2, . . . , fi − 1, Li is
counterclockwise adjacent to Li+1, L1 is clockwise adjacent to Lc and Lfi is
counterclockwise adjacent to Lcc, like in Figure 9, such that at least one of (a)
and (b) holds. Without loss of generality, we hereby consider only case (a); the
other case follows in similar manner by symmetry.

The robber strategy is simply to place itself at vertex v in Lfi , which is
adjacent to vertex u in Lcc and, from now on, consider that the dynamics always
force edge (v, u) to be unavailable. We now show that no cop can cc-cross Lfi ,
therefore the robber wins.

For wi = 0, strictly fewer than fi extra cops lie in Oc(i, 0) = {Oi}. Hence,
by using only cops within Oc(i, 0), at most fi cops can cross Lc: the extra cops
in Oi and, by Proposition 3, at most one occupant cop, e.g., the one occupying
Lc by its initial placement. By Proposition 4, the robber wins.

Inductively, assume that, for some w where 0 < w < p− 1, for all wi ≤ w it
holds that, by only using cops within Oc(i, wi), at most fi cops can cross Lc. If
we consider w + 1, by assumption, for wi = 0, 1, . . . , w + 1, strictly fewer than∑
Fj∈Fc(i,wi)

fj extra cops lie within Oc(i, wi). Let f ′ <
∑
Fj∈Fc(i,w) fj be the

number of extra cops within Oc(i, w) and f ′′ <
∑
Fj∈Fc(i,w+1) fj be the number

of extra cops within Oc(i, w + 1). Then, f∗ = f ′′ − f ′ ≥ 0 extra cops lie within
Oc(i, w + 1) \Oc(i, w) = {Oi−(w+1)}. We consider two cases:

– If f∗ ≥ fi−(w+1), by inductively applying Proposition 3, move fi−(w+1) out
of the f ′ extra cops in Oi−(w+1) to become occupant cops of all the free
loops in Fi−(w+1). Since there is no free loop left between the original se-
quences Oi−w and Oi−(w+1), we now reset Oi−w to a larger sequence O′i−w
containing all loops in Oi−w, Fi−(w+1), Oi−(w+1). The number of extra cops
within vertices in O′c(i, w) = Oc(i, w) \ {Oi−w} ∪ {O′i−w} is f ′′ − fi−(w+1) <∑
Fj∈Fc(i,w+1) fj − fi−(w+1) =

∑
Fj∈Fc(i,w) fj . By the inductive assumption

for w, by only using cops within O′c(i, w), at most fi cops can cross Lc. Since
at most fi cops can cross Lc for all possible wi ≤ w, then by Proposition 4,
the robber wins.

– If f∗ < fi−(w+1), by inductively applying Proposition 3, move all f∗ extra
cops in Oi−(w+1) to become occupant cops of some free loops in Fi−(w+1).
Let F ∗, where |F ∗| = f∗, denote the formerly free loops which are now
occupied. We now reset Oi−(w+1) to a larger sequence O′i−(w+1) containing

all loops in F ∗ and Oi−(w+1). We wish to use cops only within O′c(i, w+1) =
Oc(i, w + 1) \ {Oi−(w+1)} ∪ {O′i−(w+1)}. Since no extra cops remain within

O′i−(w+1), we focus only on the number of extra cops within Oc(i, w). By
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assumption, their number is f ′ <
∑
Fj∈Fc(i,w) fj and the proof follows as in

the first case.
ut

Proposition 6. Assume strictly fewer than λ − 1 cops are initially placed on
Gλ. Then, there exists a cop-free sequence Fi in Gλ such that at least one of
conditions (a) and (b) in Proposition 5 holds.

Proof. Since strictly fewer than λ − 1 cops are initially placed on Gλ, and Gλ
has exactly λ− 1 loops Li, then by pigeonhole principle there exists at least one
loop with no cop on its vertices, and so at least one cop-free sequence in Gλ.

By contradiction, suppose that for every cop-free sequence Fi in Gλ (i) there
exists wi such that at least

∑
Fj∈Fc(i,wi)

fj extra cops lie within Oc(i, wi), and

(ii) there exists w′i such that at least
∑
Fj∈Fcc(i,w′

i)
fj extra cops lie within Occ(i+

1, w′i). Consider some cop-free sequence, say Fi1 , without loss of generality. By
(ii), there exists some (minimum-value) wi1 such that at least

∑
Fj∈Fcc(i1,wi1

) fj

extra cops lie within Occ(i1 + 1, wi1). Let Fi2 = Fi1+1+wi1
be the first cop-

free sequence to the counterclockwise of Occ(i1 + 1, wi1). Then, by (ii), there
exists some (minimum-value) wi2 such that at least

∑
Fj∈Fcc(i2,wi2

) fj extra cops

lie within Occ(i2 + 1, wi2). We proceed with such statements, inductively, until
we reach Fil , for which there exists (minimum-value) wil such that at least∑
Fj∈Fcc(il,wil

) fj extra cops lie within Occ(il + 1, wil) and il + 1 +wil ≥ p+ i1.

That is, we have performed a full round on Gλ. There are three cases to consider
with respect to the value il + 1 + wil .

– If il+1+wil = p+ i1, then, for iz = i1, i2, . . . , il, sets Occ(iz +1, wiz ) form a
partition of the cop-occupied space in Gλ. By assumption, for each such iz, at
least

∑
Fj∈Fcc(iz,wiz )

fj extra cops lie within Occ(iz+1, wiz ). Summing it all,∑l
z=1

∑
Fj∈Fcc(iz,wiz )

fj =
∑p
j=1 fj extra cops lie within the cop-occupied

sequences, since ∪lz=1Fcc(iz, wiz ) contains all cop-free loops in Gλ.
– If il + 1 + wil = p + iy, for some y > 1, then the last interval fully covers

some already defined intervals starting at i1, i2, . . . , iy−1. In this case, for
iz = iy, iy+1, . . . il, sets Occ(iz + 1, wiz ) form a partition of the cop-occupied
space in Gλ. By assumption, for each such iz, at least

∑
Fj∈Fcc(iz,wiz )

fj extra

cops lie within Occ(iz + 1, wiz ). Summing it all together as in the previous

case, at least
∑l
z=y

∑
Fj∈Fcc(iz,wiz )

fj =
∑p
j=1 fj extra cops lie within the

cop-occupied sequences.
– If p + iy < il + 1 + wil < p + iy+1, for some y > 1, then the last interval

fully contains intervals starting at i1, i2, . . . , iy−1 and partially overlaps with
interval iy. Let il + 1 + wil = p + iy + x for some 1 ≤ x ≤ iy+1 − iy. There
are strictly fewer than fiy + fiy+1 + . . .+ fiy+x−1 extra cops within vertices
in Oiy+1, . . . , Oiy+x, otherwise the choice of wiy would not be minimum. As
an implication, there are at least fiy+x + . . . + fiy+wiy

extra cops within
Oiy+x+1, . . . , Oiy+wiy+1. Also, by assumption, at least fil +fil+1 + . . .+f1 +
. . .+fiy+x−1 extra cops lie within vertices in Oil+1, Oil+2, . . . , O1, . . . , Oiy+x.
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Overall, at least fil +fil+1+. . .+f1+. . .+fiy+x−1+fiy+x+. . .+fiy+wiy
extra

cops lie within Oil+1, Oil+2, . . . , O1, . . . , Oiy+x, Oiy+x+1, . . . , Oiy+wiy+1. For
the rest of the graph, for z = y+1, . . . , l−1, at least

∑
Fj∈Fcc(iz,wiz )

fj extra

cops lie within Occ(iz + 1, wiz ). Summing it all together, at least
∑p
j=1 fj

extra cops lie within the cop-occupied sequences, since each fj is considered
once in the above calculations.

In all three cases, considering occupant guards and extra guards together, it
follows there are at least

∑p
i=1(oi + fi) = λ− 1 cops in Gλ, since the number of

loops in all the sequences is exactly the number of loops in Gλ. ut

Lemma 3. For any Gλ ∈ G, it holds ct(Gλ) ≥ λ− 1.

Proof. Follows by the combination of Propositions 5 and 6. ut

5 Conclusions

In this paper, we consider the topic of playing Cops and Robbers games on dy-
namic graphs. We show how the cop number can be computed in the offline case,
where all graph dynamics are known a priori, via a reduction to a reachability
game. In the online case with a connectedness restriction, we show a nearly tight
bound on the cop number of a family of sparse graphs.

In the future, considering the online case, we would like to tighten the bound
for sparse graphs, and also consider dense graphs.
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