I. T. Witting, T. C. Chasapis, F. Ricci, M. Peters, N. A. Heinz et al., The Thermoelectric Properties of Bismuth Telluride, Adv. Electron. Mater, vol.5, p.1800904, 2019.

J. He and T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, vol.357, p.9997, 2017.

,

C. B. Vining, An inconvenient truth about thermoelectrics, Nat. Mater, vol.8, p.83, 2009.

G. Min and D. M. Rowe, Peltier Devices as Generators, CRC Handb. Thermoelectr, 1995.

S. Ohno, K. Imasato, S. Anand, H. Tamaki, S. D. Kang et al.,

T. Toberer, G. J. Kanno, and . Snyder, Phase Boundary Mapping to Obtain n-type Mg 3 Sb 2 -Based Thermoelectrics, Joule, vol.2, pp.141-154, 2018.

,

D. Cheikh, B. E. Hogan, T. Vo, P. Von-allmen, K. Lee et al., Praseodymium Telluride: A High-Temperature, High-ZT Thermoelectric Material, vol.2, pp.698-709, 2018.

,

J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chemie -Int. Ed, vol.48, pp.8616-8639, 2009.

,

X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase et al., Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules, Energy Environ. Sci, vol.9, pp.517-529, 2016.

P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Sulfide bornite thermoelectric material: A natural mineral with ultralow thermal conductivity, Energy Environ. Sci, vol.7, pp.4000-4006, 2014.

G. Guélou, A. V. Powell, and P. Vaqueiro, Ball milling as an effective route for the preparation of doped bornite: Synthesis, stability and thermoelectric properties, J. Mater. Chem. C, vol.3, pp.10624-10629, 2015.

V. Kumar, T. Barbier, P. Lemoine, B. Raveau, V. Nassif et al., The crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu 5 FeS 4 bornite, Dalt. Trans, vol.46, pp.2174-2183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01470480

V. Kumar, L. Paradis-fortin, P. Lemoine, V. Caignaert, B. Raveau et al.,

, Inorg. Chem, vol.56, pp.13376-13381, 2017.

V. Kumar, L. Paradis-fortin, P. Lemoine, G. L. Caer, B. Malaman et al., Crossover from germanite to renierite-type structures in Cu 22-x Zn x Fe 8 Ge 4 S 32 thermoelectric sulfides, ACS Appl. Energy Mater, vol.2, pp.7679-7689, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02354451

V. Kumar, T. Barbier, V. Caignaert, B. Raveau, R. Daou et al., Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu 8+x Fe 3-x Sn 2 S 12, J. Phys. Chem. C, vol.121, pp.16454-16461, 2017.

K. Suekuni, F. S. Kim, H. Nishiate, M. Ohta, H. I. Tanaka et al., Highperformance thermoelectric minerals: Colusites Cu 26 V 2 M 6 S 32, vol.105, p.132107, 2014.

K. Suekuni, F. S. Kim, and T. Takabatake, Tunable electronic properties and low thermal conductivity in synthetic colusites Cu 26-x Zn x V 2 M 6 S 32 (x ? 4, M = Ge, Sn), J. Appl. Phys, vol.116, p.63706, 2014.

C. Bourgès, M. Gilmas, P. Lemoine, N. E. Mordvinova, O. I. Lebedev et al., Structural analysis and thermoelectric properties of mechanically alloyed colusites, J. Mater. Chem. C, vol.4, pp.7455-7463, 2016.

C. Bourgès, Y. Bouyrie, A. R. Supka, R. Orabi, P. Lemoine et al.,

. Guilmeau, High-Performance Thermoelectric Bulk Colusite by Process Controlled 32

, Structural Disordering, vol.140, pp.2186-2195, 2018.

,

V. Kumar, A. R. Supka, P. Lemoine, O. I. Lebedev, B. Raveau et al.,

. T-=-cr and W. ). Mo, Toward Functionalization of the Conductive, Network, Adv. Energy Mater, vol.9, p.1803249, 2019.

,

V. Kumar, G. Guélou, P. Lemoine, B. Raveau, A. Supka et al., Copper-rich thermoelectric sulfides: size mismatch effect and chemical disorder in the, Angew. Chemie Int. Ed, vol.58, pp.15455-15463, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02274210

,

Y. Kikuchi, Y. Bouyrie, M. Ohta, K. Suekuni, M. Aihara et al., Vanadiumfree colusites Cu 26 A 2 Sn 6 S 32 (A = Nb, Ta) for environmentally friendly thermoelectrics, J. Mater. Chem. A, vol.4, pp.15207-15214, 2016.

F. S. Kim, K. Suekuni, H. Nishiate, M. Ohta, H. I. Tanaka et al., Tuning the charge carrier density in the thermoelectric colusite, J. Appl. Phys, vol.119, p.175105, 2016.

Y. Bouyrie, M. Ohta, K. Suekuni, Y. Kikuchi, P. Jood et al.,

. E-=-sn, Ge) using E-site non-stoichiometry, J. Mater. Chem. C, vol.5, pp.4174-4184, 2017.

K. Suekuni, Y. Shimizu, E. Nishibori, H. Kasai, H. Saito et al., , p.33

Y. Bouyrie, R. Chetty, M. Ohta, E. Guilmeau, T. Takabatake et al., Atomic-Scale Phonon Scatterers in Thermoelectric Colusites with a Tetrahedral Framework Structure, J. Mater. Chem. A, vol.7, pp.228-235, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02274207

,

Y. Shen, C. Li, R. Huang, R. Tian, Y. Ye et al., Eco-friendly p-type Cu 2 SnS 3 thermoelectric material: crystal structure and transport properties, Sci. Rep, vol.6, p.32501, 2016.

,

M. L. Liu, F. Q. Huang, L. D. Chen, and I. W. Chen, A wide-band-gap p -type thermoelectric material based on quaternary chalcogenides of Cu 2 ZnSnQ 4 (Q=S,Se), Appl. Phys. Lett, vol.94, p.202103, 2009.

H. Yang, L. A. Jauregui, G. Zhang, Y. P. Chen, and Y. Wu, Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting, Nano Lett, vol.12, pp.540-545, 2012.

C. Bourgès, P. Lemoine, O. I. Lebedev, R. Daou, V. Hardy et al., Low thermal conductivity in ternary Cu 4 Sn 7 S 16 compound, vol.97, pp.180-190, 2015.

H. Xie, X. Su, S. Hao, C. Zhang, Z. Zhang et al., Large thermal conductivity drops in the diamondoid lattice of CuFeS 2 by discordant atom doping, J. Am. Chem. Soc, vol.141, pp.18900-18909, 2019.

,

X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins et al., High performance thermoelectricity in earth-abundant compounds based on natural mineral 34 tetrahedrites, Adv. Energy Mater, vol.3, pp.342-348, 2013.

,

K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Thermoelectric properties of mineral tetrahedrites Cu 10 Tr 2 Sb 4 S 13 with low thermal conductivity, Appl. Phys. Express, vol.5, pp.2-5, 2012.

K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori et al., High-performance thermoelectric mineral Cu 12-x Ni x Sb 4 S 13

, J. Appl. Phys, vol.113, p.43712, 2013.

Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher et al., Crystal structure, electronic band structure and high-temperature thermoelectric properties of Te, J. Mater. Chem. C, vol.3, pp.10476-10487, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01279100

R. Chetty, A. Bali, and R. C. Mallik, Tetrahedrites as thermoelectric materials: An overview, J. Mater. Chem. C, vol.3, pp.12364-12378, 2015.

,

T. Barbier, P. Lemoine, S. Gascoin, O. I. Lebedev, A. Kaltzoglou et al.,

R. I. Powell, E. Smith, and . Guilmeau, Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases, J. Alloys Compd, vol.634, pp.253-262, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02184183

T. Barbier, S. Rollin-martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou et al., Thermoelectric Materials: A New Rapid Synthesis Process for Nontoxic and High-Performance Tetrahedrite Compounds, J. Am. Ceram. Soc, vol.99, pp.51-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01664729

T. Barbier, P. Lemoine, S. Martinet, M. Eriksson, M. Gilmas et al., Up-scaled synthesis process of sulphur-based thermoelectric materials, RSC Adv, vol.6, pp.10044-10053, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02184702

,

X. Du, F. Cai, and X. Wang, Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering, J. Alloys Compd, vol.587, pp.6-9, 2014.

Q. Tan, W. Sun, Z. Li, and J. Li, Enhanced thermoelectric properties of earth-abundant Cu 2 SnS 3 via In doping effect, J. Alloys Compd, vol.672, pp.558-563, 2016.

,

P. Balá?, M. Hegedüs, M. Reece, R. Zhang, T. Su et al., Mechanochemistry for Thermoelectrics: Nanobulk Cu 6 Fe 2 SnS 8 /Cu 2 FeSnS 4 Composite Synthesized in an Industrial Mill, J. Electron. Mater, vol.48, pp.1846-1856, 2019.

,

A. Moghaddam, A. Shokuhfar, A. Cabot, and A. Zolriasatein, Synthesis of bornite Cu 5 FeS 4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric properties, Powder Technol, vol.333, pp.160-166, 2018.

,

S. O. Long, A. Powell, P. Vaqueiro, and S. Hull, High Thermoelectric Performance of Bornite through Control of the Cu(II) Content and Vacancy Concentration, Chem. Mater, vol.30, pp.456-464, 2018.

X. Lu and D. T. Morelli, Rapid synthesis of high-performance thermoelectric materials 36 directly from natural mineral tetrahedrite, MRS Commun, vol.3, pp.129-133, 2013.

,

H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mater, vol.3, p.41506, 2015.

,

E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou et al.,

D. Populoh, O. Ravot, M. Rouleau, and . Soulier, Invited Article: A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co 0.97 Ni 0.03 Sb 3, Rev. Sci. Instrum, vol.86, p.11301, 2015.

A. C. Larson and R. B. Von-dreele, General Structure Analysis System (GSAS), 1994.

B. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr, vol.34, pp.210-213, 2001.

P. Lemoine, V. Kumar, G. Guélou, V. Nassif, B. Raveau et al., Thermal Stability of the Crystal Structure and Electronic Properties of the High Power Factor Thermoelectric Colusite Cu 26 Cr 2 Ge 6 S 32, Chem. Mater, vol.32, pp.830-840, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02498319

,

P. Lemoine, C. Bourgès, T. Barbier, V. Nassif, S. Cordier et al., High temperature neutron powder diffraction study of the Cu 12 Sb 4 S 13 and Cu 4 Sn 7 S 16 phases, vol.247, pp.83-89, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01475817

,

G. J. Snyder and S. Toberer, Complex thermoelectric materials, Nat. Mater, vol.7, pp.105-142, 2008.

,

M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, Electronic Transport in Semimetallic Cerium Sulfide, Phys. Rev, vol.133, pp.1143-1152, 1964.

,

M. Beaumale, T. Barbier, Y. Bréard, G. Guélou, A. V. Powell et al., Electron doping and phonon scattering in Ti 1+x S 2 thermoelectric compounds, Acta Materialia, vol.78, p.86, 2014.

Y. Chen, D. Wang, Y. Zhou, Q. Pang, J. Shao et al., Enhancing the thermoelectric performance of Bi 2 S 3 : A promising earth-abundant thermoelectric material, Front. Phys, vol.14, pp.14-16, 2019.

J. Labégorre, A. Virfeu, A. Bourhim, H. Willeman, T. Barbier et al.,

, Fe): New Cost-Efficient Layered n-Type Thermoelectric Sulfides with Ultralow Thermal Conductivity, Adv. Funct. Mater, vol.9, p.1904112, 2019.

,

Y. M. Han, J. Zhao, M. Zhou, X. X. Jiang, H. Q. Leng et al., Thermoelectric performance of SnS and SnS-SnSe solid solution, J. Mater. Chem. A, vol.3, pp.4555-4559, 2015.

L. D. Zhao, S. H. Lo, J. He, H. Li, K. Biswas et al.,

V. P. Chung, M. G. Dravid, and . Kanatzidis, High performance thermoelectrics from earth-38 abundant materials: Enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc, vol.133, pp.20476-20487, 2011.

L. D. Zhao, J. He, S. Hao, C. I. Wu, T. P. Hogan et al., Raising the thermoelectric performance of p-type Pbs with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS, J. Am. Chem

. Soc, , vol.134, pp.16327-16336, 2012.

G. Tan, S. Hao, J. Zhao, C. Wolverton, and M. G. Kanatzidis, High Thermoelectric Performance in Electron-Doped AgBi 3 S 5 with Ultralow Thermal Conductivity, J. Am

, Chem. Soc, vol.139, pp.6467-6473, 2017.

B. Du, R. Zhang, M. Liu, K. Chen, H. Zhang et al., Crystal structure and improved thermoelectric performance of iron stabilized cubic Cu 3 SbS 3 compound, J. Mater. Chem. C, vol.7, pp.394-404, 2019.

P. Mangelis, P. Vaqueiro, and A. V. Powell, Improved Thermoelectric Performance through Double Substitution in Shandite-Type Mixed-Metal Sulfides, ACS Appl. Energy Mater, vol.3, pp.2168-2174, 2020.

X. Shen, Y. Xia, C. C. Yang, Z. Zhang, S. Li et al., High Thermoelectric Performance in Sulfide-Type Argyrodites Compound Ag 8 Sn(S 1?x Se x ) 6 Enabled by Ultralow Lattice Thermal Conductivity and Extended Cubic Phase Regime, Adv. Funct. Mater, pp.1-10, 2020.

T. Tanimoto, K. Suekuni, T. Tanishita, H. Usui, T. Tadano et al., Enargite Cu 3 PS 4 : A Cu-S-Based Thermoelectric Material with a Wurtzite-Derivative Structure, Adv. Funct. Mater, 2020.

M. Ohta, H. Obara, and A. Yamamoto, Preparation and Thermoelectric Properties of Chevrel, Mater. Trans, vol.50, pp.2129-2133, 2009.

,