R. Baskar, K. Lee, R. Yeo, and K. W. Yeoh, Cancer and Radiation Therapy: Current Advances and Future Directions, Int. J. Med. Sci, vol.9, pp.193-199, 2012.

F. J. Berkey, Managing the adverse effects of radiation therapy, Am. Fam. Physician, vol.82, pp.381-388, 2010.

B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein et al., Tolerance of normal tissue to therapeutic irradiation, Int. J. Radiat. Oncol. Biol. Phys, vol.21, pp.109-122, 1991.

J. O. Archambeau, R. Pezner, and T. Wasserman, Pathophysiology of irradiated skin and breast, Int. J. Radiat. Oncol. Biol. Phys, vol.31, pp.1171-1185, 1995.

E. Bordón, L. A. Henríquez-hernández, P. C. Lara, B. Pinar, F. Fontes et al., Prediction of clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral blood lymphocytes (PBLs), Radiat. Oncol, vol.4, p.58, 2009.

N. E. Crompton, Y. Q. Shi, G. C. Emery, L. Wisser, H. Blattmann et al., Sources of variation in patient response to radiation treatment, Int. J. Radiat. Oncol. Biol. Phys, vol.49, pp.547-554, 2001.

J. Lacombe, O. Riou, J. Solassol, A. Mangé, C. Bourgier et al., Radiosensibilité individuelle : Les tests vont changer nos pratiques, Cancer Radiother, vol.17, pp.337-343, 2013.

K. B. Pandey and S. I. Rizvi, Markers of oxidative stress in erythrocytes and plasma during aging in humans, Oxid. Med. Cell. Longev, vol.3, pp.2-12, 2010.

I. Marrocco, F. Altieri, and I. Peluso, Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans, Oxid. Med. Cell. Longev, p.6501046, 2017.

M. E. Robbins and W. Zhao, Chronic oxidative stress and radiation-induced late normal tissue injury: A review, Int. J. Radiat. Biol, vol.80, pp.251-259, 2004.

C. Laurent, A. Leduc, I. Pottier, V. Prévost, F. Sichel et al., Dramatic increase in oxidative stress in carbon-irradiated normal human skin fibroblasts, PLoS ONE, issue.8, p.85158, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02024618

C. Laurent, P. Voisin, and J. P. Pouget, DNA damage in cultured skin microvascular endothelial cells exposed to gamma rays and treated by the combination pentoxifylline and alpha-tocopherol, Int. J. Radiat. Biol, vol.82, pp.309-321, 2006.

J. Lacombe, C. Sima, S. A. Amundson, and F. Zenhausern, Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review, PLoS ONE, vol.13, p.198851, 2018.

C. N. Sprung, H. B. Forrester, S. Siva, and O. A. Martin, Immunological markers that predict radiation toxicity, Cancer Lett, vol.368, pp.191-197, 2015.

M. I. Núñez, M. R. Guerrero, E. López, M. R. Moral, M. Valenzuela et al., DNA damage and prediction of radiation response in lymphocytes and epidermal skin human cells, Int. J. Cancer, vol.76, pp.354-361, 1998.

K. Schnarr, D. Boreham, J. Sathya, and J. Julian, Dayes, I.S. Radiation-induced lymphocyte apoptosis to predict radiation therapy late toxicity in prostate cancer patients, Int. J. Radiat. Oncol. Biol. Phys, vol.74, pp.1424-1430, 2009.

M. Ozsahin, N. E. Crompton, S. Gourgou, A. Kramar, L. Li et al., CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: A prospective study in 399 patients, Clin. Cancer Res, vol.11, pp.7426-7433, 2005.

D. Azria, O. Riou, F. Castan, T. D. Nguyen, K. Peignaux et al., Radiation-induced CD8 T-lymphocyte Apoptosis as a Predictor of Breast Fibrosis After Radiotherapy: Results of the Prospective Multicenter French Trial, vol.2, pp.1965-1973, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02338826

C. J. Talbot, M. R. Veldwijk, D. Azria, C. Batini, M. Bierbaum et al., Multi-centre technical evaluation of the radiation-induced lymphocyte apoptosis assay as a predictive test for radiotherapy toxicity, Clin. Transl. Radiat. Oncol, vol.18, pp.1-8, 2019.

S. Skiöld, I. Naslund, K. Brehwens, A. Andersson, P. Wersall et al., Radiation-induced stress response in peripheral blood of breast cancer patients differs between patients with severe acute skin reactions and patients with no side effects to radiotherapy, Mutat. Res, vol.756, pp.152-157, 2013.

J. B. Barber, W. Burrill, A. R. Spreadborough, E. Levine, C. Warren et al., Relationship between in vitro chromosomal radiosensitivity of peripheral blood lymphocytes and the expression of normal tissue damage following radiotherapy for breast cancer, Radiother. Oncol, vol.55, pp.179-186, 2000.

O. Ebbeler, R. Twardella, D. Helmbold, I. Gotzes, F. Schmezer et al., Radiation-induced DNA damage and repair in lymphocytes from breast cancer patients and their correlation with acute skin reactions to radiotherapy, Int. J. Radiat. Oncol. Biol. Phys, vol.55, pp.1216-1225, 2003.

E. C. Bourton, P. N. Plowman, D. Smith, C. F. Arlett, and C. N. Parris, Prolonged expression of the ?-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment, Int. J. Cancer, vol.129, pp.2928-2934, 2011.

S. E. Pouliliou, T. S. Lialiaris, T. Dimitriou, A. Giatromanolaki, D. Papazoglou et al., Survival Fraction at 2 Gy and ?H2AX Expression Kinetics in Peripheral Blood Lymphocytes From Cancer Patients: Relationship With Acute Radiation-Induced Toxicities, Int. J. Radiat. Oncol. Biol. Phys, vol.92, pp.667-674, 2015.

J. L. Rodriguez-gil, C. Takita, J. Wright, I. M. Reis, W. Zhao et al., Inflammatory biomarker C-reactive protein and radiotherapy-induced early adverse skin reactions in patients with breast cancer, Cancer Epidemiol. Biomark. Prev, vol.23, pp.1873-1883, 2014.

P. Giridhar, S. Mallick, G. K. Rath, and P. K. Julka, Radiation induced lung injury: Prediction, assessment and management. Asian Pac, J. Cancer Prev, vol.16, pp.2613-2617, 2015.

C. E. Rübe, H. P. Rodemann, and C. Rübe, The relevance of cytokines in the radiation-induced lung reaction. Experimental basis and clinical significance, Strahlenther. Onkol, vol.180, pp.541-549, 2004.

M. S. Anscher, F. M. Kong, K. Andrews, R. Clough, L. B. Marks et al., Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis, Int. J. Radiat. Oncol. Biol. Phys, vol.41, pp.1029-1035, 1998.

L. Zhao, K. Sheldon, M. Chen, M. S. Yin, J. A. Hayman et al., The predictive role of plasma TGF-beta1 during radiation therapy for radiationinduced lung toxicity deserves further study in patients with non-small cell lung cancer, Lung Cancer, vol.59, pp.232-239, 2008.

Y. Chen, O. Hyrien, J. Williams, P. Okunieff, T. Smudzin et al., Interleukin (IL)-1A and IL-6: Applications to the predictive diagnostic testing of radiation pneumonitis, Int. J. Radiat. Oncol. Biol. Phys, vol.62, pp.260-266, 2005.

M. H. Stenmark, X. W. Cai, K. Shedden, J. A. Hayman, S. Yuan et al., Combining Physical and Biologic Parameters to Predict Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer Treated With Definitive Radiation Therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.84, pp.217-222, 2012.

M. Tsujisaki, K. Imai, H. Hirata, Y. Hanzawa, J. Masuya et al., Detection of circulating intercellular adhesion molecule-1 antigen in malignant diseases, Clin. Exp. Immunol, vol.85, pp.3-8, 1991.

E. M. Park, N. Ramnath, G. Y. Yang, J. Y. Ahn, Y. Park et al., High superoxide dismutase and low glutathione peroxidase activities in red blood cells predict susceptibility of lung cancer patients to radiation pneumonitis. Free Radic, Biol. Med, vol.42, pp.280-287, 2007.

H. Xiong, Z. Liao, Z. Liu, T. Xu, Q. Wang et al., ATM polymorphisms predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.85, pp.1066-1073, 2013.

G. C. Barnett, R. M. Elliott, J. Alsner, C. N. Andreassen, O. Abdelhay et al., Individual patient data meta-analysis shows no association between the SNP rs1800469 in TGFB and late radiotherapy toxicity, Radiother. Oncol, vol.105, pp.289-295, 2012.

A. M. Voets, C. Oberije, R. B. Struijk, B. Reymen, K. De-ruyck et al., No association between TGF-?1 polymorphisms and radiationinduced lung toxicity in a European cohort of lung cancer patients, Radiother. Oncol, vol.105, pp.296-298, 2012.

X. W. Cai, K. Shedden, X. Ao, M. Davis, X. L. Fu et al., Plasma proteomic analysis may identify new markers for radiation-induced lung toxicity in patients with nonsmall-cell lung cancer, Int. J. Radiat. Oncol. Biol. Phys, vol.77, pp.867-876, 2010.

X. W. Cai, K. A. Shedden, S. H. Yuan, M. A. Davis, L. Y. Xu et al., Baseline plasma proteomic analysis to identify biomarkers that predict radiationinduced lung toxicity in patients receiving radiation for non-small cell lung cancer, J. Thorac. Oncol, vol.6, pp.1073-1078, 2011.

J. H. Oh, J. M. Craft, R. Townsend, J. O. Deasy, and J. D. Bradley, El Naqa, I. A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data, J. Proteom. Res, vol.10, pp.1406-1415, 2011.

R. Tothill, V. Estall, and D. Rischin, Merkel cell carcinoma: Emerging biology, current approaches, and future directions, Am. Soc. Clin. Oncol. Educ. Book, vol.35, pp.519-526, 2015.

H. Geinitz, F. B. Zimmermann, and M. Molls,

, Strahlenther. Onkol, vol.175, pp.119-127, 1999.

B. Hochman, C. Farkas, F. Isoldi, S. Ferrara, F. Furtado et al., Distribuição de queloide e cicatriz hipertrófica segundo fototipos de pele de Fitzpatrick, Rev. Brasileira Cir. Plást, vol.27, pp.185-189, 2012.

C. Lebbe, J. Becker, J. J. Grob, J. Malvehy, V. Del-marmol et al., Diagnosis and treatment of Merkel Cell Carcinoma. European consensus-based interdisciplinary guideline, Eur. J. Cancer, vol.51, pp.2396-2403, 2015.

C. Caldarelli, U. Autorino, C. Iaquinta, and A. De-marchi, Merkel cell carcinoma of the forehead area: A literature review and case report, Oral Maxillofac Surg, vol.23, pp.365-373, 2019.

M. Shirley, Avelumab: A Review in Metastatic Merkel Cell Carcinoma, Target. Oncol, vol.13, pp.409-416, 2018.

J. D. Cox, J. Stetz, and T. F. Pajak, Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC), Int. J. Radiat. Oncol. Biol. Phys, vol.31, pp.1341-1346, 1995.

H. Aebi, Catalase in vitro, Meth. Enzymol, vol.105, pp.121-126, 1984.

P. M. Sinet, A. M. Michelson, A. Bazin, J. Lejeune, and H. Jerome, Increase in glutathione peroxidase activity in erythrocytes from trisomy 21 subjects, Biochem. Biophys. Res. Commun, vol.67, pp.910-915, 1975.

J. Baijer, N. Déchamps, H. Perdry, P. Morales, S. Kerns et al., TNFSF10/TRAIL regulates human T4 effector memory lymphocyte radiosensitivity and predicts radiation-induced acute and subacute dermatitis, Oncotarget, vol.7, pp.21416-21427, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02294327

J. Staniek, R. Lorenzetti, B. Heller, I. Janowska, P. Schneider et al., TRAIL-R1 and TRAIL-R2 Mediate TRAIL-Dependent Apoptosis in Activated Primary Human B Lymphocytes, Front. Immunol, vol.10, p.951, 2019.

M. A. Degli-esposti, W. C. Dougall, P. J. Smolak, J. Y. Waugh, C. A. Smith et al., The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain, Immunity, vol.7, pp.813-820, 1997.

A. Klemm, C. Voigt, M. Friedrich, R. Fünfstück, H. Sperschneider et al., Determination of erythrocyte antioxidant capacity in haemodialysis patients using electron paramagnetic resonance, Nephrol. Dial. Transplant, vol.16, pp.2166-2171, 2001.

D. J. Waugh and C. Wilson, The interleukin-8 pathway in cancer, Clin. Cancer Res, vol.14, pp.6735-6741, 2008.

W. Liao, T. K. Hei, and S. K. Cheng, Radiation-Induced Dermatitis is Mediated by IL17-Expressing ?? T Cells, Radiat. Res, vol.187, pp.454-464, 2017.

I. M. Rea, D. S. Gibson, V. Mcgilligan, S. E. Mcnerlan, H. D. Alexander et al., Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines, Front. Immunol, vol.9, p.586, 2018.

V. De-sanctis, L. Agolli, V. Visco, F. Monaco, R. Muni et al., Fatigue, and Cutaneous Erythema in Early Stage Breast Cancer Patients Receiving Adjuvant Radiation Therapy, Biomed. Res. Int, p.523568, 2014.

I. V. Mavragani, Z. Nikitaki, S. A. Kalospyros, and A. G. Georgakilas, Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance, Cancers, pp.11-1789, 2019.

U. Oppitz, S. Denzinger, U. Nachtrab, M. Flentje, and H. Stopper, Radiation-induced comet-formation in human skin fibroblasts from radiotherapy patients with different normal tissue reactions, Strahlenther. Onkol, vol.175, pp.341-346, 1999.

, Nachtrab Radiation-induced micronucleus formation in human skin fibroblasts of patients showing severe and normal tissue damage after radiotherapy, Int. J. Radiat. Biol, vol.73, pp.279-287, 1998.

S. Quarmby, C. West, B. Magee, A. Stewart, R. Hunter et al., Differential expression of cytokine genes in fibroblasts derived from skin biopsies of patients who developed minimal or severe normal tissue damage after radiotherapy, Radiat. Res, vol.157, pp.243-248, 2002.

N. G. Burnet, J. Nyman, I. Turesson, R. Wurm, J. R. Yarnold et al., Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity, Lancet, vol.339, pp.1570-1571, 1992.

O. K. Rødningen, A. L. Børresen-dale, J. Alsner, T. Hastie, and J. Overgaard, Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis, Radiother. Oncol, vol.86, pp.314-320, 2008.

C. N. Andreassen, J. Overgaard, and J. Alsner, Independent prospective validation of a predictive test for risk of radiation induced fibrosis based on the gene expression pattern in fibroblasts irradiated in vitro, Radiother. Oncol, vol.108, pp.469-472, 2013.

K. Strnadova, V. Sandera, B. Dvorankova, O. Kodet, M. Duskova et al., Skin aging: The dermal perspective, Clin. Dermatol, vol.37, pp.326-335, 2019.

X. Ji, X. Zhu, and X. Lu, Effect of cancer-associated fibroblasts on radiosensitivity of cancer cells, Future Oncol, vol.13, pp.1537-1550, 2017.

S. Delanian, R. Porcher, S. Balla-mekias, and J. L. Lefaix, Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis, J. Clin. Oncol, vol.21, pp.2545-2550, 2003.

P. M. Herst, N. C. Bennett, A. E. Sutherland, R. I. Peszynski, D. B. Paterson et al., Prophylactic use