M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev, vol.95, pp.69-96, 1995.

A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol.238, pp.37-38, 1972.

H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri et al., Nano-photocatalytic materials: possibilities and challenges, Adv. Mater, vol.24, pp.229-251, 2012.

D. M. Schultz and T. P. Yoon, Solar synthesis: prospects in visible light photocatalysis, Science, vol.343, p.1239176, 2014.

H. Kato and A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2, Chem. Phys. Lett, vol.295, pp.487-492, 1998.

A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev, vol.38, pp.253-278, 2009.

P. Zhang, J. Zhang, and J. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev, vol.43, pp.4395-4422, 2014.

S. Takasugi, K. Tomita, M. Iwaoka, H. Kato, and M. Kakihana, The hydrothermal and solvothermal synthesis of LiTaO3 photocatalyst: suppressing the deterioration of the water splitting activity without using a cocatalyst, Int. J. Hydrogen Energy, vol.40, pp.5638-5643, 2015.

S. Zlotnik, D. M. Tobaldi, P. Seabra, J. A. Labrincha, and P. M. Vilarinho, Alkali niobate and tantalate perovskites as alternative photocatalysts, ChemPhysChem, vol.17, pp.3570-3575, 2016.

A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, J Photoch. Photobio. C, vol.1, pp.1-21, 2000.

A. Kudo, H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting, Chem. Lett, vol.33, pp.1534-1539, 2004.

T. Ishihara, H. Nishiguchi, K. Fukamachi, and Y. Takita, Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O, J. Phys. Chem. B, vol.103, pp.1-3, 1999.

P. D. Kanhere, J. Zheng, and Z. Chen, Site specific optical and photocatalytic properties of Bidoped NaTaO3, J. Phys. Chem. C, vol.115, pp.11846-11853, 2011.

B. Wang, P. D. Kanhere, Z. Chen, J. Nisar, B. Pathak et al., Anion-doped NaTaO3 for visible light photocatalysis, J. Phys. Chem. C, vol.117, pp.22518-22524, 2013.

F. F. Li, D. R. Liu, G. M. Gao, B. Xue, and Y. S. Jiang, Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping, Appl. Catal. B, vol.166, pp.104-111, 2015.

B. Bajorowicz, J. Nadolna, W. Lisowski, T. Klimczuk, and A. Zaleska-medynska, The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts, Appl. Catalysis B, vol.203, pp.452-464, 2017.

D. Xu, W. Shi, C. Song, M. Chen, S. Yang et al., In-situ synthesis and enhanced photocatalytic activity of visible-light-driven plasmonic Ag/AgCl/NaTaO3 nanocubes photocatalysts, Appl. Catal. B, vol.191, pp.228-234, 2016.

D. Xu, M. Chen, S. Song, D. Jiang, W. Fan et al., The synthesis of a novel Ag-NaTaO3 hybrid with plasmonic photocatalytic activity under visible-light, CrystEngComm, vol.16, pp.1384-1388, 2014.

H. Tüysüz and C. K. Chan, Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting, Nano Energy, vol.2, pp.116-123, 2013.

T. Grewe and H. Tuysuz, Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting, ACS Appl. Mater. Interfaces, vol.7, pp.23153-23162, 2015.

R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer et al., Producing bulk ultrafine-grained materials by severe plastic deformation, JOM, vol.58, issue.4, pp.33-39, 2006.

A. P. Zhilyaev and T. G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci, vol.53, pp.893-979, 2008.

K. Edalati and Z. Horita, A review on high-pressure torsion from 1935 to 1988, Mater. Sci. Eng. A, vol.652, pp.325-352, 2016.

A. Bachmaier and R. Pippan, High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties, Mater. Trans, vol.60, pp.1256-1269, 2019.

J. K. Han, J. I. Jang, T. G. Langdon, and M. Kawasaki, Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion, Mater. Trans, vol.60, pp.1131-1138, 2019.

V. V. Popov and E. N. Popova, Behavior of Nb and CuNb composites under severe plastic deformation and annealing, Mater. Trans, vol.60, pp.1209-1220, 2019.

K. Edalati, Review on recent advancement in severe plastic deformation of oxides by highpressure torsion (HPT), Adv. Eng. Mater, vol.21, p.1800272, 2019.

V. D. Blank, M. Y. Popov, and B. A. Kulnitskiy, The effect of severe plastic deformations on phase transitions and structure of solids, Mater. Trans, vol.60, pp.1500-1505, 2019.

V. I. Levitas, High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils, Mater. Trans, vol.60, pp.1294-1301, 2019.

H. Razavi-khosroshahi, K. Edalati, M. Hirayama, H. Emami, M. Arita et al., Visible-light-driven photocatalytic hydrogen generation on nanosized TiO2-II stabilized by high-pressure torsion, ACS Catal, vol.6, pp.5103-5107, 2016.

H. Razavi-khosroshahi, K. Edalati, J. Wu, Y. Nakashima, M. Arita et al., High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap, J. Mater. Chem. A, vol.5, pp.20298-20303, 2017.

J. Hidalgo-jimenez, Q. Wang, K. Edalati, J. Cubero-sesin, H. Razavi-khosroshahi et al., Highpressure torsion of TiO2-ZnO composites: phase transformations, vacancy formation and changes in optical and photocatalytic properties, Int. J. Plasticity, 2019.

K. Edalati, I. Fujita, S. Takechi, Y. Nakashima, K. Kumano et al., Photocatalytic activity of aluminum oxide by oxygen vacancy generation using high-pressure torsion straining, Scr. Mater, vol.173, pp.120-124, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307607

N. Ishizawa, A. Oono, and D. Boulay, A reinvestigation of the structure of Cs3Ta5O14, Acta Crystallogr. E, vol.59, pp.86-88, 2003.

T. V. Tkachenko, E. I. Get'man, and S. K. Bamoteref, LiTaO3-SrZrO3 system, Russ. J. Inorg. Chem, vol.36, pp.1645-1647, 1991.

K. Edalati, S. Toh, Y. Ikoma, and Z. Horita, Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion, Scr. Mater, vol.65, pp.974-977, 2011.

K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata et al., Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties, Mater. Res. Lett, vol.3, pp.216-221, 2015.

K. Edalati, Q. Wang, H. Razavi-khosroshahi, H. Emami, M. Fuji et al., Lowtemperature anatase-to-rutile phase transformation and unusual grain coarsening in titanium oxide nanopowders by high-pressure torsion straining, Scr. Mater, vol.162, pp.341-344, 2019.

K. Edalati, I. Fujita, X. Sauvage, M. Arita, and Z. Horita, Microstructure and phase transformations of silica glass and vanadium oxide by severe plastic deformation via highpressure torsion straining, J. Alloys Compd, vol.779, pp.394-398, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02142192

I. Fujita, K. Edalati, X. Sauvage, and Z. Horita, Grain growth in nanograined aluminum oxide by high-pressure torsion: phase transformation and plastic strain effects, Scr. Mater, vol.152, pp.11-14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02061728

A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, and B. Baretzky, Phase transformations induced by severe plastic deformation, Mater. Trans, vol.60, pp.1489-1499, 2019.

Á. Révész and Z. Kovács, Severe plastic deformation of amorphous alloys, Mater. Trans, vol.60, pp.1283-1293, 2019.

J. Q. Wang, S. Y. Su, B. Liu, M. H. Cao, and C. W. Hu, One-pot, low-temperature synthesis of selfdoped NaTaO3 nanoclusters for visible-light-driven photocatalysis, Chem. Commun, vol.49, pp.7830-7832, 2013.

J. Hou, S. Cao, Y. Wu, F. Liang, L. Ye et al., Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction, Nano Energy, vol.30, pp.59-68, 2016.

Y. C. Lee, H. Teng, C. C. Hu, and S. Y. Hu, Temperature-dependent photoluminescence in NaTaO3 with different crystalline structures, Electrochem. Solid-State Lett, vol.11, pp.1-4, 2008.

B. Oberdorfer, B. Lorenzoni, K. Unger, W. Sprengel, M. Zehetbauer et al., Absolute concentration of free volume-type defects in ultrafine-grained Fe prepared by high-pressure torsion, Scr. Mater, vol.63, pp.452-455, 2010.

M. Krystian, D. Setman, B. Mingler, G. Krexner, and M. J. Zehetbauer, Formation of superabundant vacancies in nano-Pd-H generated by high-pressure torsion, Scr. Mater, vol.62, pp.49-52, 2010.

J. ?í?ek, M. Jane?ek, T. Vlasák, B. Smola, O. Melikhova et al., The development of vacancies during severe plastic deformation, Mater. Trans, vol.60, pp.1533-1542, 2019.

S. John, C. Soukoulis, M. H. Cohen, and E. N. Economou, Theory of electron band tails and the Urbach optical-absorption edge, Phys. Rev. Lett, vol.57, pp.1777-1780, 1986.

P. Kubelka and F. Munk, An article on optics of paint layers, Zeit. Fur Teken Physik, vol.12, pp.593-601, 1931.

W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo et al., Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods, J. Phys. Chem. B, vol.107, pp.1798-1803, 2003.

I. E. Castelli, J. M. García-lastra, F. Hüser, K. S. Thygesen, and K. W. Jacobsen, Stability and bandgaps of layered perovskites for one-and two-photon water splitting, New J. Phys, vol.15, p.105026, 2013.

B. Sabir, G. Murtaza, R. M. Khalil, and Q. Mahmood, First principle study of electronic, mechanical, optical and thermoelectric properties of CsMO3 (M = Ta, Nb) compounds for optoelectronic devices, J. Mol. Graph. Model, vol.86, pp.19-26, 2019.