M. J. Sergeant, C. Constantinidou, T. A. Cogan, M. R. Bedford, C. W. Penn et al., Extensive microbial and functional diversity within the chicken cecal microbiome, PLoS ONE, vol.9, p.91941, 2014.

J. Apajalahti, A. Kettunen, and H. Graham, Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's, Poult Sci J, vol.60, pp.223-255, 2004.

B. B. Oakley, H. S. Lillehoj, M. H. Kogut, W. K. Kim, J. J. Maurer et al., The chicken gastrointestinal microbiome, FEMS Microbiol Lett, vol.10, pp.100-112, 2014.

D. Jozefiak, A. Rutkowski, and S. A. Martin, Carbohydrate fermentation in the avian ceca: a review, Anim Feed Sci Technol, vol.133, pp.1-15, 2004.

M. Crhanova, H. Hradecka, M. Faldynova, M. Matulova, H. Havlickova et al., Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection, Infect Immun, vol.79, pp.2755-63, 2011.

E. J. Braun and C. E. Campbell, Uric acid decomposition in the lower gastrointestinal tract, J Exp Zool, vol.252, pp.70-74, 1989.

A. A. Pedroso, J. Menten, and M. R. Lambais, The structure of bacterial community in the intestines of newly hatched chicks, J Appl Poult Res, vol.14, pp.232-239, 2005.

A. L. Ballou, R. A. Ali, M. A. Mendoza, J. C. Ellis, H. M. Hassan et al., Development of the chick microbiome: how early exposure influences future microbial diversity, Front Vet Sci, vol.3, 2016.

A. A. Pedroso, A. B. Batal, and M. D. Lee, Effect of in ovo administration of an adultderived microbiota on establishment of the intestinal microbiome in chickens, Am J Vet Res, vol.77, pp.514-540, 2016.

J. Lu, U. Idris, B. Harmon, J. J. Maurer, M. D. Lee et al., Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth, Appl Environ Microbiol, vol.69, pp.286-93, 2002.

B. B. Oakley, R. Buhr, C. W. Ritz, B. H. Kiepper, M. E. Berrang et al., Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives, BMC Vet Res, vol.360, p.282, 2014.

M. G. Wise and G. R. Siragusa, Quantitative analysis of the intestinal bacterial community in one-to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets, J Appl Microbiol, vol.102, pp.1138-1187, 2007.

X. Y. Zhu and R. D. Joerger, Composition of microbiota in content and mucus from caeca of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes, Poult Sci, vol.82, pp.1242-1251, 2003.

D. Schokker, G. Veninga, S. A. Vastenhouw, A. Bossers, F. M. De-bree et al., Early life microbial colonization of the gut and intestinal development differ between genetically divergent broiler lines, BMC Genomics, vol.16, p.418, 2015.

B. S. Lumpkins, A. B. Batal, and M. D. Lee, Evaluation of the bacterial community and intestinal development of different genetic lines of chickens, Poult Sci, vol.89, pp.1614-1635, 2010.

L. Zhao, G. Wang, P. Siegel, C. He, H. Wang et al., Quantitative genetic background of the host influences gut microbiomes in chickens, Sci Rep, vol.3, p.1163, 2013.

M. D. Cressman, Z. Yu, M. C. Nelson, S. J. Moeller, M. S. Lilburn et al., Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens, Appl Environ Microbiol, vol.76, pp.6572-82, 2010.

S. H. Park, S. I. Lee, and S. C. Ricke, Microbial populations in naked neck chicken ceca raised on pasture flock fed with commercial yeast cell wall prebiotics via an Illumina MiSeq platform, PLoS ONE, vol.11, 2016.

J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-lyons, C. A. Lozupone et al., Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc Natl Acad Sci, vol.108, pp.4516-4538, 2011.

R. D'amore, U. Z. Ijaz, M. Schirmer, J. G. Kenny, R. Gregory et al., A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling, BMC Genomics, vol.17, p.55, 2016.

E. Bolyen, J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. Abnet et al., QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science, PeerJ Prepr, vol.6, pp.27295-27297, 2018.

B. J. Callahan, P. J. Mcmurdie, and S. P. Holmes, Exact sequence variants should replace operational taxonomic units in marker-gene data analysis, ISME J, vol.11, pp.2639-2682, 2017.

D. Mcdonald, J. C. Clemente, J. Kuczynski, J. R. Rideout, J. Stombaugh et al., The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome, GigaScience, vol.1, p.7, 2012.

N. A. Bokulich, B. D. Kaehler, J. R. Rideout, M. Dillon, E. Bolyen et al., Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin, Microbiome, vol.6, p.90, 2018.

P. Yilmaz, L. W. Parfrey, P. Yarza, J. Gerken, E. Pruesse et al., The SILVA and 'all-species Living Tree Project (LTP)' taxonomic frameworks, Nucleic Acids Res, vol.42, pp.643-651, 2014.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7 : improvements in performance and stability, Mol Biol Evol, vol.30, pp.772-80, 2013.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2 approximately maximumlikelihood trees for large alignments, PLoS ONE, vol.5, p.9490, 2010.

J. T. Morton, J. Sanders, R. A. Quinn, D. Mcdonald, A. Gonzalez et al., Balance trees reveal microbial niche differentiation. mSystems, vol.2, pp.162-178, 2017.

J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-lyons, J. Huntley et al., Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, ISME J, vol.6, pp.1621-1625, 2012.

Y. Tanaka, S. Ito, and K. I. Isobe, Vancomycin-sensitive bacteria trigger development of colitis-associated colon cancer by attracting neutrophils, Sci Rep, vol.6, p.23920, 2016.

G. M. Nava, H. J. Friedrichsen, and T. S. Stappenbeck, Spatial organization of intestinal microbiota in the mouse ascending colon, ISME J, vol.5, pp.627-665, 2011.

T. Matsuki, K. Watanabe, J. Fujimoto, and T. Takada, Use of 16S rRNA genetargeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces, Appl Environ Microbiol, vol.70, pp.7220-7228, 2004.

M. I. Van-dyke and A. J. Mccarthy, Molecular biological detection and characterization of Clostridium populations in municipal landfill sites, Appl Environ Microbiol, vol.68, pp.2049-53, 2002.

T. Matsuki, K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada et al., Development of 16S rRNA-gene-targeted groupspecific primers for the detections and identification of predominant bacteria in human feces, Appl Environ Microbiol, vol.68, pp.5445-51, 2002.

D. Rios-covian, I. Cuesta, J. R. Alvarez-buylla, P. Ruas-madiedo, M. Gueimonde et al., Bacteroides fragilis metabolises exopolysaccharides produced by Bifidobacteria, BMC Microbiol, vol.16, p.150, 2016.

N. Salazar, M. Gueimonde, A. M. Hernandez-barranco, P. Ruas-madiedo, and C. G. De-los-reyes-gavila, Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria, Appl Environ Microbiol, vol.74, pp.4737-4782, 2008.

Y. Sanz, K. Portune, E. Pulgar, and A. Benítez-páez, Chapter 2 -targeting the microbiota: considerations for developing probiotics as functional foods, The Gut-Brain Axis, pp.17-30, 2016.

X. Ling, P. Linglong, D. Weixia, and W. Hong, Protective effects of Bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model, PLoS ONE, vol.11, 2016.

J. Song, K. Xiao, Y. L. Ke, L. F. Jiao, C. H. Hu et al., Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress, Poult Sci, vol.93, pp.581-589, 2014.

S. Fukuda, H. Toh, T. D. Taylor, H. Ohno, and M. Hattori, Acetate-producing Bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters, Gut Microbes, vol.3, pp.449-54, 2012.

P. Lopez, I. Gonzalez-rodriguez, M. Gueimonde, A. Margolles, and A. Suarez, Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity, PLoS ONE, vol.6, p.24776, 2011.

P. Dong, Y. Yang, and W. Wp, The role of intestinal Bifidobacteria on immune system development in young rats, Early Hum Dev, vol.86, pp.51-59, 2010.

D. Stanley, M. S. Geier, S. E. Denman, V. R. Haring, T. M. Crowley et al., Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed, Vet Microbiol, vol.164, pp.85-92, 2013.

K. M. Singh, T. Shah, S. Deshpande, S. J. Jakhesara, P. G. Koringa et al., High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers, Mol Biol Rep, vol.39, pp.10595-602, 2012.

R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, Human gut microbes associated with obesity, Nature, vol.444, pp.1022-1025, 2006.

A. Biddle, L. Stewart, J. Blanchard, and S. Leschine, Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities, Diversity, vol.5, pp.627-667, 2013.

V. Eeckhaut, F. V. Immerseel, S. Croubels, S. D. Baere, F. Haesebrouck et al., Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum, Microb Biotechnol, vol.4, pp.503-515, 2011.

L. Bjerrum, R. M. Engberg, T. D. Leser, B. B. Jensen, K. Finster et al., Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques, Poult Sci, vol.85, pp.1151-64, 2006.

V. A. Torok, R. J. Hughes, L. L. Mikkelsen, R. Perez-maldonado, K. Balding et al., Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials, Appl Environ Microbiol, vol.77, pp.5868-78, 2011.

H. Sokol, L. Watterlot, O. Lakhdari, L. G. Bermu, C. Bridonneau et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patient, Proc Natl Acad Sci, vol.105, pp.16731-16737, 2008.

H. Sokol, P. Seksik, J. Cosnes, J. Dore, J. P. Juret et al., Low counts of Faecalibacterium prausnitzii in colitis microbiota, Inflammatory Bowel Dis, vol.15, pp.1183-1192, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00657435

A. H. Carlsson, O. Yakymenko, I. Olivier, F. Håkansson, E. Postma et al., Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis, Scand J Gastroenterol, vol.48, pp.1136-1180, 2013.

F. Van-immerseel, R. Ducatelle, D. Vos, M. Boon, N. Van-de-wiele et al., Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease, J Med Microbiol, vol.59, pp.141-144, 2010.

J. K. Goodrich, J. L. Waters, A. C. Poole, J. L. Sutter, O. Koren et al., Human genetics shape the gut microbiome, Cell, vol.159, pp.789-99, 2014.

I. Garcia-mantrana, M. Selma-royo, C. Alcantara, and M. C. Collado, Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population, Front Microbiol, vol.9, p.890, 2018.

E. M. Saliu, W. Vahjen, and J. Zentek, Types and prevalence of extended spectrum beta lactamase producing Enterobacteriaceae in poultry, Anim Health Res Rev, vol.18, pp.46-57, 2017.

P. Videnska, K. Sedlar, M. Lukac, M. Faldynova, L. Gerzova et al., Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life, PLoS ONE, vol.9, p.115142, 2014.

P. Van-der-wielen, S. Biesterveld, S. Notermans, H. Hofstra, B. Urlings et al., Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth, Appl Environ Microbiol, vol.66, pp.2536-2576, 2000.

A. E. Kaoutari, F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat, The abundance and variety of carbohydrate-active enzymes in the human gut microbiota, Nat Rev Microbiol, vol.11, pp.497-504, 2013.

E. H. Crost, L. E. Tailford, G. L. Gall, M. Fons, B. Henrissat et al., Utilisation of mucin glycans TEST by the human gut symbiont Ruminococcus gnavus is strain-dependent, PLoS ONE, vol.8, p.76341, 2013.

T. Looft, D. O. Bayles, D. P. Alt, and T. B. Stanton, Complete genome sequence of Coriobacteriaceae Strain 68-1-3, a novel mucus-degrading isolate from the swine intestinal tract, Genome Announce, vol.3, pp.2014-2029, 2015.

L. E. Tailford, E. H. Crost, D. Kavanaugh, and N. Juge, Mucin glycan foraging in the human gut microbiome, vol.6, p.81, 2015.

F. He, A. C. Ouwehand, H. Hashimoto, E. Isolauri, Y. Benno et al., Adhesion of Bifidobacterium spp. to human intestinal mucus, Microbiol Immunol, vol.45, pp.259-62, 2001.

A. C. Ouwehand, E. Isolauri, P. V. Kirjavainen, S. Tolkko, and S. J. Salminen, The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of Lactobacillus GG and Lact. delbrueckii subsp. bulgaricus, Appl Microbiol, vol.30, pp.10-13, 2000.

C. Collado, M. Gueimonde, M. Hernandez, Y. Sanz, and S. Salminen, Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion, J Food Prot, vol.68, pp.2672-2680, 2005.

O. Polansky, Z. Sekelova, M. Faldynova, A. Sebkova, F. Sisak et al., Important metabolic pathways and biological processes expressed by chicken cecal microbiota, Appl Environ Microbiol, vol.82, pp.1569-76, 2016.

Q. Li, C. L. Lauber, G. Czarnecki-maulden, Y. Pan, and S. S. Hannah, Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions, vol.8, pp.1703-1719, 2017.

H. Wang, X. Ni, X. Qing, D. Zeng, M. Luo et al., Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers, Front Microbiol, vol.8, p.1073, 2017.

R. Kalavathy, N. Abdullah, S. Jalaludin, and Y. W. Ho, Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens, Brit Poult Sci, vol.44, pp.139-183, 2003.