F. Kiessling, P. Nefzger, J. F. Nolasco, and U. Kaintzyk, Overhead Power Lines: Planning, Design, Construction, 2003.

L. Tian, H. Kim, T. Reidemann, I. Anderson, and A. Russell, Prospects for novel deformation processed Al/Ca composite conductors for overhead high voltage direct current (HVDC) power transmission composite structures, Electric Power Systems Research, vol.105, pp.105-114, 2013.

W. Xu, X. C. Liu, and K. Lu, Strain-induced microstructure refinement in pure Al below 100 nm in size, Acta Materialia, vol.152, pp.138-147, 2018.

Y. Ito, K. Edalati, and Z. Horita, High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship, vol.679, pp.428-434, 2017.

M. A. Haque and M. T. Saif, Mechanical behavior of 30-50 nm thick aluminum films under uniaxial tension, Scripta Materialia, vol.47, pp.863-867, 2002.

W. Xu and L. P. Dávila, Tensile nanomechanics and the Hall-Petch effect in nanocrystalline aluminium, Materials Science & Engineering A, vol.710, 2018.

H. J. Choi, S. W. Lee, J. S. Park, and D. H. Bae, Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders, Scripta Mater, vol.59, pp.1123-1126, 2008.

. Hall-petch-relation, N. Boundary-strengthening, and . Hansen, Scripta Mater, vol.51, pp.801-806, 2004.

M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang et al., Nanocrystalline Aluminum, vol.300, p.1275, 2003.

V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Deformation twinning in nanocrystalline Al by molecular dynamics simulation, Acta Materialia, vol.50, 2002.

Y. T. Zhu, X. Z. Liao, S. G. Srinivasan, Y. H. Zhao, and M. I. Baskes, Nucleation and growth of deformation twins in nanocrystalline aluminum, Applied Physics Letters, vol.85, pp.5049-5051, 2004.

, Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy, vol.8, p.6740, 2018.

D. S. Gianola, S. Van-petegem, M. Legros, S. Brandstetter, H. Van-swygenhoven et al., Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films, vol.54, pp.2253-2263, 2006.

A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon, and T. R. Mcnelley, Microstructural evolution in commercial purity aluminum during high-pressure torsion, Materials Science and Engineering A, pp.277-280, 2005.

, Influence of dislocation-solute atom interactions and stacking fault energy on grain size of singlephase alloys after severe plastic deformation using high-pressure torsion, Acta Materialia, vol.69, pp.68-77, 2014.

X. Sauvage, E. V. Bobruk, M. Yu, Y. Murashkin, N. A. Nasedkina et al., Optimization of electrical conductivity and strength combination by nanoscale structure design in an Al-Mg-Si alloy, Acta Materialia, vol.98, pp.355-366, 2015.

Y. Chen, N. Gao, G. Sha, S. P. Ringer, and M. J. Starink, Microstructural evolution, strengthening and thermal stability of an ultrafine-grained AlCuMg alloy, Acta Materialia, vol.109, pp.202-212, 2016.

P. V. Liddicoat, X. Liao, Y. Zhao, Y. Zhu, M. Y. Murashkin et al., Nanostructural hierarchy increases the strength of aluminium alloys, vol.1, p.63, 2010.

A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou et al., Structure and mechanical behavior of ultrafine-grained aluminum iron alloy stabilized by nanoscaled intermetallic particles, Acta Materialia, vol.167, pp.89-102, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02075040

H. A. Murdoch and C. A. Schuh, Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design, Journal of Materials Research, vol.28, pp.2154-2163, 2013.

M. Wagih and C. A. Schuh, Spectrum of grain boundary segregation energies in a polycrystal, Acta Materialia, vol.181, pp.228-237, 2019.

A. Devaraj, W. Wang, R. Vemuri, L. Kovarik, X. Jiang et al., Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys, Acta Materialia, vol.165, pp.698-708, 2019.

P. V. Liddicoat, X. Liao, Y. Zhao, Y. Zhu, M. Y. Murashkin et al., Nanostructural hierarchy increases the strength of aluminium alloys, vol.1, p.63, 2010.

M. Yu, I. Murashkin, X. Sabirov, R. Z. Sauvage, and . Valiev, Nanostructured Al and Cu alloys with superior strength and electrical conductivity, vol.51, pp.33-49, 2016.

T. S. Orlova, A. M. Mavlyutov, A. S. Bondarenko, I. A. Kasatkin, M. Yu et al., Valiev Influence of grain boundary state on electrical resistivity of ultrafine grained aluminium, Philosophical Magazine, vol.96, pp.2429-2444, 2016.

S. Karolik and A. Luhvich, Calculation of electrical resistivity produced by dislocations and grain boundaries in metals, J. Phys.: Condens. Matter, vol.6, p.873, 1994.

L. Lu, Y. Shen, X. Chen, K. Lihua-qian, and . Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, vol.304, p.22, 2004.

M. Murashkin, I. Sabirov, A. Medvedev, N. Enikeev, W. Lefebvre et al., Mechanical and electrical properties of an ultrafine grained Al-8.5 wt. % RE (RE=5.4wt.% Ce, 3.1wt.% La) alloy processed by severe plastic deformation, Materials and Design, vol.90, pp.433-442, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01954255

O. N. Senkov, F. H. Froes, V. V. Stolyarov, R. Z. Valiev, and J. Liu, Microstructure of Aluminum-Iron Alloys Subjected to Severe Plastic Deformation, Scripta Materialia, vol.38, pp.1511-1516, 1998.

S. O. Rogachev, E. A. Naumova, E. S. Vasileva, M. Y. Magurina, R. V. Sundeev et al., Structure and mechanical properties of Al-Ca alloys processed by severe plastic deformation, Materials Science & Engineering A, vol.767, p.138410, 2019.

, Deformation-Induced Supersaturation in Immiscible Material Systems during High-Pressure Torsion, Advanced Engineering Materials, pp.1-19, 2016.

Q. Nhon, D. Vo, R. S. Schwen, P. Averback, and . Bellon, Shear induced chemical mixing in heterogeneous systems, Yinon Ashkenazy, vol.60, pp.984-993, 2012.

Z. C. Cordero and C. A. Schuh, Phase strength effects on chemical mixing in extensively deformed alloys, Acta Materialia, vol.82, pp.123-136, 2015.

. Yu, X. Ivanisenko, A. Sauvage, A. Mazilkin, J. A. Kilmametov et al., Bulk nanocrystalline ferrite stabilized through grain boundary carbon segregation, Adv. Eng. Mater, p.1800443, 2018.

X. Quelennec, A. Menand, J. M. Le-breton, R. Pippan, and X. Sauvage, Homogeneous Cu-Fe supersaturated solid solution prepared by SPD, influence of processing parameters and physical mechanisms, Philos. Mag, vol.90, pp.1179-1195, 2010.

X. Sauvage, A. Duchaussoy, and G. Zaher, Strain induced segregations in severely deformed materials, Mat. Trans, vol.60, issue.7, pp.1151-1158, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307613

A. Liang-tian, T. Russell, S. Riedemann, and . Mueller, A deformation-processed Al-matrix/Ca-nanofilamentary composite with low density, high strength, and high conductivity, Materials Science & Engineering A, vol.690, pp.348-354, 2017.

, Thermodynamic Modeling of Mg-Ca and Al-Ca Binary Systems, CSME 2004 Forum, pp.921-929

. Asm-international, ASM Alloy Phase Diagram Database

, The role of carbon segregation on nanocrystallisation of pearlitic steels processed by severe plastic deformation, X. Sauvage and Y. Ivanisenko, J. Mat. Sci, vol.42, pp.1615-1621, 2007.

R. Uehiro, K. Fujiwara, Y. Ikeda, H. Li, X. Sauvage et al., Ultra-severe plastic deformation: Evolution of microstructure and phase transformations in immiscible systems, Materials Science and Engineering: A, vol.701, pp.158-166, 2017.

K. Edalati, Y. Hashiguchi, P. Henrique, R. Pereira, Z. Horita et al., Effect of temperature rise on microstructural evolution during high-pressure torsion, Materials Science & Engineering A, vol.714, pp.167-171, 2018.

I. Lomakin, M. Castillo-rodrigues, and X. Sauvage, Microstructure, mechanical properties and aging behavior of nanocrystalline copper -berylium alloy, Materials Science & Engineering A, vol.744, pp.206-214, 2019.

A. Fillon, X. Sauvage, A. Pougis, O. Bouaziz, D. Barbier et al., Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel, J Mater Sci, vol.47, pp.7939-7945, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00730178

G. Sha, Y. B. Wang, X. Z. Liao, Z. C. Duan, S. P. Ringer et al., Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy, Acta Materialia, vol.57, pp.3123-3132, 2009.

, The activation of deformation mechanisms for improved tensile properties in nanocrystalline aluminum, Materials Science & Engineering A, vol.777, p.139069, 2020.

D. Tabor, The hardness of solids, Review of Physics in Technology, vol.1, pp.145-179, 1970.

, Strengthening of A2024 alloy by high-pressure torsion and subsequent aging, Materials Science & Engineering A, vol.704, pp.112-118, 2017.

K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, vol.62, pp.141-155, 2014.

E. N. Borodin and A. E. Mayer, A simple mechanical model for grain boundary sliding in nanocrystalline metals, Materials Science and Engineering A, vol.532, pp.245-248, 2012.

G. Hall-petch-revisited and . Saada, Materials Science and Engineering A, pp.146-149, 2005.

J. Hu, Y. N. Shi, X. Sauvage, G. Sha, and K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science, vol.355, pp.1292-1296, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766047

M. M. Abramova, N. A. Enikeev, R. Z. Valiev, A. Etienne, B. Radiguet et al., Grain boundary segregation induced strengthening of an ultrafine-grained 316 stainless steel, vol.136, pp.349-352, 2014.

, Phase transformation of the intermetallic compound AI4Ca, H. Zogg and P. Schwellinger, vol.14, pp.1923-1932, 1979.

. F-r-fickett, Aluminum-1. a review of resistive mechanisms in aluminum, Cryogenics, vol.11, issue.5, pp.349-367, 1971.

J. G. Rider-&-c and . Foxon, An experimental determination of electrical resistivity of dislocations in aluminium, Journal of Theoretical Experimental and Applied Physics, vol.13, pp.289-303, 1966.

P. V. Andrews, M. B. West-&-c, and . Robeson, The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium, The Philosophical Magazine: A, Journal of Theoretical Experimental and Applied Physics, vol.19, pp.887-898, 1969.

M. B. Kasen, The Philosophical Magazine: A, Grain boundary resistivity of aluminium, vol.21, pp.599-610, 1970.

J. Schrank, . Zehetbauer, L. Pfeiler, and . Trieb, Effect of high deformation of electrical resistivity in pure aluminium, Scripta Metallurgica, vol.14, pp.1125-1128, 1980.

I. Liang-tian, T. Anderson, A. Riedemann, and . Russell, Modeling the electrical resistivity of deformation processed metal-metal composites, Acta Materialia, vol.77, pp.151-161, 2014.

M. F. Mayadas, J. F. Shatzkes, and . Janak, Electrical resistivity model for polycristalline films: the case of specular reflection at external surfaces, A, Appl. Phys. Lett, vol.14, p.345, 1969.

, Electron mean free path in elemental metals, Daniel Gall, Journal of Applied Physics, vol.119, p.85101, 2016.

H. Schwarz and R. Lück, The influence of sample surface quality and grain boundaries on the electrical resistivity of metals, Materials Science and Engineering, vol.5, pp.149-152, 1970.