P. Albersheim, A. G. Darvill, K. Roberts, R. Sederoff, and A. Staehelin, Cell Walls and Plant Anatomy, In Plant Cell Walls; Garland Science, pp.1-42, 2011.

N. C. Carpita and D. M. Gibeaut, Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth, Plant J, vol.3, pp.1-30, 1993.

L. Bacete, H. Mélida, E. Miedes, and A. Molina, Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses, Plant J, vol.93, pp.614-636, 2018.

S. Petrasch, C. J. Silva, S. D. Mesquida-pesci, K. Gallegos, C. Van-den-abeele et al., Infection strategies deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage, Front. Plant Sci, vol.10, pp.1-17, 2019.

R. Castilleux, B. Plancot, M. Ropitaux, A. Carreras, J. Leprince et al., Vicré-Gibouin, M. Cell wall extensins in root-microbe interactions and root secretions, J. Exp. Bot, vol.69, pp.4235-4247, 2018.

R. Castilleux, B. Plancot, B. Gügi, A. Attard, C. Loutelier-bourhis et al., Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization, Ann. Bot, vol.22, pp.1-13, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02173816

L. S. Ryder and N. J. Talbot, Regulation of appressorium development in pathogenic fungi, Curr. Opin. Plant Biol, vol.26, pp.8-13, 2015.

T. W. Prins, P. Tudzynski, A. Von-tiedemann, B. Tudzynski, A. Ten-have et al., Infection strategies of Botrytis cinerea and related necrotrophic pathogens, Fungal Pathology

. Springer, , pp.33-64, 2000.

A. Ten-have, The Botrytis Cinerea Endopolygalacturonase Gene Family, 2000.

M. T. Esquerré-tugayé, G. Boudart, and B. Dumas, Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens, Plant Physiol, vol.38, pp.157-163, 2000.

I. Kars, G. H. Krooshof, L. Wagemakers, R. Joosten, J. A. Benen et al., Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris, Plant J, vol.43, pp.213-225, 2005.

S. Kühnel, Characterization of Cell Wall Degrading Enzymes from Chrysosporium Lucknowense C1 and Their Use to Degrade Sugar Beet Pulp, 2011.

P. Tudzynski and L. Kokkelink, Botrytis cinerea: molecular aspects of a necrotrophic life style, Style DeKalb IL, vol.5, pp.29-50, 2009.

W. J. Barnes and C. T. Anderson, Release, recycle, rebuild: cell-wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development, Mol. Plant, vol.11, pp.31-46, 2018.

D. Lorenzo, G. Ferrari, and S. , Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi, Curr. Opin. Plant Biol, vol.5, pp.295-299, 2002.

V. Gomathi and S. S. Gnanamanickam, Polygalacturonase-inhibiting proteins in plant defence, vol.87, pp.1211-1217, 2004.

R. M. Kalunke, S. Tundo, M. Benedetti, F. Cervone, G. De-lorenzo et al., An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens, Front. Plant Sci, vol.6, p.146, 2015.

E. Alexandersson, J. V. Becker, D. Jacobson, E. Nguema-ona, C. Steyn et al., Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco, BMC Res. Notes, vol.4, 2011.

D. A. Joubert, I. Kars, L. Wagemakers, C. Bergmann, G. Kemp et al., A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction, Mol. Plant-Microbe Interact, vol.20, pp.392-402, 2007.

L. Federici, C. Caprari, B. Mattei, C. Savino, A. Di-matteo et al., Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein), Proc. Natl. Acad. Sci, vol.98, pp.13425-13430, 2001.

F. Sicilia, J. Fernandez-recio, C. Caprari, G. De-lorenzo, D. Tsernoglou et al., The Polygalacturonase-inhibiting protein pgip2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase pg1 of Botrytis cinerea 1, Plant Physiol, vol.139, pp.1380-1388, 2005.

N. Liu, X. Zhang, Y. Sun, P. Wang, X. Li et al., Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton

N. Liu, X. Ma, S. Zhou, P. Wang, Y. Sun et al., Molecular and functional characterization of a polygalacturonase-inhibiting protein from Cynanchum komarovii that confers fungal resistance in Arabidopsis, PLoS ONE, vol.11, 2016.

D. A. Joubert, A. R. Slaughter, G. Kemp, J. V. Becker, G. H. Krooshof et al., The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases, Transgenic Res, vol.15, pp.687-702, 2006.

S. Spadoni, O. Zabotina, A. Di-matteo, J. Dalgaard-mikkelsen, F. Cervone et al., Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine 1, Plant Physiol, 2006.

R. D'ovidio, B. Mattei, S. Roberti, and D. Bellincampi, Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions, Biochim. Biophys. Acta Proteins Proteom, vol.1696, pp.237-244, 2004.

P. Davidsson, M. Broberg, T. Kariola, N. Sipari, M. Pirhonen et al., Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana, BMC Plant Biol, vol.17, 2017.

M. Benedetti, D. Pontiggia, S. Raggi, Z. Cheng, F. Scaloni et al., Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns, Proc. Natl. Acad. Sci, vol.112, pp.5533-5538, 2015.

S. Ferrari, D. V. Savatin, F. Sicilia, G. Gramegna, F. Cervone et al., De Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development, Front. Plant Sci, 2013.

S. Vorwerk, S. Somerville, and C. Somerville, The role of plant cell wall polysaccharide composition in disease resistance, Trends Plant Sci, vol.9, pp.203-209, 2004.

A. Voxeur, O. Habrylo, S. Guénin, F. Miart, M. Soulié et al., Oligogalacturonide production upon Arabidopsis thaliana-Botrytis cinerea interaction, Proc. Natl. Acad. Sci, vol.116, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02351884

D. A. Joubert, G. De-lorenzo, and M. A. Vivier, Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: Expression pattern, induction profile and promoter analysis, J. Plant Res, vol.126, pp.267-281, 2013.

S. Mbewana, Functional Analysis of a Lignin Biosynthetic Gene in Transgenic Tobacco, 2010.

E. Nguema-ona, J. P. Moore, A. D. Fagerström, J. U. Fangel, W. G. Willats et al., Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection, BMC Plant Biol, vol.13, 2013.

J. Claverie, S. Balacey, C. Lemaître-guillier, D. Brulé, A. Chiltz et al., The cell wall-derived xyloglucan is a new damp triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Front, Plant Sci, vol.9, 1725.
URL : https://hal.archives-ouvertes.fr/hal-02623689

C. E. Basson, Transcriptomic analysis of disease resistance responses using a tobacco-Botrytis cinerea pathosystem, 2017.

S. J. Clough and A. F. Bent, Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

T. Murashige and F. Skoog, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant, vol.15, pp.473-497, 1962.

E. Nguema-ona, J. P. Moore, A. Fagerström, J. U. Fangel, W. G. Willats et al., Profiling the main cell wall polysaccharides of tobacco leaves using high-throughput and fractionation techniques, Carbohydr. Polym, vol.88, pp.939-949, 2012.

L. Gerber, M. Eliasson, J. Trygg, T. Moritz, and B. Sundberg, Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry, J. Anal. Appl. Pyrolysis, vol.95, pp.95-100, 2012.

W. S. York, A. G. Darvill, M. Mcneil, T. T. Stevenson, and P. Albersheim, Isolation and characterization of plant cell walls and cell wall components, Methods Enzymol, vol.118, pp.3-40, 1986.

S. K. Kra?un, J. U. Fangel, M. G. Rydahl, H. L. Pedersen, S. Vidal-melgosa et al., Carbohydrate microarray technology applied to high-throughput mapping of plant cell wall glycans using comprehensive microarray polymer profiling (CoMPP), Methods Mol. Biol, vol.1503, pp.147-165, 2017.

J. P. Knox, P. Linstead, J. King, C. Cooper, and K. Roberts, Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices, Planta, vol.181, pp.512-521, 1990.

M. H. Clausen, W. G. Willats, and J. P. Knox, Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7, Carbohydr. Res, vol.338, pp.1797-1800, 2003.

Y. Verhertbruggen, S. E. Marcus, A. Haeger, J. J. Ordaz-ortiz, and J. P. Knox, An extended set of monoclonal antibodies to pectic homogalacturonan, Carbohydr. Res, vol.344, pp.1858-1862, 2009.

M. Ralet, O. Tranquet, D. Poulain, A. Moïse, and F. Guillon, Monoclonal antibodies to rhamnogalacturonan I backbone, Planta, vol.231, pp.1373-1383, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02667192

L. Jones, G. B. Seymour, and J. P. Knox, Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1?4)-[beta]-D-galactan, Plant Physiol, vol.113, pp.1405-1412, 1997.

M. H. Clausen, M. Ralet, W. G. Willats, L. Mccartney, S. E. Marcus et al., A monoclonal antibody to feruloylated-(1?4)-?-d-galactan, Planta, vol.219, pp.1036-1041, 2004.

W. G. Willats, S. E. Marcus, and J. P. Knox, Generation of a monoclonal antibody specific to (1?5)-?-l-arabinan, Carbohydr. Res, vol.308, pp.149-152, 1998.

Y. Verhertbruggen, S. E. Marcus, A. Haeger, R. Verhoef, H. A. Schols et al., Developmental complexity of arabinan polysaccharides and their processing in plant cell walls, Plant J, vol.59, pp.413-425, 2009.

H. L. Pedersen, J. U. Fangel, B. Mccleary, C. Ruzanski, M. G. Rydahl et al., Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research, J. Biol. Chem, vol.287, pp.39429-39438, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647611

S. E. Marcus, A. W. Blake, T. A. Benians, K. J. Lee, C. Poyser et al., Restricted access of proteins to mannan polysaccharides in intact plant cell walls, Plant J, vol.64, pp.191-203, 2010.

P. J. Meikle, I. Bonig, N. J. Hoogenraad, A. E. Clarke, and B. A. Stone, The location of (1?3)-?-glucans in the walls of pollen tubes of Nicotiana alata using a (1?3)-?-glucan-specific monoclonal antibody, Planta, vol.185, pp.1-8, 1991.

S. E. Marcus, Y. Verhertbruggen, C. Hervé, J. J. Ordaz-ortiz, V. Farkas et al., Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls, BMC Plant Biol, vol.8, p.60, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02332860

L. Mccartney, S. E. Marcus, and J. P. Knox, Monoclonal antibodies to plant cell wall xylans and arabinoxylans, J. Histochem. Cytochem, vol.53, pp.543-546, 2005.

J. Tormo, R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer et al., Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose, EMBO J, vol.15, pp.5739-5751, 1996.

M. Smallwood, H. Martin, and J. P. Knox, An epitope of rice threonine-and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma-membrane glycoproteins, Planta, vol.196, pp.510-522, 1995.

M. Smallwood, A. Beven, N. Donovan, S. J. Neill, J. Peart et al., Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex, Plant J, vol.5, pp.237-246, 1994.

J. P. Knox, J. Peart, and S. Neill, Identification of novel cell surface epitopes using a leaf epidermal-strip assay system, Planta, 0196.

J. P. Knox, S. Day, and K. Roberts, A set of cell surface glycoproteins forms an early position, but not cell type, in the root Apical Carota L. Development, p.106, 1989.

E. A. Yates, J. Valdor, S. M. Haslam, H. R. Morris, A. Dell et al., Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies, Glycobiology, vol.6, pp.131-139, 1996.

P. F. Mccabe, T. A. Valentine, L. S. Forsberg, and R. I. Pennell, Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot, Plant Cell, vol.9, pp.2225-2241, 1997.

J. P. Knox, P. Linstead, J. P. Cooper, and K. Roberts, Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation, Plant J, vol.1, pp.317-326, 1991.

I. Moller, S. E. Marcus, A. Haeger, Y. Verhertbruggen, R. Verhoef et al., High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles, Glycoconj. J, vol.25, pp.37-48, 2008.

M. Smallwood, E. A. Yates, W. G. Willats, H. Martin, and J. P. Knox, Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot, Planta, vol.198, pp.452-459, 1996.

J. Yoon, H. Choi, and G. An, Roles of lignin biosynthesis and regulatory genes in plant development, J. Integr. Plant Biol, vol.57, pp.902-912, 2015.

Q. Ma, Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat, J. Exp. Bot, vol.61, pp.2735-2744, 2010.

Q. Ma, H. Zhu, and M. Qiao, Contribution of both lignin content and sinapyl monomer to disease resistance in tobacco, Plant Pathol, vol.67, pp.642-650, 2018.

B. Menden, M. Kohlhoff, and B. M. Moerschbacher, Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response, Phytochemistry, vol.68, pp.513-520, 2007.

I. Cesarino, Structural features and regulation of lignin deposited upon biotic and abiotic stresses, Curr. Opin. Biotechnol, vol.56, pp.209-214, 2019.

D. A. Brummell, Cell wall disassembly in ripening fruit, Funct. Plant Biol, vol.33, p.103, 2006.

W. G. Willats, C. G. Steele-king, S. E. Marcus, and J. P. Knox, Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation, Plant J, vol.20, pp.619-628, 1999.

A. W. Zykwinska, M. J. Ralet, C. D. Garnier, and J. Thibault, Evidence for in vitro binding of pectin side chains to cellulose, Plant Physiol, vol.139, pp.397-407, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02669834

A. Zykwinska, J. Thibault, and M. Ralet, Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged, J. Exp. Bot, vol.58, pp.1795-1802, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02664310

Y. B. Park and D. J. Cosgrove, Xyloglucan and its interactions with other components of the growing cell wall, Plant Cell Physiol, vol.56, pp.180-194, 2015.

D. J. Cosgrove and M. C. Jarvis, Comparative structure and biomechanics of plant primary and secondary cell walls. Front, Plant Sci, 0204.

K. Nishitani and T. Demura, Editorial: An emerging view of plant cell walls as an apoplastic intelligent system, Plant Cell Physiol, vol.56, pp.177-179, 2015.

Y. B. Park and D. J. Cosgrove, A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases, Plant Physiol, vol.158, pp.1933-1943, 2012.

C. Volpi, M. Janni, V. Lionetti, D. Bellincampi, F. Favaron et al., The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat, Mol. Plant. Microbe. Interact, vol.24, pp.1012-1019, 2011.

V. Lionetti, F. Cervone, and D. Bellincampi, Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases, J. Plant Physiol, vol.169, pp.1623-1630, 2012.

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends Plant Sci, vol.6, pp.414-419, 2001.

J. Pelloux, C. Rustérucci, and E. J. Mellerowicz, New insights into pectin methylesterase structure and function, Trends Plant Sci, vol.12, pp.267-277, 2007.

J. C. Cabrera, A. Boland, J. Messiaen, P. Cambier, and P. Van-cutsem, Egg box conformation of oligogalacturonides: The time-dependent stabilization of the elicitor-active conformation increases its biological activity, Glycobiology, vol.18, pp.473-482, 2008.

L. Hocq, J. Pelloux, and V. Lefebvre, Connecting homogalacturonan-type pectin remodeling to acid growth, Trends Plant Sci, vol.22, pp.20-29, 2017.

S. Deepak, S. Shailasree, R. K. Kini, A. Muck, A. Mithöfer et al., Hydroxyproline-rich glycoproteins and plant defence, J. Phytopathol, vol.158, pp.585-593, 2010.

A. M. Showalter, Structure and function of plant cell wall proteins, Plant Cell, vol.5, pp.9-23, 1993.

G. Boudart, G. Dechamp-guillaume, C. Lafitte, G. Ricart, J. Barthe et al., Elicitors and suppressors of hydroxyproline-rich glycoprotein accumulation are solubilized from plant cell walls by endopolygalacturonase, Eur. J. Biochem, vol.232, pp.449-457, 1995.

G. I. Cassab, Plant cell wall proteins, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.49, pp.281-309, 1998.

A. M. Showalter, Arabinogalactan-proteins: structure, expression and function, Cell. Mol. Life Sci, vol.58, pp.1399-1417, 2001.

M. Ellis, J. Egelund, C. J. Schultz, and A. Bacic, Arabinogalactan-proteins: key regulators at the cell surface?, Plant Physiol, vol.153, pp.403-419, 2010.

L. Mareri, M. Romi, and G. Cai, Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants?, Plant Biosyst, pp.1-13, 2018.

E. Nguema-ona, M. Vicré-gibouin, M. A. Cannesan, and A. Driouich, Arabinogalactan proteins in root-microbe interactions, Trends Plant Sci, vol.18, pp.1360-1385, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843944

M. A. Cannesan, C. Durand, C. Burel, C. Gangneux, P. Lerouge et al., Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination, Plant Physiol, vol.159, pp.1658-1670, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01848269

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI