Skip to Main content Skip to Navigation
Journal articles

Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF

Abstract : Materials for the controlled release of nitric oxide (NO) are of interest for therapeutic applications. However, to date, many suffer from toxicity and stability issues, as well as poor performance. Herein, we propose a new NO adsorption/release mechanism through the formation of nitrites on the skeleton of a titanium‐based metal–organic framework (MOF) that we named MIP‐177, featuring a suitable set of properties for such an application: (i) high NO storage capacity (3 μmol mg−1solid), (ii) excellent biocompatibility at therapeutic relevant concentrations (no cytotoxicity at 90 μg mL−1 for wound healing) due to its high stability in biological media (<9 % degradation in 72 hours) and (iii) slow NO release in biological media (≈2 hours for 90 % release). The prospective application of MIP‐177 is demonstrated through NO‐driven control of mitochondrial respiration in cells and stimulation of cell migration, paving the way for the design of new NO delivery systems for wound healing therapy.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02900060
Contributor : Guillaume Maurin <>
Submitted on : Wednesday, July 15, 2020 - 6:00:09 PM
Last modification on : Saturday, October 24, 2020 - 3:42:13 AM

Identifiers

Citation

Rosana Pinto, Sujing Wang, Sérgio Tavares, João Pires, Fernando Antunes, et al.. Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angewandte Chemie International Edition, Wiley-VCH Verlag, 2020, 59 (13), pp.5135-5143. ⟨10.1002/anie.201913135⟩. ⟨hal-02900060⟩

Share

Metrics

Record views

27