J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, CVPR, pp.3431-3440, 2015.

H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, Learning and incorporating shape models for semantic segmentation, MICCAI, pp.203-211, 2017.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, MICCAI, pp.234-241, 2015.

A. Ghosh, M. Ehrlich, S. Shah, L. Davis, and R. Chellappa, Stacked u-nets for ground material segmentation in remote sensing imagery, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.252-2524, 2018.

T. Sun, Z. Chen, W. Yang, and Y. Wang, Stacked u-nets with multioutput for road extraction, Computer Vision and Pattern Recognition Workshops (CVPRW), pp.187-1874, 2018.

F. Milletari, N. Navab, and S. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, International Conference on 3D Vision (3DV), pp.565-571, 2016.

Y. Weng, T. Zhou, Y. Li, and X. Qiu, Nas-unet: Neural architecture search for medical image segmentation, IEEE Access, vol.7, pp.44-247, 2019.

A. Khoreva, R. Benenson, J. Hosang, M. Hein, and B. Schiele, Simple does it: Weakly supervised instance and semantic segmentation, CVPR, pp.1665-1674, 2017.

J. Dai, K. He, and J. Sun, Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation, IEEE International Conference on Computer Vision (ICCV), pp.1635-1643, 2015.

T. Durand, T. Mordan, N. Thome, and M. Cord, WILDCAT: Weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.5957-5966, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515640

C. Zotti, Z. Luo, A. Lalande, and P. Jodoin, Convolutional neural network with shape prior applied to cardiac mri segmentation, IEEE Journal of Biomedical and Health Informatics, vol.23, issue.3, pp.1119-1128, 2019.

D. Pathak, P. Krähenbühl, and T. Darrell, Constrained convolutional neural networks for weakly supervised segmentation, ICCV, pp.1796-1804, 2015.

G. Papandreou, L. Chen, K. P. Murphy, and A. L. Yuille, Weaklyand semi-supervised learning of a deep convolutional network for semantic image segmentation, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1742-1750, 2015.

A. V. Dalca, J. Guttag, and M. R. Sabuncu, Anatomical priors in convolutional networks for unsupervised biomedical segmentation, p.2018

, IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.9290-9299, 2018.

I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, Deeper depth prediction with fully convolutional residual networks, 2016 Fourth International Conference on 3D Vision (3DV), pp.239-248, 2016.

V. Iglovikov and A. Shvets, Ternausnet: U-net with VGG11 encoder pre-trained on imagenet for image segmentation, CoRR, 2018.

X. Zhou, T. Ito, R. Takayama, S. Wang, T. Hara et al., Threedimensional ct image segmentation by combining 2d fully convolutional network with 3d majority voting, Deep Learning and Data Labeling for Medical Applications, pp.111-120, 2016.

X. Li, S. Wang, X. Wei, J. Zhu, R. Yu et al., Fully convolutional networks for ultrasound image segmentation of thyroid nodules, IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp.886-890, 2018.

A. Bentaieb and G. Hamarneh, Topology aware fully convolutional networks for histology gland segmentation, pp.460-468, 2016.

Z. Yan, X. Yang, and K. T. Cheng, A deep model with shapepreserving loss for gland instance segmentation, in MICCAI, pp.138-146, 2018.

O. Oktay, E. Ferrante, K. Kamnitsas, M. Heinrich, W. Bai et al., Anatomically constrained neural networks : Application to cardiac image enhancement and segmentation, IEEE Transactions on Medical Imaging, vol.37, issue.2, pp.384-395, 2018.

A. Arif, S. M. Rahman, K. Knapp, and G. Slabaugh, Shapeaware deep convolutional neural network for vertebrae segmentation, Computational Methods and Clinical Applications in Musculoskeletal Imaging, pp.12-24, 2018.

M. Tofighi, T. Guo, J. K. Vanamala, and V. Monga, Deep networks with shape priors for nucleus detection, 2018 25th IEEE International Conference on Image Processing (ICIP), pp.719-723, 2018.

C. Zotti, Z. Luo, O. Humbert, A. Lalande, and P. Jodoin, Gridnet with automatic shape prior registration for automatic MRI cardiac segmentation, Statistical Atlases and Computational Models of the Heart STACOM, Held in Conjunction with MICCAI, vol.10663, pp.73-81, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01793441

D. Stoller, S. Ewert, and S. Dixon, Wave-u-net: A multi-scale neural network for end-to-end audio source separation, CoRR, 2018.

Q. Hou, D. Massiceti, P. K. Dokania, Y. Wei, M. Cheng et al., Bottom-up top-down cues for weakly-supervised semantic segmentation, 2016.

C. Rother, V. Kolmogorov, and A. Blake, grabcut": Interactive foreground extraction using iterated graph cuts, ACM Trans. Graph, vol.23, issue.3, pp.309-314, 2004.

J. Pont-tuset, P. Arbelaez, J. T. Barron, F. Marques, and J. Malik, Multiscale combinatorial grouping for image segmentation and object proposal generation, IEEE Trans. Pattern Anal. Mach. Intell, vol.39, issue.1, pp.128-140, 2017.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask r-cnn, 2017 IEEE International Conference on Computer Vision (ICCV). Los

C. A. Alamitos and . Usa, , pp.2980-2988, 2017.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed et al., Ssd: Single shot multibox detector, Computer Vision -ECCV 2016, pp.21-37, 2016.

W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, L3-net: Towards learning based lidar localization for autonomous driving, CVPR, pp.6382-6391, 2019.

L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li et al., A survey of deep learning-based object detection, IEEE Access, vol.7, pp.128-837, 2019.

T. Araújo, G. Aresta, A. Galdran, P. Costa, A. M. Mendonça et al., Uolo -automatic object detection and segmentation in biomedical images, Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp.165-173, 2018.

R. E. Jurdi, C. Petitjean, P. Honeine, and F. Abdallah, Organ Segmentation in CT Images With Weak Annotations: A Preliminary Study, 27th GRETSI Symposium on Signal and Image Processing, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02183031

O. Oktay, J. Schlemper, L. L. Folgoc, M. C. Lee, M. P. Heinrich et al., Attention u-net: Learning where to look for the pancreas, ArXiv, 2018.

Y. Wei, X. Liang, Y. Chen, X. Shen, M. Cheng et al., Stc: A simple to complex framework for weakly-supervised semantic segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.11, pp.2314-2320, 2017.

M. Han, G. Yao, W. Zhang, G. Mu, Y. Zhan et al., Segmentation of CT thoracic organs by multi-resolution vb-nets, Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images, vol.2349, 2019.

Z. Lambert, C. Petitjean, B. Dubray, and S. Ruan, Segthor: Segmentation of thoracic organs at risk in ct images, ArXiv, 2019.

A. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani et al., A large annotated medical image dataset for the development and evaluation of segmentation algorithms, vol.2, p.2019

C. S. Perone, E. Cclauss, P. L. Saravia, and M. Ballester, perone/medicaltorch: Release v0, vol.2, 2018.

W. R. Crum, O. Camara, and D. L. Hill, Generalized overlap measures for evaluation and validation in medical image analysis, IEEE Transactions on Medical Imaging, vol.25, issue.11, pp.1451-1461, 2006.