S. Provenzano, N. Hindi, C. Morosi, M. Ghilardi, P. Collini et al., Response of conventional chondrosarcoma to gemcitabine alone: a case report, Clin. Sarcoma Res, vol.5, 2015.

C. D. Fletcher, Pathology and genetics of tumours of soft tissue and bone, Int. Agency Res. Cancer WHO Classif. Tumours Soft Tissue Bone, World Health Organ, 2013.

A. Y. Giuffrida, J. E. Burgueno, L. G. Koniaris, J. C. Gutierrez, R. Duncan et al., ): an analysis of 2890 cases from the SEER database, Chondrosarcoma in the United States, vol.91, pp.1063-1072, 1973.

L. R. Leddy and R. E. Holmes, Cancer Treat. Res, vol.162, pp.117-130, 2014.

A. Italiano, O. Mir, A. Cioffi, E. Palmerini, S. Piperno-neumann et al., Advanced chondrosarcomas: role of chemotherapy and survival, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO, 2013.

J. V. Bovée, A. -. Cleton-jansen, A. H. Taminiau, and P. C. Hogendoorn, Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment, Lancet Oncol, vol.6, issue.05, pp.70282-70287, 2005.

F. Y. Lee, H. J. Mankin, G. Fondren, M. C. Gebhardt, D. S. Springfield et al., Chondrosarcoma of bone: an assessment of outcome, J. Bone Joint Surg. Am, vol.81, pp.326-338, 1999.

R. Krochak, A. R. Harwood, B. J. Cummings, and I. C. Quirt, Results of radical radiation for chondrosarcoma of bone, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.1, pp.109-115, 1983.

A. R. Harwood, J. I. Krajbich, and V. L. Fornasier, Radiotherapy of chondrosarcoma of bone, Cancer, vol.45, pp.2769-2777, 1980.

M. Wakatsuki, N. Magpayo, H. Kawamura, and K. D. Held, Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after X-Ray, proton, iron ion and carbon ion exposures, Int. J. Radiat. Oncol. Biol. Phys, 2012.

M. Uhl, M. Mattke, T. Welzel, J. Oelmann, G. Habl et al., High control rate in patients with chondrosarcoma of the skull base after carbon ion therapy: first report of long-term results, Cancer, vol.120, pp.1579-1585, 2014.

H. Outani, K. Hamada, Y. Imura, K. Oshima, T. Sotobori et al., Comparison of clinical and functional outcome between surgical treatment and carbon ion radiotherapy for pelvic chondrosarcoma, Int. J. Clin. Oncol, 2015.

S. Wu, P. Li, X. Cai, Z. Hong, Z. Yu et al., Carbon ion radiotherapy for patients with extracranial chordoma or chondrosarcoma -initial Experience from shanghai proton and heavy ion center, J. Cancer, vol.10, pp.3315-3322, 2019.

A. Suetens, M. Moreels, R. Quintens, E. Soors, J. Buset et al., Dose-and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation, J. Radiat. Res. (Tokyo), vol.56, pp.11-21, 2015.

K. Sato, T. Imai, R. Okayasu, and T. Shimokawa, Heterochromatin domain number correlates with X-ray and carbon-ion radiation resistance in cancer cells, Radiat. Res, vol.182, pp.408-419, 2014.

H. Suit, T. Delaney, S. Goldberg, H. Paganetti, B. Clasie et al., Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.95, pp.3-22, 2010.

A. Suetens, M. Moreels, R. Quintens, E. Soors, J. Buset et al., Dose-and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation, J. Radiat. Res, 2014.

N. Hamada, Recent insights into the biological action of heavy-ion radiation, J. Radiat. Res. (Tokyo), vol.50, pp.1-9, 2009.

A. A. Jagasia, J. A. Block, M. O. Diaz, T. Nobori, S. Gitelis et al., Partial deletions of the CDKN2 and MTS2 putative tumor suppressor genes in a myxoid chondrosarcoma, Cancer Lett, vol.105, pp.77-90, 1996.

S. P. Scully, K. R. Berend, A. Toth, W. N. Qi, Z. Qi et al., Interstitial collagenase gene expression correlates with in vitro invasion in human chondrosarcoma, Marshall Urist Award, pp.291-303, 2000.

R. Gil-benso, C. Lopez-gines, J. A. López-guerrero, C. Carda, R. C. Callaghan et al., Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin, Lab. Investig. J. Tech. Methods Pathol, vol.83, pp.877-887, 2003.

N. Girard, C. Bazille, E. Lhuissier, H. Benateau, A. Llombart-bosch et al., 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells, PLoS ONE, vol.9, p.98176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147783

S. K. Koester, P. Roth, W. R. Mikulka, S. F. Schlossman, C. Zhang et al., Monitoring early cellular responses in apoptosis is aided by the mitochondrial membrane protein-specific monoclonal antibody APO2, Cytometry, vol.7, pp.306-312, 1997.

H. Yang and K. Wang, Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR, Nat. Protoc, vol.10, pp.1556-1566, 2015.

G. Ontology-consortium, Gene ontology consortium: going forward, vol.43, pp.1049-1056, 2015.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc, vol.4, pp.1073-1081, 2009.

J. M. Schwarz, D. N. Cooper, M. Schuelke, and D. Seelow, MutationTaster2: mutation prediction for the deep-sequencing age, Nat. Methods, vol.11, pp.361-362, 2014.

N. Girard, Journal of Bone Oncology, vol.22, p.100283, 2020.

,

I. Adzhubei, D. M. Jordan, and S. R. Sunyaev, Predicting functional effect of human missense mutations using polyphen-2, Curr. Protoc. Hum. Genet. Editor. Board Jonathan Haines Al, p.20, 2013.

M. Löbrich, A. Shibata, A. Beucher, A. Fisher, M. Ensminger et al., gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization, Cell Cycle Georget. Tex, vol.9, pp.662-669, 2010.

W. M. Bonner, C. E. Redon, J. S. Dickey, A. J. Nakamura, O. A. Sedelnikova et al., GammaH2AX and cancer, Nat. Rev. Cancer, vol.8, pp.957-967, 2008.

J. P. Banáth, S. H. Macphail, and P. L. Olive, Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines, Cancer Res, vol.64, pp.7144-7149, 2004.

P. Vandenabeele, L. Galluzzi, T. Vanden-berghe, and G. Kroemer, Molecular mechanisms of necroptosis: an ordered cellular explosion, Nat. Rev. Mol. Cell Biol, vol.11, pp.700-714, 2010.

F. De-amicis, S. Aquila, C. Morelli, C. Guido, M. Santoro et al., Bergapten drives autophagy through the up-regulation of PTEN expression in breast cancer cells, Mol. Cancer, vol.14, 2015.

M. Zhang, N. Harashima, T. Moritani, W. Huang, and M. Harada, The roles of ROS and caspases in TRAIL-Induced apoptosis and necroptosis in human pancreatic cancer cells, PLoS ONE, vol.10, 2015.

V. Nikoletopoulou, M. Markaki, K. Palikaras, and N. Tavernarakis, Crosstalk between apoptosis, necrosis and autophagy, vol.1833, pp.3448-3459, 2013.

R. Omar, A. Cooper, H. M. Maranyane, L. Zerbini, and S. Prince, COL1A2 is a TBX3 target that mediates its impact on fibrosarcoma and chondrosarcoma cell migration, Cancer Lett, vol.459, pp.227-239, 2019.

S. Wansleben, J. Peres, S. Hare, C. R. Goding, and S. Prince, T-box transcription factors in cancer biology, Biochim. Biophys. Acta, vol.1846, pp.380-391, 2014.

T. Willmer, S. Hare, J. Peres, and S. Prince, The T-box transcription factor TBX3 drives proliferation by direct repression of the p21WAF1 cyclin-dependent kinase inhibitor, Cell Div, p.11, 2016.

X. Wang, X. Liu, A. Y. Li, L. Chen, L. Lai et al., Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.17, pp.2570-2580, 2011.

J. Sun, Y. Chen, M. Li, and Z. Ge, Role of antioxidant enzymes on ionizing radiation resistance, Free Radic, Biol. Med, vol.24, pp.586-593, 1998.

R. M. Sutherland, Tumor hypoxia and gene expression-implications for malignant progression and therapy, Acta Oncol. Stockh. Swed, vol.37, pp.567-574, 1998.

J. Dunst, P. Stadler, A. Becker, C. Lautenschläger, T. Pelz et al., Tumor volume and tumor hypoxia in head and neck cancers. the amount of the hypoxic volume is important, Strahlenther. Onkol. Organ Dtsch. Röntgenges. Al, vol.179, pp.521-526, 2003.

N. Chan, M. Koritzinsky, H. Zhao, R. Bindra, P. M. Glazer et al., Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance, Cancer Res, vol.68, pp.605-614, 2008.

J. N. Kavanagh, F. J. Currell, D. J. Timson, K. I. Savage, D. J. Richard et al., Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest, Sci. Rep, vol.3, p.1770, 2013.

A. Asaithamby, B. Hu, and D. J. Chen, Unrepaired clustered DNA lesions induce chromosome breakage in human cells, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.8293-8298, 2011.

T. E. Schmid, O. Zlobinskaya, and G. Multhoff, Differences in phosphorylated histone H2AX foci formation and removal of cells exposed to low and high linear energy transfer radiation, Curr. Genomics, vol.13, pp.418-425, 2012.

N. Amornwichet, T. Oike, A. Shibata, H. Ogiwara, N. Tsuchiya et al., Carbonion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe, PLoS ONE, vol.9, p.115121, 2014.

M. Takahashi, H. Hirakawa, H. Yajima, N. Izumi-nakajima, R. Okayasu et al., Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays, Int. J. Radiat. Biol, vol.90, pp.1125-1132, 2014.

N. Girard, Journal of Bone Oncology, vol.22, p.100283, 2020.