M. Altenhoff, S. Afimann, J. F. Perlitz, F. J. Huber, and S. Will, Soot aggregate sizing in an extended premixed flame by high-resolution twodimensional multi-angle light scattering (2d-mals), Applied Physics B, vol.125, p.176, 2019.

M. Altenhoff, S. Afimann, C. Teige, F. J. Huber, and S. Will, An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy, Journal of Aerosol Science, vol.139, p.105470, 2020.

G. Beaucage, Approximations leading to a unified exponential/powerlaw approach to small-angle scattering, Journal of Applied Crystallography, vol.28, pp.717-728, 1995.

G. Beaucage, H. K. Kammler, R. Mueller, R. Strobel, N. Agashe et al., Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation, Nature Materials, vol.3, p.370, 2004.

A. Bescond, J. Yon, F. Ouf, D. Ferry, D. Delhaye et al., Automated determination of aggregate primary particle size distribution by tem image analysis: application to soot, Aerosol Science and Technology, vol.48, pp.831-841, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02614020

C. Betrancourt, F. Liu, P. Desgroux, X. Mercier, A. Faccinetto et al., Investigation of the size of the incandescent incipient soot particles in premixed sooting and nucleation flames of n-butane using lii, him, and 1 nm-smps, Aerosol Science and Technology, vol.51, pp.916-935, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336601

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson et al., Influence of soot particle aggregation on time-resolved laser-induced incandescence signals, Applied Physics B, vol.104, pp.331-341, 2011.

M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, A novel approach for insitu soot size distribution measurement based on spectrally resolved light, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01965562

, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.225, pp.58-68

A. Brasil, T. Farias, and M. Carvalho, A recipe for image characterization of fractal-like aggregates, Journal of Aerosol Science, vol.30, pp.26-35, 1999.

G. Bushell and R. Amal, Fractal aggregates of polydisperse particles, Journal of colloid and interface science, vol.205, pp.459-469, 1998.

G. Bushell and R. Amal, Measurement of fractal aggregates of polydisperse particles using small-angle light scattering, Journal of colloid and in terface science, vol.221, pp.186-194, 2000.

G. Bushell, Y. Yan, D. Woodfield, J. Raper, and R. Amal, On techniques for the measurement of the mass fractal dimension of aggregates, Advances in Colloid and Interface Science, vol.95, issue.00, pp.78-84, 2002.

J. Cai, N. Lu, and C. M. Sorensen, Analysis of fractal cluster morphology parameters: structural coefficient and density autocorrelation function cutoff, Journal of Colloid and Interface Science, vol.171, pp.470-473, 1995.

D. Cortes, J. Moran, F. Liu, F. Escudero, J. L. Consalvi et al., Effect of fuels and oxygen indices on the morphology of soot generated in laminar coflow diffusion flames, Energy & fuels, vol.32, pp.11802-11813, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02177278

P. Debye, H. Anderson, and H. Brumberger, Scattering by an inhomogeneous solid. ii. the correlation function and its application, Journal of applied Physics, vol.28, pp.679-683, 1957.

R. Dobbins and C. Megaridis, Absorption and scattering of light by polydisperse aggregates, Appl. Opt, vol.30, pp.4747-4754, 1991.

M. L. Eggersdorfer and S. E. Pratsinis, The structure of agglomérâtes consisting of polydisperse particles, Aerosol science and technology, vol.46, pp.347-353, 2012.

L. Ehrl, M. Soos, and M. Lattuada, Generation and geometrical anal ysis of dense clusters with variable fractal dimension, The Journal of Physical Chemistry B, vol.113, pp.10587-10599, 2009.

A. Filippov, M. Zurita, and D. Rosner, Fractal-like aggregates: rela tion between morphology and physical properties, Journal of colloid and interface science, vol.229, pp.261-273, 2000.

B. Gigone, A. E. Karatas, and O. L. Gulder, Soot aggregate morphology in coflow laminar ethylene diffusion flames at elevated pressures, Proceedings of the Combustion Institute, vol.37, pp.841-848, 2019.

L. Gmachowski, Calculation of the fractal dimension of aggregates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.211, pp.278-287, 2002.

W. R. Heinson, C. M. Sorensen, and A. Chakrabarti, A three parameter description of the structure of diffusion limited cluster fractal aggregates, Journal of colloid and interface science, vol.375, pp.65-69, 2012.

L. Isella and Y. Drossinos, Langevin agglomeration of nanoparticles interacting via a central potential, Physical Review E, vol.82, p.11404, 2010.

R. Jullien, The application of fractals to colloidal aggregation, Croatica Chemica Acta, vol.65, pp.215-235, 1992.

N. J. Kempema and M. B. Long, Combined optical and tem investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame, Combustion and Flame, vol.164, pp.373-385, 2016.

M. Kholghy, M. Saffaripour, C. Yip, and M. J. Thomson, The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for, p.90061, 2013.

P. Meakin, Fractal aggregates in geophysics, Reviews of Geophysics, vol.29, pp.317-354, 1991.

P. Meakin, A historical introduction to computer models for frac tal aggregates, Journal of Sol-Gel Science and Technology, vol.15, pp.97-117, 1999.

J. Moran, A. Fuentes, F. Liu, and J. Yon, Fracval: An improved tunable algorithm of cluster-cluster aggregation for generation of fractal structures formed by polydisperse primary particles, Computer Physics Communica tions, vol.239, pp.225-237, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02094957

J. Moran, J. Yon, and A. Poux, Monte carlo aggregation code (MCAC) part 1: Fundamentals, Journal of Colloid and Interface Science, vol.569, pp.184-194, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02494461

J. Moran, J. Yon, A. Poux, F. Corbin, F. X. Ouf et al., Monte carlo aggregation code (MCAC) part 2: Application to soot agglomeration, highlighting the importance of primary particles, Journal of Colloid and Interface Science, vol.575, pp.274-285, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02563051

T. Nicolai, D. Durand, and J. C. Gimel, Static structure factor of dilute solutions of polydisperse fractal aggregates, Physical Review B, vol.50, p.16357, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02318707

H. Oltmann, J. Reimann, and S. Will, Wide-angle light scattering (wals) for soot aggregate characterization, Combustion and Flame, vol.157, pp.516-522, 2010.

F. X. Ouf, S. Bourrous, C. Vallieres, J. Yon, and L. Lintis, Specific surface area of combustion emitted particles: Impact of primary particle diameter and organic content, Journal of Aerosol Science, vol.137, p.105436, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02275887

M. Rottereau, J. C. Gimel, T. Nicolai, and D. Durand, Monte carlo simulation of particle aggregation and gelation: Ii. pair correlation function and structure factor, The European Physical Journal E, vol.15, pp.141-148, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00020747

A. K. Singh and E. Tsotsas, A tunable aggregation model incorporated in monte carlo simulations of spray fluidized bed agglomeration, Powder Technology, vol.364, pp.417-428, 2020.

C. Sorensen, Light scattering by fractal aggregates: a review, 2001.

, Aerosol Science & Technology, vol.35, pp.648-687

C. Sorensen, J. Cai, and N. Lu, Test of static structure factors for describing light scattering from fractal soot aggregates, Langmuir, vol.8, 1992.

C. Sorensen, N. Lu, and J. Cai, Fractal cluster size distribution measurement using static light scattering, Journal of Colloid and Interface Science, vol.174, pp.456-460, 1995.

C. M. Sorensen, J. Cai, and N. Lu, Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames, Applied Optics, vol.31, pp.6547-6557, 1992.

C. M. Sorensen and G. C. Roberts, The prefactor of fractal aggregates, Journal of colloid and interface science, vol.186, pp.447-452, 1997.

Q. Tang, R. Cai, X. You, and J. Jiang, Nascent soot particle size distribu tions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame, Proceedings of the Combustion Institute, vol.36, pp.993-1000, 2017.

T. Thajudeen, R. Gopalakrishnan, and C. J. Hogan, The collision rate of nonspherical particles and aggregates for all diffusive knudsen numbers, Aerosol Science and Technology, vol.46, pp.1174-1186, 2012.

M. Wentzel, H. Gorzawski, K. H. Naumann, H. Saathoff, and S. Weinbruch, Transmission electron microscopical and aerosol dynamical characterization of soot aerosols, Journal of aerosol science, vol.34, pp.1347-1370, 2003.

M. Wozniak, F. Onofri, S. Barbosa, J. Yon, and J. Mroczka, Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggregates from tem images, Journal of Aerosol Science, vol.47, pp.12-26, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01459971

M. K. Wu and S. K. Friedlander, Note on the power law equation for fractal-like aerosol agglomerates, Journal of colloid and interface science, vol.159, pp.246-248, 1993.

J. Yon, F. X. Ouf, D. Hebert, J. B. Mitchell, N. Teuscher et al., Investigation of soot oxidation by coupling lii, saxs and scattering measurements, Combustion and Flame, vol.190, pp.441-453, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01675837

/. Doi,

B. Zhao, K. Uchikawa, and H. Wang, A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy, Proceedings of the Combustion Institute, vol.31, pp.851-860, 2007.