K. I. Rybakov, E. A. Olevsky, and E. V. Krikun, Microwave Sintering: Fundamentals and Modeling, Journal of the American Ceramic Society, vol.96, issue.4, pp.1003-1020, 2013.

S. Charmond, C. P. Carry, and D. Bouvard, Densification and microstructure evolution of Y-Tetragonal Zirconia Polycrystal powder during direct and hybrid microwave sintering in a single-mode cavity, Journal of the European Ceramic Society, vol.30, issue.6, pp.1211-1221, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00528038

M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys and Compounds, vol.494, issue.1-2, pp.175-189, 2010.

D. , Microwave Sintering of Ceramics, Composites and Metallic Materials, and Melting of Glasses, Transactions of the Indian Ceramic Society, vol.65, issue.3, pp.129-144, 2006.

S. Chandrasekaran, S. Ramanathan, and T. Basak, Microwave material processing-a review, AIChE Journal, vol.58, issue.2, pp.330-363, 2011.

A. J. Berteaud and J. C. Badot, High Temperature Microwave Heating in Refractory Materials, Journal of Microwave Power, vol.11, issue.4, pp.315-2320, 1976.

S. P. Kochhar and A. P. Singh, Developments in Microwave Processing of Materials, Asian Journal of Chemistry, vol.23, pp.3307-3312, 2011.

S. Singh, D. Gupta, V. Jain, and A. K. Sharma, Microwave Processing of Materials and Applications in Manufacturing Industries: A Review, Materials and Manufacturing Processes, vol.30, issue.1, pp.1-29, 2014.

K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan, Synthesis of Inorganic Solids Using Microwaves, Chemistry of Materials, vol.11, issue.4, pp.882-895, 1999.

D. Clark, Microwave solutions for ceramic engineers, 2005.

T. L. Alford, D. C. Thompson, J. W. Mayer, and N. D. Theodore, Dopant activation in ion implanted silicon by microwave annealing, Journal of Applied Physics, vol.106, issue.11, p.114902, 2009.

C. R. Gautam, S. Kumar, S. Biradar, S. Jose, and V. K. Mishra, Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material, RSC Advances, vol.6, issue.72, pp.67565-67574, 2016.

Q. B. Nguyen, I. Quader, M. L. Sharon-nai, S. Seetharaman, E. W. Wai-leong et al., Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10powder particles, Powder Metallurgy, vol.59, issue.3, pp.209-215, 2016.

S. J. Nicholls, I. M. Reaney, and O. P. Leisten, Enhancing Properties in Microwave Ceramics Using a Designer Sintering Aid, Journal of the American Ceramic Society, vol.98, issue.12, pp.3891-3896, 2015.

K. H. Brosnan, G. L. Messing, and D. K. Agrawal, Microwave Sintering of Alumina at 2.45 GHz, Journal of the American Ceramic Society, vol.86, issue.8, pp.1307-1312, 2003.

. Ghz, Journal of the American Ceramic Society, issue.8, pp.1307-1312, 2003.

D. and L. Johnson, Microwave and plasma sintering of ceramics, Ceramics International, issue.5, pp.295-300, 1991.

D. K. , Microwave processing of ceramics, Current Opinion in Solid State and Materials Science, vol.3, issue.5, pp.480-485, 1998.

J. Binner and B. Vaidhyanathan, Microwave Sintering of Ceramics: What Does it Offer?, Key Engineering Materials, vol.264-268, pp.725-730, 2004.

R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field, Nature, vol.399, issue.6737, pp.668-670, 1999.

M. Gupta and W. Wai-leong-eugene, Microwaves and Metals, Microwaves and Metals, 2007.

D. , Microwave sintering of metal powders, Advances in Powder Metallurgy, pp.361-379, 2013.

S. D. Luo, C. L. Guan, Y. F. Yang, G. B. Schaffer, and M. Qian, Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys, Metallurgical and Materials Transactions A, vol.44, issue.4, pp.1842-1851, 2012.

V. D. Buchelnikov, D. V. Louzguine-luzgin, A. P. Anzulevich, I. V. Bychkov, N. Yoshikawa et al., Modeling of microwave heating of metallic powders, Physica B: Condensed Matter, vol.403, issue.21-22, pp.4053-4058, 2008.

I. V. Anzulevich and . Bychkov, Heating of metallic powders by microwaves: Experiment and theory, J. Appl. Phys, vol.104, p.113505, 2008.

K. I. Rybakov, V. E. Semenov, S. V. Egorov, A. G. Eremeev, I. V. Plotnikov et al., Microwave heating of conductive powder materials, Journal of Applied Physics, vol.99, issue.2, p.023506, 2006.

S. Das, A. K. Mukhopadhyay, S. Datta, and D. Basu, Prospects of microwave processing: An overview, Bulletin of Materials Science, vol.32, issue.1, pp.1-13, 2009.

L. Chen, C. Y. Tang, H. Ku, C. P. Tsui, and X. Chen, Microwave sintering and characterization of polypropylene/multi-walled carbon nanotube/hydroxyapatite composites, Composites Part B: Engineering, vol.56, pp.504-511, 2014.

A. D. Akinwekomi, W. Law, C. Tang, L. Chen, and C. Tsui, Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites, Composites Part B: Engineering, vol.93, pp.302-309, 2016.

Y. Makino, T. Ohmae, Y. Setsuhara, S. Miyake, and S. Sano, Sintering of Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> Composites Using Millimeter-Wave Radiation, Key Engineering Materials, vol.161-163, pp.41-44, 1998.

E. Hachem, G. Jannoun, J. Veysset, M. Henri, R. Pierrot et al., Modeling of heat transfer and turbulent flows inside industrial furnaces, Simulation Modelling Practice and Theory, vol.30, pp.35-53, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00741954

. Coupez, Modeling of heat transfer and turbulent flows inside industrial furnaces, Simulation Modelling Practice and Theory, vol.30, pp.35-53, 2013.

E. Hachem, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method, International Journal for Numerical Methods in Fluids, vol.68, issue.1, pp.99-121, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00549730

A. O. Nieckele, M. F. Naccache, and M. S. Gomes, Numerical Modeling of an Industrial Aluminum Melting Furnace, Journal of Energy Resources Technology, vol.126, issue.1, pp.72-81, 2004.

G. Xu, I. K. Lloyd, Y. Carmel, T. Olorunyolemi, and O. C. Wilson, Microwave sintering of ZnO at ultra high heating rates, Journal of Materials Research, vol.16, issue.10, pp.2850-2858, 2001.

Y. U. Bykov, A. Eremeev, S. Egorov, V. Ivanov, Y. U. Kotov et al., Sintering of nanostructural titanium oxide using millimeter-wave radiation, Nanostructured Materials, vol.12, issue.1-4, pp.115-118, 1999.

J. Binner, K. Annapoorani, A. Paul, I. Santacruz, and B. Vaidhyanathan, Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering, Journal of the European Ceramic Society, vol.28, issue.5, pp.973-977, 2008.

I. Chen and X. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, vol.404, issue.6774, pp.168-171, 2000.

Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, High-temperature microwave processing of materials, Journal of Physics D: Applied Physics, vol.34, issue.13, pp.R55-R75, 2001.

S. Saremi-yarahmadi, B. Vaidhyanathan, and K. G. Wijayantha, Microwave-assisted low temperature fabrication of nanostructured ?-Fe2O3 electrodes for solar-driven hydrogen generation, International Journal of Hydrogen Energy, vol.35, issue.19, pp.10155-10165, 2010.

J. Croquesel, D. Bouvard, J. Chaix, C. P. Carry, and S. Saunier, Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder, Materials & Design, vol.88, pp.98-105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263552

J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner et al., Evidence for the Microwave Effect During Hybrid Sintering, Journal of the American Ceramic Society, vol.89, issue.6, pp.1977-1984, 2006.

F. Zuo, S. Saunier, C. Meunier, and D. Goeuriot, Non-thermal effect on densification kinetics during microwave sintering of ?-alumina, Scripta Materialia, vol.69, issue.4, pp.331-333, 2013.
URL : https://hal.archives-ouvertes.fr/emse-01063760

F. Zuo, A. Badev, S. Saunier, D. Goeuriot, R. Heuguet et al., Microwave versus conventional sintering: Estimate of the apparent activation energy for densification of ?-alumina and zinc oxide, Journal of the European Ceramic Society, vol.34, issue.12, pp.3103-3110, 2014.
URL : https://hal.archives-ouvertes.fr/emse-01063729

R. Wroe and A. T. Rowley, Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia, Journal of Materials Science, vol.31, issue.8, pp.2019-2026, 1996.

J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov, and V. E. Semenov, Microwave ponderomotive forces in solid-state ionic plasmas, Physics of Plasmas, 1998.

K. I. Rybakov, V. E. Semenov, S. A. Freeman, J. H. Booske, and R. F. Cooper, Dynamics of microwave-induced currents in ionic crystals, Phys. Rev. B, vol.55, issue.6, pp.3559-3567, 1997.

K. I. Rybakov and V. E. Semenov, Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field, Physical Review B, vol.52, issue.5, pp.3030-3033, 1995.

K. I. Rybakov, E. A. Olevsky, and V. E. Semenov, The microwave ponderomotive effect on ceramic sintering, Scripta Materialia, vol.66, issue.12, pp.1049-1052, 2012.

E. A. Olevsky, A. L. Maximenko, and E. G. Grigoryev, Ponderomotive effects during contact formation in microwave sintering, Modelling and Simulation in Materials Science and Engineering, 2013.

A. G. Whittaker, Diffusion in Microwave-Heated Ceramics, Chemistry of Materials, 17, pp.3426-3432, 2005.

M. A. Janney, H. D. Kimrey, W. R. Allen, and J. O. Kiggans, Enhanced diffusion in sapphire during microwave heating, Journal of Materials Science, vol.32, pp.1347-1355, 1997.

J. A. Aguilar-garib, F. García, and Z. Valdez, Estimating resistive and dielectric effects during microwave heating of Fe0.22Ni0.67Mn2.11O4, Journal of the Ceramic Society of Japan, vol.117, issue.1367, pp.801-807, 2009.

R. R. Thridandapani, D. C. Folz, and D. E. Clark, Development of a microwave dilatometer for generating master sintering curves, Measurement Science and Technology, issue.10, p.105706, 2011.

A. Alcolado, T. Kolokolnikov, and D. Iron, Instability thresholds in the microwave heating model with exponential non-linearity, European Journal of Applied Mathematics, vol.22, issue.3, pp.187-216, 2011.

J. M. Hill and T. R. Marchant, Modelling microwave heating, Applied Mathematical Modelling, vol.20, issue.1, pp.3-15, 1996.

D. Iron and M. J. Ward, THE STABILITY AND DYNAMICS OF HOT-SPOT SOLUTIONS TO TWO ONE-DIMENSIONAL MICROWAVE HEATING MODELS, Analysis and Applications, vol.02, issue.01, pp.21-70, 2004.

G. Kriegsmann, Hot spot formation in microwave heated ceramic fibres, IMA Journal of Applied Mathematics, issue.2, pp.123-148, 1997.

A. Diaz-ortiz, A. De-la-hoz, J. Alcazar, J. Ramon-carrillo, M. Antonia-herrero et al., Reproducibility and Scalability of Solvent-Free Microwave-Assisted Reactions:From Domestic Ovens to Controllable Parallel Applications, Combinatorial Chemistry & High Throughput Screening, vol.10, issue.3, pp.163-169, 2007.

C. Manière, T. Zahrah, and E. A. Olevsky, Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO2, Scripta Materialia, vol.128, pp.49-52, 2017.

T. A. Baeraky, Microwave Measurements of the Dielectric Properties of Silicon Carbide at High Temperature, Egypt. J. Sol, vol.25, issue.2, pp.263-273, 2002.

G. Zheng, X. Yin, J. Wang, M. Guo, and X. Wang, Complex Permittivity and Microwave Absorbing Property of Si3N4?SiC Composite Ceramic, Journal of Materials Science & Technology, vol.28, issue.8, pp.745-750, 2012.

D. Ding, W. Zhou, X. Zhou, F. Luo, and D. Zhu, Influence of pyrolysis temperature on structure and dielectric properties of polycarbosilane derived silicon carbide ceramic, Transactions of Nonferrous Metals Society of China, vol.22, issue.11, pp.2726-2729, 2012.

H. Yang, J. Yuan, Y. Li, Z. Hou, H. Jin et al., Silicon carbide powders: Temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range, Solid State Communications, vol.163, pp.1-6, 2013.

A. Thuault, E. Savary, J. Bazin, and S. Marinel, Microwave sintering of large size pieces with complex shape, Journal of Materials Processing Technology, vol.214, issue.2, pp.470-476, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02450337

R. Heuguet, S. Marinel, A. Thuault, and A. Badev, Effects of the Susceptor Dielectric Properties on the Microwave Sintering of Alumina, Journal of the American Ceramic Society, vol.96, issue.12, pp.3728-3736, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02450336

G. A. Danko, R. Silberglitt, P. Colombo, E. Pippel, and J. Woltersdorf, Comparison of Microwave Hybrid and Conventional Heating of Preceramic Polymers to Form Silicon Carbide and Silicon Oxycarbide Ceramics, Journal of the American Ceramic Society, vol.83, issue.7, pp.1617-1625, 2004.

D. Bouvard, S. Charmond, and C. P. Carry, Finite Element Modelling of Microwave Sintering, Ceramic Transactions Series, vol.209, pp.171-180, 2010.

L. Acevedo, S. Usón, and J. Uche, Numerical study of cullet glass subjected to microwave heating and SiC susceptor effects. Part I: Combined electric and thermal model, Energy Conversion and Management, vol.97, pp.439-457, 2015.

K. Pitchai, S. L. Birla, J. Subbiah, D. Jones, and H. Thippareddi, Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens, Journal of Food Engineering, vol.112, issue.1-2, pp.100-111, 2012.

T. Santos, M. A. Valente, J. Monteiro, J. Sousa, and L. C. Costa, Electromagnetic and thermal history during microwave heating, Applied Thermal Engineering, vol.16, pp.3255-3261, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00789886

M. F. Iskander, R. L. Smith, A. O. Andrade, H. Kimrey, and L. M. , FDTD simulation of microwave sintering of ceramics in multimode cavities, IEEE Transactions on Microwave Theory and Techniques, 1994.

M. J. White, M. F. Iskander, and Z. Huang, Development of a multigrid FDTD code for threedimensional applications, IEEE Transactions on Antennas and Propagation, issue.10, pp.1512-1517, 1997.

A. Birnboim and Y. Carmel, Simulation of Microwave Sintering of Ceramic Bodies with Complex Geometry, Journal of the American Ceramic Society, 2004.

H. Riedel and J. Svoboda, Simulation of Microwave Sintering with Advanced Sintering Models, Advances in Microwave and Radio Frequency Processing, pp.210-216, 2006.

R. Abedinzadeh, S. M. Safavi, and F. Karimzadeh, Finite Element modeling of Microwave-Assisted Hot Press process in a multimode furnace, Applied Mathematical Modelling, p.39, 2015.

F. Fritzen, S. Forest, T. Böhlke, D. Kondo, and T. Kanit, Computational homogenization of elasto-plastic porous metals, International Journal of Plasticity, vol.29, pp.102-119, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00645498

V. Tvergaard, On localization in ductile materials containing spherical voids, International Journal of Fracture, vol.18, pp.237-252, 1982.

D. M. Elzey and H. N. Wadley, Modeling the densification of metal matrix composite monotape, Acta Metallurgica et Materialia, vol.41, issue.8, pp.2297-2316, 1993.

E. Olsson and P. Larsson, A numerical analysis of cold powder compaction based on micromechanical experiments, Powder Technology, vol.243, pp.71-78, 2013.

K. Pitchai, S. L. Birla, J. Subbiah, D. D. Jones, and H. Thippareddi, Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens, Journal of Food Engineering, vol.112, issue.1-2, pp.100-111, 2012.

E. A. Olevsky, Theory of sintering: from discrete to continuum, Materials Science and Engineering: R: Reports, vol.23, issue.2, pp.41-100, 1998.

V. V. Skorokhod, M. B. Shtern, and I. F. Martynova, Theory of nonlinearly viscous and plastic behavior of porous materials, Soviet Powder Metallurgy and Metal Ceramics, vol.26, issue.8, pp.621-626, 1987.

E. A. Olevsky, C. Garcia-cardona, W. L. Bradbury, C. D. Haines, D. G. Martin et al., Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability, Journal of the American Ceramic Society, vol.95, issue.8, pp.2414-2422, 2012.

D. Giuntini, E. Olevsky, C. Garcia-cardona, A. Maximenko, M. Yurlova et al., Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design, Materials, vol.6, issue.7, pp.2612-2632, 2013.

D. Martin and . Kapoor, Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design, pp.6-7, 2013.

X. Wei, C. Back, O. Izhvanov, O. Khasanov, C. Haines et al., Spark Plasma Sintering of Commercial Zirconium Carbide Powders: Densification Behavior and Mechanical Properties, Materials, vol.8, issue.9, pp.6043-6061, 2015.

E. A. Olevsky and R. M. German, Effect of gravity on dimensional change during sintering?I. Shrinkage anisotropy, Acta Materialia, vol.48, issue.5, pp.1153-1166, 2000.

R. Olevsky,

A. German and . Upadhyaya, Effect of gravity on dimensional change during sintering-II. Shape distortion, Acta Materialia, pp.48-53, 2000.

F. Li and J. Pan, Modelling ?Nano-Effects? in Sintering, Sintering, pp.17-34, 2012.

H. Tanaka, S. Sawai, K. Morimoto, and K. Hisano, Measurement of Spectral Emissivity and Thermal Conductivity of Zirconia by Thermal Radiation Calorimetry, Journal of Thermal Analysis and Calorimetry, vol.64, issue.3, pp.867-872, 2001.

K. S. Packard, The Origin of Waveguides: A Case of Multiple Rediscovery, IEEE Transactions on Microwave Theory and Techniques, vol.32, issue.9, pp.961-969, 1984.

A. Shadab, Comparative Analysis of Rectangular and Circular Waveguide Using Matlab Simulation, International Journal of Distributed and Parallel systems, vol.3, issue.4, pp.39-52, 2012.

E. Snitzer, Cylindrical Dielectric Waveguide Modes*, Journal of the Optical Society of America, vol.51, issue.5, p.491, 1961.

H. , Y. Hwang, and S. Yun, Novel TE/sub 10?/ rectangular-waveguide-type resonators and their bandpass filter applications, IEEE Transactions on Microwave Theory and Techniques, pp.50-57, 2002.