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ABSTRACT: The deprotonative intramolecular-amination reaction of phe-

nylalanine derived palladacycles has been investigated to highlight a facile car-

bonate-assisted N-H activation before the C-N bond formation. A major coun-

ter-ion effect led to divergent pathways whereby the SPhos-Pd-complex with 

iodine, triflate or trifluroacetate anions were key intermediates to afford an ac-

cess to (S)-2-indolinecarboxylic acid derivatives.  

INTRODUCTION 

Due to the prevalence of nitrogen-containing heterocycles in 

pharmaceutical compounds and materials, the transition-metal 

catalyzed C-N bond formation is currently of high importance 

in organic synthesis.1 In this field of research, the intramolecu-

lar N-H/C-H cross-coupling approach stands at the ideal situa-

tion among step-economy strategies. Aryl-alkylamine precur-

sors (Scheme 1a), with an activated amine NH(EWG) (R1 = 

EWG = COR, SO2R, Y = H) have been mostly used under pal-

ladium catalysis.2 These intramolecular C-N bond forming pro-

cesses involve a PdII-catalyzed N-H activation, followed by a 

directed Csp2-H intramolecular activation ended by the reduc-

tive elimination step of the transient palladacycle A. However, 

a similar palladium promoted N-H/C-H deshydrogenative ami-

nation sequence from a free and less acidic primary amine plat-

form (R1 = H, Y = H) remains unsolved. This strategy is often 

hampered by the strong complexation ability of RNH2 precur-

sors to PdII complexes preventing further Csp2-H activation 

events.3 Nevertheless, the ortho-palladation of aryl-alkyl(pri-

mary)amines by a stoichiometric amount of PdII species (R
1 = 

H) has been known for decades, even for more challenging 6-

membered ring NH2-bound palladacycle B.4,5 As a matter of 

fact, the so-called Buchwald-Hartwig Pd0-catalyzed intramo-

lecular amination of ortho-halogenated phenethylamines was 

also applied to NH2-derivatives (R1 = H, Y = halide or 

(pseudo)halide).6,7 The sequence was described through the pro-

posed NH2-palladacycle intermediates B (ligated by Y after the 

oxidative addition event) before the final base-promoted ami-

nation process. Importantly, these types of palladacycles were 

isolated and employed as a source of active Pd0 catalysts under 

basic conditions (Scheme 1b), as demonstrated by Buchwald.8 

During this intramolecular C-N coupling reaction, the putative 

formation of indoline side-product was proposed but the exact 

mechanism remains unclear.8 Most recent mechanistic studies 

provided insight into the intermolecular Buchwald-Hartwig 

amination, albeit a focus on intramolecular amination processes 

especially with primary amines remains to be achieved.9 

Scheme 1. Intramolecular Pd-catalyzed amination from pri-

mary amine: context and issues 

 



We recently became interested in opening a straightforward 

route to (S)-methyl indoline-2-carboxylate, a synthetic interme-

diate used in the pharmaceutical industry (Scheme 1c).10 The C-

H/N-H disconnection provoked by a palladium-promoted dehy-

drogenative amination would afford a step-economy approach 

from L-phenylalanine derivative 1a. But this novel sequence 

also affords a great opportunity to tackled a mechanistic and re-

activity investigation.Thanks to the insightful investigations of 

Vicente and Saura-Llama, the isolable palladacycle intermedi-

ates 2a-X (X = Cl, I) were readily accessible from the ammo-

nium triflate salts 1a-OTf via a C-H directed palladation fol-

lowed by ion metathesis processes with NaX.4d In that context, 

we embarked into a reactivity study of the deprotonative intra-

molecular-amination event of palladium-complexes of type 2 

and found a marked counter-ion effect leading to divergent 

pathways.11 We are pleased to report on this intramolecular C-

N bond investigation, encompassing a mechanistic insight by 

DFT and mass analyses, which led to primary investigations to-

wards a racemization-free synthesis of indoline-2-carboxylic 

acid derivative via the palladium promoted N-H/C-H cross-cou-

pling of a primary amine starting material. 

RESULTS AND DISCUSSIONS 

TABLE 1. Optimization of the deprotonative amination re-

action of complexes 3a 

 

entry 3-X Base/solvent T (°C) 

/t (h) 

4/5 yield 

(%)b,d 

1 3a-Cl K2CO3/t-BuOH 100/14 0/20 

2 3a-I K2CO3/t-BuOH 100/14 48/0 

3 3a-I K2CO3/MeCN 100/14 77/-c 

4 3a-I K2CO3/toluene 100/14 77/-c 

5 3a-I K2CO3/toluene 100/4 26/0 

6 3a-I K2CO3/toluene 100/24 45/33 

7 3a-I Na2CO3/toluene 100/14 16/10 

8 3a-I Cs2CO3/toluene 100/14 20/25 

9 3a-I CsF/toluene 100/14 63/37 

10 3a-I K3PO4/toluene 100/14 74/26 

11 3a-I DBU/toluene 100/14 - c 

12d 3a-I K2CO3/toluene 130/14 99 (61)/-c 

13d 3a-Cl K2CO3/toluene 130/14 0/46 (46) 

14d 3b-I K2CO3/toluene 130/14 63(50)/28 

15d 3b-Cl K2CO3/toluene 130/14 0/41 (38) 

aReaction made with 0.1 mmol of palladacycle and 0.3 mmol of 

base (3 equiv) in 1 mL of solvent. bYield determined by 1H NMR 

spectroscopy with Bn2O as an internal standard. cTraces of product 

(< 10% by 1H NMR). dReaction made with 0.3 mmol of palladacy-

cle – Isolated yields in parentheses.  

At the onset, a series of phosphino-palladacycles 3a-X and 

3b-X (X = Cl or I) was prepared from the dimeric palladacycles 

2-X (Scheme 1c versus Table 1), according to a literature pro-

tocol.4d After an extensive investigation of the reaction condi-

tions with various complexes, we successfully performed the 

deprotonative amination reaction (see supporting information). 

We found that the L-phenylalanine derived palladium complex 

3a-Cl, ligated by the Buchwald SPhos phosphine and a chlo-

ride,8 cyclized in the presence of K2CO3 (3 equiv) in t-BuOH at 

100 °C (entry 1). Unfortunately, the aromatic indole product 5a 

was formed in a moderate 20% NMR yield (estimated by 1H 

NMR with an internal standard). To our delight, we observed a 

major counterion-effect of this carbonate-assisted C-N bond 

forming step (entry 2), as iodide-complex 3a-I furnished exclu-

sively the indoline product 4a with an improved 48% NMR 

yield in similar conditions. In spite of the reaction remaining 

effective both in polar and apolar solvents (see supporting in-

formation), the best results were obtained in acetonitrile and tol-

uene, both affording 4a in 77% yield (entries 3 and 4) in 14 h, 

along with the concomitant formation of trace amounts of in-

dole 5a. A higher proportion of indole 5a (4a:5a = 45/33) was 

observed by carrying out the reaction for 24 h (entry 6). Addi-

tionally, sodium and cesium carbonates turned out to be less ef-

fective bases for the construction of the indoline product 4a (16-

20% yields, entries 7 and 8). Among non-carbonated bases, ce-

sium fluoride and potassium phosphate provided indoline 4a in 

63% and 74% yields respectively (entries 9-10), which is in line 

with the result obtained with K2CO3 (entry 4) even though a 

significant amount of indole 5a was detected (26-37%). By con-

trast, the reaction failed when using DBU as an organic base 

(entry 11).9e Finally, these reaction conditions executed at 130 

°C led to an excellent conversion into the indoline product 4a 

(99% NMR yield) and gave an isolated yield of 61% after col-

umn chromatography (entry 12). For comparison purposes, un-

der these optimal reaction conditions, the chlorinated palladacy-

cle 3a-Cl was transformed into the indole 5a in 46% yield (en-

try 13). A similar trend was observed with complexes 3b-I and 

3b-Cl (R = H, entries 14-15), prepared from phenethylamine 

derivative 1b and 2b (Scheme 1 and Table 1). Nevertheless, the 

isolated yields of the corresponding indoline 4b (50%) and in-

dole 5b (38%) were lower than those obtained from phenylala-

nine-derived palladacycles 3a-Cl and 3a-I, suggesting that the 

ester group slightly facilitates the base-assisted N-H activation 

step probably by reinforcing the N-H acidity. In any case, we 

could devise an overall counter-ion directed synthesis of either 

indole 4 or indoline 5 thanks to this carbonate assisted C-N bond 

forming reaction. 

 

FIGURES 1. (a) Enlargement of the ESI(+)-FTICR mass spectrum 

of the crude reaction mixture showing the m/z 925.370 cationic pal-

ladium complex. (b) Theoretical isotopic pattern of the 

C52H69O4P2Pd+ ion with a resolution of 60,000. 

It is worth noticing that during silica-gel column chromatog-

raphy, co-elution between indoline 4a and a moderately stable 



Pd-complex impurity was observed, which could explain the 

difference between the estimated NMR yield (up to 99% under 

optimal conditions) and the isolated yield of pure product. 

Among the crude reaction mixture (see supporting infor-

mation), this side-product was identified by electrospray ioni-

zation – Fourier-transform ion cyclotron resonance mass spec-

trometry (ESI-FT-ICR, Figure 1). Thus, the cationic palladium 

complex with an exact m/z 925.3700 was detected and features 

one palladium atom. Accordingly, the C52H69O4P2Pd+ molecu-

lar formula may account for the palladacycle depicted in Figure 

1 (the palladium atom is arbitrarily located) flanked by another 

SPhos ligand, which could be formed from complex 3a through 

an intramolecular C-H activation process. 

In order to evaluate the influence of the phosphine ligand on 

the C-N bond formation, the in situ formation of palladacycles 

3a-I was undertaken by mixing the dimeric palladacycle 2a-I 

with various Buchwald phosphine ligands (Scheme 2). Alt-

hough no indoline 4a formation was observed either from the 

dimeric Pd-complex 2a-I or in the presence of tri-

phenylphosphine ligand, the model SPhos ligand furnished the 

indoline product 4a in 46% NMR yield. This straightforward 

approach gave promising results as compared to the 77% yield 

obtained from the phosphine-Pd-complex 3a-I (the putative in-

termediate obtained from 2a-I; see Table 1, entry 4). 

Scheme 2. Screening of phosphine ligandsa 

 
aReaction made with 0.1 mmol of palladacycle in 1 mL of toluene. 

Yield determined by 1H-NMR with Bn2O as an internal standard. 

Similar results were obtained with analogous but more steri-

cally hindered RuPhos ligand giving 45% yield. However, in 

this series, XPhos as well as more electron-rich DavePhos, and 

less sterically hindered JohnPhos and CyJohnPhos, revealed to 

be slightly less effective than SPhos under these conditions 

(yields < 38%). These observations suggest that the decomplex-

ation/N-H activation/reductive elimination sequence is optimal 

with Buchwald ligands, and the SPhos provides the best balance 

between steric and electronic effects. Finally, by heating the re-

action at 130 °C in the presence of SPhos ligand the indoline 4a 

was obtained in a high 95% NMR yield. 

Having these conditions in hand, the investigation of the free 

energy profile was undertaken by DFT calculation as depicted 

in Figure 2 (see the supporting information for computational 

details). The amine-(SPhos)PdII complex A (X = Cl or I) and 

CO3
2- were taken as energy reference. The geometry of this 

complex when X = I is in good agreement with the ones char-

acterized by Vicente, Saura-Llamas et al by X-ray crystallog-

raphy.4d The dissociation of the halide was achieved through 

TSAB to give the cationic Pd complex B. With X = Cl or I, the 

free energy of activation is  11 kcal/mol. At 373 K in MeCN, 

this dissociation was found exergonic by 4.2 and 8.9 kcal/mol 

respectively. This is notably due to the well-known ability of 

the SPhos moiety to act as a bidentate ligand, involving the 

electron-rich carbon of the biaryl core. One of the two nitrogen 

protons of B is sterically shielded by the dimethoxybenzene 

ring, while the other is electronically protected from the ap-

proach of CO3
2- by the ester functionality. Thus, no direct 

deprotonation of B into the corresponding neutral complex E 

could be modeled. The formation of E could instead derive from 

the direct attack of CO3
2- to B to give the palladium carbonate 

C lying at -13.7/-18.5 kcal/mol. Yet, the approach of CO3
2- to-

wards B did not yield a transition state. The intramolecular 

deprotonation could then be computed through TSCD lying at -

10.6/-15.4 kcal/mol, i.e. only  3 kcal/mol above C. The result-

ing H-bonded complex D is formed in a slightly endergonic 

fashion (1.7 kcal/mol above C for the two halides). The C-N 

bond forming reductive elimination towards the Pd0 complex F 

is markedly exergonic by  13 kcal/mol from E, but the corre-

sponding transition state lies quite high relatively to D ( 22 

kcal/mol of free energy of activation). A better option is to first 

dissociate HCO3
- from D to give the chelate E, which liberates 

 10 kcal/mol of free energy. The reductive elimination of E 

requires only  14 kcal/mol of free energy of activation to reach 

TSEF. We also explored the direct deprotonation of A by CO3
2- 

to give G. No transition state could be found for what seems to 

be a barrierless process according the scan of the surface. The 

resulting negatively charged amido-PdII complex G is more sta-

ble than A by 7.7/9.9 kcal/mol. Reductive elimination yields the 

H-bonded complex H at the expense of 16.8/14.0 kcal/mol of 

free energy of activation to reach TSGH. Alternatively, the dis-

sociation of X to give E requires a lower free energy of activa-

tion 10.9/8.1 kcal/mol through TSGE. Thus, the best pathway for 

both halides appears to be A → G → E → F. However, this 

proposal does not take the cation effect into account, and does 

not rationalize the ion-dependence observed. 

Since a clear-cut explanation accounting a divergent route to-

wards the formation of the aromatic indole product 5a from one 

of the chlorinated-palladacycles was not found, further experi-

ments were carried out (see supporting information for further 

details). Heating the indoline products 4a in the presence of the 

chlorinated SPhos-palladacycle 3a-Cl led essentially to the for-

mation of indole 5a (Table 2, entry 1), especially in the absence 

of base (entry 2). Contrariwise, in the presence of the iodide-

palladacycle 3a-I and K2CO3 the deprotonated amination pro-

cess was the favored pathway (entry 3, only 17% of 5a) alt-

hough a mixture of product was obtained. 

TABLE 2. Shedding light on the formation of the indole side 

product 5aa 

 

entry 3-X K2CO3 4a 

(%)b 

5a 

(%)b 

1c 

(%)b 

1c Cl (3a-Cl) yes 28 72 38 

2c Cl (3a-Cl) no traces 100 35 

3 I (3a-I) yes 107 17 38 

4 I (3a-I) no 70 12 33 
aReaction made with palladacycle 3a (0.05 mmol), the indoline 

4a (1 equiv) and K2CO3 (3 equiv) in toluene at 130 °C for 14 h. 
bYield determined by 1H NMR spectroscopy with Bn2O as an 

internal standard after filtration on a pad of celite. cPrecipitation 

of palladium was observed. 



 

FIGURES 2. Free energy profile to form the dihydroindole product 4a (G373, kcal/mol, geometries of TSGE (X = Cl) and TSEF with selected 

distances in Å) 

 

The main product 4a was apparently obtained with more than 

100% yield due to the remaining starting material 4a. Without 

any base, a small amount of indole 5a (12%) was still observed 

but with no-extra formation of indoline 4a (entry 4). Worthy of 

note, although a clear quantification of the other minor side 

products was not trivial within the reaction mixture, an esti-

mated amount of methyl ester phenylalanine 1b around 30% 

was measured. With these observations in hand, we propose that 

a complexation event between indoline 4a (product of the reac-

tion) and the chlorinated SPhos-palladacycle 3a-Cl, or PdII spe-

cies derived thereof, might initiate an N-H or a C-H insertion 

reaction leading eventually to indole 5a (and phenylalanine 1c) 

after the subsequent β-H elimination process. The electronic or 

kinetic issues underlying these counter-ion divergent processes 

would deserve further investigations, but already show the key 

role of the iodide based-complexes to secure a base promoted-

amination reaction instead of an oxidative pathway. 

These results prompted us to investigate other complexes with 

weakly coordinated counter-ions in order to investigate their in-

fluence onto these possibly divergent pathways. Thanks to the 

adaptation of the Vicente and Saura-Llama protocol, the pal-

ladacycle 2a-OTf was synthesized and isolated as a solid from 

the corresponding ammonium triflate salts 1a-OTf of L-phenyl-

alanine in the presence of Pd(OAc)2 (Scheme 3a). Gratifyingly, 

making use of the previously optimized conditions, the palla-

dium complex 2a-OTf in the presence of SPhos and K2CO3 was 

smoothly transformed into the corresponding indoline 4a in 

77% NMR yield as the major product along with a smaller 

amount of indole 5a (23%). More importantly, a similar di-

rected C-H activation process took place directly from the more 

challenging free amine 1c as starting material by means of the 

electrophilic Pd(TFA)2, to furnish the more stable palladacycle 

2a-TFA (Scheme 3b). 

Scheme 3. Investigation towards a palladium promoted N-

H/C-H cross-coupling 

 

(a) Reaction conditions: (a) Pd(OAc)2 (1 equiv), MeCN, 80 

°C, 4h. (b) Pd(TFA)2 (1 equiv), MeCN, 80 °C, 4 h. (c) SPhos (1 

equiv./Pd), K2CO3 (3 equiv./Pd), MeCN, 100 °C, 14 h. 

According to the 1H NMR, IR spectra and mass analysis, the 

dimeric complexes 2a-X (X = OTf, TFA) were likely formed. 

In line to palladium complex 2a-OTf, the homologous 2a-TFA 

underwent the amination sequence to lead to indoline 4a in 73% 

yield, along with only 11% of indole 5a. Worthy of note, no 

racemization took place under these conditions. Based on these 

important observations, a first screening of conditions eventu-

ally highlighted that methyl ester phenylalanine 1c could be 

transformed into the corresponding indoline 4a in moderate 



albeit significant 35% yield in the presence of Pd(TFA)2, SPhos, 

K2CO3 and AgOTf as additive (Scheme 3c). These results under 

stochiometric conditions demonstrate that complexes directly 

accessible from a NH2-directed C-H amination reaction could 

be engaged into the subsequent deprotonated amination reac-

tion. 

CONCLUSION 

In summary, this reactivity and DFT investigations of the 

phenylalanine derived palladacycles, obtained by NH2 directed 

Csp2-H activation, sheds light on (1) a major anion effect to 

achieve the intramolecular C-N bond formation towards the 

construction of the corresponding indoline product and (2) a 

facile carbonate-assisted N-H activation prior to the events 

leading to a reductive elimination step. We believe this study 

highlights key features which will be useful for further devel-

opments towards highly valuable catalytic dehydrogenative 

amination processes, via a C-H/N-H activation process from 

primary amines. 

EXPERIMENTAL SECTION 

Triflate-bridged ortho-palladated L-phenylalanine methylester 

(2a-OTf). N.B.: for this specific experimental procedure, no precau-

tions were taken against moisture or oxygen. To a mixture of L-Phe-

nylalanine methylester ammonium triflate salt 1a-OTf (1.0 g, 3.04 

mmol) and Pd(OAc)2 (682 mg, 3.04 mmol) into a sealed-tube was 

added acetonitrile (0.1 M). The solution was stirred at 80 °C for 4 h. 

The reaction mixture was filtered through a pad of Celite®/Na2CO3 

washed with MeCN. The filtrate was concentrated under reduced pres-

sure and a mixture of Et2O and n-Pentane was added. The precipitate 

was vigorously stirred for 10 min and the suspension was filtered under 

vacuum. The solid was washed with n-pentane and then air-dried to 

furnish the corresponding complex 2a-OTf as a yellow solid (1.28 g, 

97 %). Melting point 117-118 °C; IR (neat) νmax 3229, 2976, 1736, 

1553, 1439, 1241, 1167, 1028, 751, 638, 517, 457 cm–1; δH (300 MHz, 

CD3CN): 7.19 (d, J = 7.5 Hz, 1H), 7.02-6.87 (m, 3H), 4.31 (s, 1H), 3.64 

(s, 3H), 3.64-3.57 (m, 1H), 3.33 (dd, J = 14.1, 4.5 Hz, 1H), 3.17 (dd, J 

= 14.1, 5.6 Hz, 1H) ppm (one NH signal missing); δC (75 MHz, 

CD3CN): 172.8, 136.4, 136.1, 128.4, 126.2, 126.1, 53.5, 50.4, 45.2 

ppm; δF (282 MHz, CD3CN): -79.3 ppm; HRMS (ESI+): calcd for 

C12H15N2O2
106Pd [(M/2)−(CF3SO3)+(1xACN)]+: 325.01629; found: 

325.01620. 

 

Trifluoroacetate-bridged ortho-palladated L-phenylalanine meth-

ylester (2a-TFA). N.B.: for this specific experimental procedure, no 

precautions were taken against moisture or oxygen. To a mixture of L-

Phenylalanine methylester 1c (250 mg, 1.39 mmol) and Pd(TFA)2 (464 

mg, 1.39 mmol) into a sealed-tube was added acetonitrile (0.1 M). The 

solution was stirred at 80 °C for 4 h. The reaction mixture was filtered 

through a pad of Celite®/Na2CO3 washed with MeCN. The filtrate was 

concentrated under reduced pressure and a mixture of Et2O and n-Pen-

tane was added. The precipitate was vigorously stirred for 10 min and 

the suspension was filtered under vacuum. The solid was washed with 

n-pentane and then air-dried to furnish the corresponding complex 2a-

TFA as a yellow solid (525 mg, 95 %). Remark: A similar process 

could be achieved from L-phenylalanine methylester ammonium tri-

fluoroacetate salt 1a-TFA and Pd(OAc)2 to give the dimer 2a-TFA. 

Melting point 132-134 °C; IR (neat) νmax 3268, 2954, 1740, 1659, 1554, 

1435, 1202, 850, 749, 730, 452, 406 cm–1; δH (300 MHz, CD3CN): 7.16 

(d, J = 7.7 Hz, 1H), 7.95-6.80 (m, 3H), 5.32 (s, 1H), 4.49 (s, 1H), 3.58 

(s, 3H), 3.55-3.49 (m, 1H), 3.30 (dd, J = 14.1, 4.3 Hz, 1H), 3.11 (dd, J 

= 14.1, 5.8 Hz, 1H) ppm; δC (75 MHz, CD3CN): 173.0, 136.9, 136.5, 

128.1, 125.9, 125.7, 53.4, 50.5, 45.5 ppm (C-Pd and TFA carbons miss-

ing); δF (282 MHz, CD3CN): -75.8 ppm; C26H24F9N2O10
105Pd2 

[M+TFA]-: 904.9389; found: 904.9424. 

 

Typical procedure A for preparation of phosphino-palladacycles 3. 

To a solution of the corresponding dimeric-palladacycle 2a (1 equiv.) 

in CH2Cl2 (0.05 M) was added SPhos (1 equiv./Pd) in one portion. The 

resulting solution was stirred at r.t. for 30 min, concentrated under 

vacuum and n-pentane was added in one portion. The precipitate was 

vigorously stirred for 10 min and the suspension was filtered under vac-

uum. The solid was washed with n-pentane and then air-dried to pro-

vide the corresponding phosphino-complex 3 as a beige solid. 

 

SPhos-chloro-ortho-palladated L-phenylalanine methylester (3a-

Cl). Following the general procedure A starting from palladacycle 2a-

Cl (286 mg, 0.45 mmol),4d the title palladacycle 3a-Cl was obtained as 

beige solid (564 mg, 87%). Melting point 162–165 °C; IR (neat) νmax 

3052, 2923, 2849, 1738, 1587, 1471, 1248, 1109, 728 cm–1; δH (300 

MHz, CDCl3): 7.35 (1H, t, J = 8.4 Hz), 7.25 (1H, t, J = 7.5 Hz), 7.22 – 

7.14 (1H, m), 7.00 (1H, ddd, J = 7.7, 3.1, 1.0 Hz), 6.92 (1H, t, J = 7.7 

Hz), 6.81 (1H, dd, J = 7.7, 4.8 Hz), 6.72 – 6.68 (2H, m), 6.64 (2H, dd, 

J = 8.4, 2.7 Hz), 6.46 – 6.39 (1H, m), 3.82 (2H, br s), 3.69 (3H, s), 3.65 

(3H, s), 3.62 (3H, s), 3.22 (1H, dd, J = 13.0, 2.0 Hz), 2.42 (1H, br s), 

2.31 – 2.13 (3H, m), 1.81 – 1.44 (12H, m), 1.34 – 1.14 (3H, m), 1.11 – 

0.87 (5H, m) ppm; δC (75 MHz, CDCl3): 179.5, 172.8, 158.1, 139.8, 

138.0, 136.5, 135.4, 133.0, 129.4, 128.9, 126.7, 124.7, 124.0, 123.3, 

118.9, 103.8, 103.6, 103.1, 55.4, 55.2, 52.8, 52.4, 49.9, 48.9, 47.1, 46.8, 

36.5, 36.1, 34.0, 33.9, 32.2, 31.7, 31.3, 30.5, 29.1, 28.4, 27.5, 27.2, 

26.9, 26.2, 26.1, 25.6 ppm (observed complexity results from C−P cou-

pling); δP (121 MHz, CDCl3): 46.21 ppm;  HRMS (ESI+): calcd for 

C36H47NO4P104Pd [M−Cl]+: 692.2285; found: 692.2283. 

 

SPhos-iodo-ortho-palladated L-phenylalanine methylester (3a-I). 

Following the general procedure A starting from palladacycle 2a-I (529 

mg, 0.64 mmol), the title palladacycle 3a-I was obtained as a beige 

solid (970 mg, 92%). Melting point 186–188 °C; δH (300 MHz, CDCl3): 

7.37 (1H, t, J = 8.3 Hz), 7.23 – 7.07 (2H, m), 6.92 (1H, dd, J = 7.4, 2.4 

Hz), 6.85 (1H, br s), 6.75 – 6.60 (5H, m), 6.44 (1H, m), 3.99 – 3.75 

(3H, m), 3.70 (3H, s), 3.69 (3H, s), 3.67 (3H, s), 3.55 (1H, br s) 3.21 

(1H, d, J = 13.3 Hz), 2.52 – 2.13 (4H, m), 2.05 – 1.38 (12H, m), 1.37 – 

1.13 (3H, m), 1.08 – 0.92 (3H, m) ppm; δC (75 MHz, CDCl3) 173.1, 

158.2, 139.3, 137.0, 134.7, 133.0, 132.9, 129.6, 128.7, 127.0, 125.0, 

125.0, 124.7, 123.6, 119.4, 103.9, 55.4, 53.0, 49.8, 45.6, 32.2, 30.9, 

30.4, 29.1, 27.7, 27.6, 27.5, 27.4, 27.2, 27.0, 26.2, 26.0 ppm (observed 

complexity results from C−P coupling); HRMS (ESI+): calcd for 

C36H47NO4P104Pd [M−I]+: 692.2285; found: 692.2283. Data are in ac-

cordance with literature.4d 

 

Typical procedure B for the deprotonative amination from SPhos-

halogeno palladacycle 3. To a mixture of SPhos-phosphino-complex 

3a (1 equiv.) and K2CO3 (3 equiv.) in a flame-dried sealed tube was 

added toluene (0.1 M). The resulting solution was stirred at 130 °C for 

14 h under nitrogen atmosphere, then cooled to r.t.. The solution was 

diluted with CH2Cl2 and filtered through a pad of Celite®. Bn2O (0.25 

equiv.) was added and the filtrate was concentrated under reduced pres-

sure to provide crude residue. Conversion and NMR yield were moni-

tored by 1H-NMR spectroscopy. When needed the crude reaction mix-

ture, after evaporation under reduced pressure, was purified by flash 

column chromatography on silica gel. 

 

Typical procedure C for deprotonative amination from dimeric 

complex 2. To a mixture of dimeric-complex 2 (1 equiv.), SPhos (1 

equiv./Pd) and K2CO3 (3 equiv./Pd) in a flame-dried sealed tube were 

added in the corresponding solvent (0.1 M) under nitrogen atmosphere. 

The resulting solution was stirred at 100 °C for 14 h, then cooled to r.t.. 

The solution was diluted with CH2Cl2 and filtered through a pad of 

Celite®. Bn2O (0.25 equiv.) was added and the filtrate was concentrated 

under reduced pressure to provide crude residue. Conversion and NMR 

yield were monitored by 1H-NMR spectroscopy. 

 

Typical procedure D for one-pot synthesis of indoline (4a). To a 

mixture of L-Phenylalanine methylester 1c (18 mg, 0.1 mmol), 

Pd(TFA)2 (33 mg, 0.1 mmol), SPhos (41 mg, 0.1 mmol), K2CO3 (69 

mg, 0.5 mmol) and AgTFA (44 mg, 0.2 mmol) in a flame-dried sealed 

tube was added 1,4-dioxane (0.05 M) under nitrogen atmosphere. The 

resulting solution was stirred at 100 °C for 14 h, then cooled to r.t.. The 

solution was diluted with CH2Cl2 and filtered through a pad of Celite®. 

Bn2O (0.25 equiv.) was added and the filtrate was concentrated under 

reduced pressure to provide crude residue. Conversion was monitored 

by 1H-NMR spectroscopy. 

 



Methyl (S)-indoline-2-carboxylate (4a). Following the general proce-

dure B starting from palladacycle 3a-I (247 mg, 0.3 mmol), the title 

indoline 4a was obtained a yellow oil (32 mg, 61 %) after purification 

by flash column chromatography on silica gel (eluent: petroleum 

ether/acetone [90:10]). δH (300 MHz, CDCl3): 7.13 – 7.01 (2H, m), 6.79 

– 6.69 (2H, m), 4.39 (1H, dd, J = 9.9, 5.7 Hz), 3.76 (3H, s), 3.47 – 3.25 

(2H, m) (NH signal not observed). Data are in accordance with litera-

ture.12 

 

Methyl 1H-indole-2-carboxylate (5a). Following the general proce-

dure B starting from palladacycle 3a-Cl (219 mg, 0.3 mmol), the title 

indole 5a was obtained a white solid (24 mg, 46 %) after purification 

by flash column chromatography on silica gel (eluent: petroleum 

ether/acetone [95:5]). δH (300 MHz, CDCl3): 8.90 (s, 1H), 7.70 (d, J = 

8.0 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.33 (t, J = 7.3 Hz, 1H), 7.23 (d, 

J = 1.2 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 3.95 (s, 3H) ppm. Data are in 

accordance with literature.12 
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