G. A. Roberts, Chitin Chemistry, 1992.

M. N. Kumar, A Review of Chitin and Chitosan Applications, React. Funct. Polym, vol.46, pp.1-27, 2000.

?. E. Guibal, Heterogeneous catalysis on chitosan-based materials a review, Prog. Polym. Sci, vol.30, issue.1, pp.71-109, 2005.

H. S. ?4?-t.-freier, K. Koh, M. S. Kazazian, and . Shoichet, Controlling cell adhesion and degradation of chitosan films by N-acetylation, Biomaterials, vol.26, pp.5872-5878, 2005.

Y. ?5?-k.-tomihata and . Ikada, In vitro and in vivo degradation of films of chitin and its deacetylated derivatives, Biomaterials, vol.18, pp.567-575, 1997.

M. ?6?-g.-kravanja, ?. Primoz?ic?, M. Knez, and . Leitge, Nano)Materials for Novel Biomedical Applications, vol.24, pp.1960-1983, 2019.

?. Q. Mao, C. Xu, N. N. Liu, J. J. Zhu, and J. Sheng, Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite

, Biosens. Bioelectron, vol.22, pp.768-773, 2006.

?. C. Hao, L. Ding, X. Zhang, and H. Ju, Biocompatible Conductive Architecture of Carbon Nanofiber-Doped Chitosan Prepared with Controllable Electrodeposition for Cytosensing, Anal. Chem, vol.79, pp.4442-4447, 2007.

. ?9?-l and . Ilium, Chitosan and its use as a pharmaceutical excipient, Pharm. Res, vol.15, pp.1326-1331, 1998.

. R. ?10?-v, A. K. Sinha, S. Singla, R. Wadhawan, R. Kaushik et al., Chitosan microspheres as a potential carrier for drugs, Int. J. Pharm, vol.274, pp.1-33, 2004.

B. T. ?11?-g.-maurstad, K. M. Stokke, S. P. Vårum, and . Strand, PEGylated chitosan complexes DNA while improving polyplex colloidal stability and gene transfection efficiency, Carbohydr. Polym, vol.94, pp.436-443, 2013.

. P. ?12?-s, S. Strand, N. K. Lelu, C. Reitan, P. De-lange-davies et al., Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking, Biomaterials, vol.31, pp.975-987, 2010.

?. S. Khattak, F. Wahid, L. P. Liu, S. R. Jia, L. Q. Chu et al., Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives, Appl. Microbiol. Biotechnol, vol.103, p.1989, 2019.

. N. ?14?-k, Y. P. Hong, S. H. Na, S. P. Lee, and . Meyers, Antibacterial activity of chitosans and chitosan oligomers with different molecular weights, Int. J. Food Microbiol, vol.74, pp.65-72, 2002.

. I. ?15?-e, E. T. Rabea, C. V. Badawy, G. Stevens, W. Smagghe et al., Chitosan as antimicrobial agent: applications and mode of action, Biomacromolecules, vol.4, pp.1457-1465, 2003.

. K. ?16?-n, A. Jaafar, N. A. Lepit, A. Aini, A. M. Saat et al., Effects of lithium salt on chitosan-g-PMMA based polymer electrolytes, Mater. Res. Innov, vol.15, pp.202-205, 2011.

?. K. Kurita, Controlled functionalisation of the polysaccharide chitin, Prog. Polym. Sci, vol.26, pp.1921-1971, 2001.

. A. ?18?-e, I. E. Imam, M. G. El-sayed, A. A. Mahfouz, T. Tolba et al., Synthesis of ?-aminophosphonate functionalized chitosan sorbents: effect of methyl vs phenyl group on uranium sorption, Chem. Eng. J, vol.352, pp.1022-1034, 2018.

G. ?19?-a.-toffey, C. E. Samaranayake, W. G. Frazier, and . Glasser, Chitin derivatives. I. Kinetics of the heat-induced conversion of chitosan to chitin, J. Appl. Polym. Sci, vol.60, pp.75-85, 1996.

. Y. ?20?-l, E. Lim, C. E. Khor, and . Ling, Effects of dry heat and saturated steam on the physical properties of chitosan, J. Biomed. Mater. Res, vol.48, pp.111-116, 1999.

H. K. ?21?, S. H. No, S. H. Kim, N. Y. Lee, W. Park et al., Stability and antibacterial activity of chitosan solutions affected by storage temperature and time, Carbohydr. Polym, vol.65, pp.174-178, 2006.

. E. ?22?-s and . Howling, Some observations on the effect of bioprocessing on biopolymer stability, J. Drug Target, vol.18, pp.732-740, 2010.

K. Kurita, Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans, Mar. Biotechnol, vol.8, pp.203-226, 2006.

. Z. ?24?-g, D. N. Kyzas, and . Bikiaris, Recent modifications of chitosan for adsorption applications: A critical and systematic review, Mar. Drugs, vol.13, issue.1, pp.312-337, 2015.

. ?25?-a, S. Pestov, and . Bratskaya, Chitosan and its derivatives as highly efficient polymer ligands, Molecules, vol.21, issue.3, pp.330-365, 2016.

A. E. ?26?, M. Kadib, and . Bousmina, Chitosan bio-based organic-inorganic hybrid aerogel microspheres, Chem. Eur. J, vol.18, issue.27, pp.8264-8277, 2012.

. ?27?-r, B. Valentin, E. Bonelli, F. Garrone, F. Di-renzo et al., Accessibility of the Functional Groups of Chitosan Aerogel Probed by FT-IR-Monitored Deuteration, Biomacromolecules, vol.8, pp.3646-3650, 2007.

J. ?28?-c.-lópez-iglesias, I. Barros, F. J. Ardao, C. Monteiro, J. L. Alvarez-lorenzo et al., Vancomycin-loaded chitosan aerogel particles for chronic wound applications, Carbohydr. Polym, vol.204, pp.223-231, 2019.

?. Z. Li, L. Shao, Z. Ruan, W. Hu, L. Lu et al., Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions, Carbohydr. Polym, vol.193, pp.221-227, 2018.

A. Li, R. Lin, C. Lin, B. He, T. Zheng et al., An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion, Carbohydr. Polym, vol.148, pp.272-280, 2016.

. ?31?-a, El Kadib Chitosan as a sustainable organocatalyst: A concise overview, ChemSusChem, vol.8, issue.2, pp.217-244, 2015.

J. F. ?32?-o.-mahé, I. Brière, and . Dez, Chitosan: an Upgraded Polysaccharide Waste for Organocatalysis, Eur. J. Org. Chem, vol.12, pp.2559-2578, 2015.

?. S. Keshipour and S. S. Mirmasoudi, Cross-linked chitosan aerogel modified with Au: Synthesis, characterization and catalytic application, Carbohydr. Polym, vol.196, pp.494-500, 2018.

?. F. Li, L. G. Ding, B. J. Yao, N. Huang, J. T. Li et al., Pd loaded and covalent-organic framework involved chitosan aerogels and their application for continuous flow-through aqueous CB decontamination, J. Mater. Chem. A, vol.6, issue.24, pp.11140-11146, 2018.

A. ?35?-m.-chtchigrovsky, P. Primo, K. Gonzalez, M. Molvinger, F. Robitzer et al.,

. Taran, Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the
URL : https://hal.archives-ouvertes.fr/hal-00418394

, Huisgen Cycloaddition, vol.48, pp.5916-5920, 2009.

?. S. Jatunov, A. Franconetti, R. Prado-gotor, A. Heras, M. Mengíbar et al., Fluorescent imino and secondary amino chitosans as potential sensing biomaterials, Carbohydr. Polym, vol.123, pp.288-296, 2015.

. B. ?37?-d, M. Williams, and . Lawton, Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants, J. Org. Chem, vol.75, pp.8351-8354, 2010.

A. ?38?-b.-focher, G. Naggi, A. Torri, M. Cosanni, and . Terbojevich, Chitosans from Euphausia Superba 2: Characterization of solid state structure, Carbohydr. Polym, vol.18, pp.43-49, 1992.

G. ?39?-l.-picton, D. Mocanu, A. Mihai, G. Carpov, and . Muller, Chemically modified exopolysaccharide pullulans: physico-chemical characteristics of ionic derivatives, Carbohydr. Polym, vol.28, pp.131-137, 1995.

?. J. Baudoux, K. Perrigaud, P. J. Madec, A. C. Gaumont, and I. Dez, Development of new SILP catalysts using chitosan as support, Green Chem, vol.9, pp.1346-1351, 2007.

M. Robitzer, F. Di-renzo, and F. Quignard, Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels, Micropor. Mesopor. Mat, vol.140, pp.9-16, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00547222

. V. ?42?-k, F. S. Harish-prashanth, R. N. Kittur, and . Tharanathan, Solid state structure of chitosan prepared under different N-deacetylating conditions, Carbohydr. Polym, vol.50, pp.27-33, 2002.

?. N. Zhang, H. Qiu, Y. Si, W. Wang, and J. Gao, Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions, Carbon, vol.49, 2011.

?. X. Yang, Y. Tu, L. Li, S. Shang, and X. M. Tao, Well-Dispersed Chitosan/Graphene Oxide Nanocomposites, ACS Appl. Mater. Interfaces, vol.2, pp.1707-1713, 2010.

J. M. ?45?-g.-lamarque, C. Lucas, A. Viton, and . Domard, Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters, Biomacromolecules, vol.6, issue.1, pp.131-173, 2005.

. C. ?46?-b, A. Makhubela, G. S. Jardine, and . Smith, Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki-Miyaura and Heck cross-coupling reactions, Applied Catalysis A: General, vol.393, pp.231-241, 2011.

?. J. Bliimel, Reactions of phosphines with silica : A solid-state NMR study, Inorg. Chem, vol.33, pp.5050-5056, 1994.

K. ?48?-r.-moucel, J. M. Perrigaud, P. J. Goupil, S. Madec, E. Marinel et al., Importance of the Conditioning of the Chitosan Support in a Catalyst-Containing Ionic Liquid Phase Immobilised on Chitosan: The Palladium-Catalysed Allylation Reaction Case, Adv. Synth. Catal, vol.352, pp.433-439, 2010.

?. A. Ricci, L. Bernardi, C. Gioia, S. Vierucci, M. Robitzer et al., Chitosan aerogel: a recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water, Chem. Commun, vol.46, pp.6288-6290, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512826

?. J. Tsuji, Palladium Reagents and Catalysts, 1995.

F. Vittoz, H. E. Siblani, A. Bruma, B. Rigaud, X. Sauvage et al.,

S. Barrier, J. Malo, A. C. Levillain, I. Gaumont, and . Dez, Insight in the Alginate Pd-Ionogels_Application to the Tsuji-Trost Reaction, ACS Sustain. Chem. Eng, vol.6, issue.4, pp.5192-5197, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01721686