F. Koch-nolte, S. Kernstock, C. Mueller-dieckmann, M. S. Weiss, and F. Haag, Mammalian ADP-ribosyltransferases and ADPribosylhydrolases, Frontiers in bioscience: a journal and virtual library, vol.13, p.6716, 2008.

M. O. Hottiger, P. O. Hassa, B. Lüscher, H. Schüler, and F. Koch-nolte, Toward a unified nomenclature for mammalian ADPribosyltransferases, Trends in Biochemical Sciences, vol.35, pp.208-219, 2010.

G. Glowacki, The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse, Protein Sci, vol.11, pp.1657-1670, 2002.

N. Hara, M. Badruzzaman, T. Sugae, M. Shimoyama, and M. Tsuchiya, Mouse Rt6.1 is a thiol-dependent arginine-specific ADPribosyltransferase, The FEBS Journal, vol.259, pp.289-294, 1999.

T. Kanaitsuka, Expression in BALB/c and C57BL/6 mice of Rt6-1 and Rt6-2 ADP-ribosyltransferases that differ in enzymatic activity: C57BL/6 Rt6-1 is a natural transferase knockout, Journal of Immunology, vol.159, pp.2741-2749, 1997.

F. Koch-nolte, Defects in the structure and expression of the genes for the T cell marker Rt6 in NZW and (NZB × NZW)F1 mice, Int. Immunol, vol.7, pp.883-890, 1995.

F. Koch-nolte, A new monoclonal antibody detects a developmentally regulated mouse ecto-ADP-ribosyltransferase on T cells: subset distribution, inbred strain variation, and modulation upon T cell activation, Journal of Immunology, vol.163, pp.6014-6022, 1999.

S. Hong, IFN-gamma, and IFN-beta induce expression of the thiol-sensitive ART2.1 Ecto-ADPribosyltransferase in murine macrophages, Journal of Immunology, vol.179, pp.6215-6227, 2007.

M. Seman, S. Adriouch, F. Haag, and F. Koch-nolte, Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling, Curr. Med. Chem, vol.11, pp.857-872, 2004.

S. Adriouch, ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site, FASEB J, vol.22, pp.861-869, 2008.

B. Rissiek, F. Haag, O. Boyer, F. Koch-nolte, and S. Adriouch, P2X7 on Mouse T Cells: One Channel, vol.6, p.204, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02377455

E. Nemoto, Y. Yu, and G. Dennert, Cell surface ADP-ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1) function in T cells, Journal of Immunology, vol.157, pp.3341-3349, 1996.

J. Wang, E. Nemoto, and G. Dennert, Regulation of CTL by ecto-nictinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein, Journal of Immunology, vol.156, pp.2819-2827, 1996.

Z. X. Liu, Y. Yu, and G. Dennert, A cell surface ADP-ribosyltransferase modulates T cell receptor association and signaling, Journal of Biological Chemistry, 1999.

S. Teege, Tuning IL-2 signaling by ADP-ribosylation of CD25, Sci. Rep, vol.5, p.8959, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02377452

H. Kettenmann, U. Hanisch, M. Noda, and A. Verkhratsky, Physiology of microglia, Physiol. Rev, vol.91, pp.461-553, 2011.

S. Rivest, Regulation of innate immune responses in the brain, Nat. Rev. Immunol, vol.9, pp.429-439, 2009.

R. Martello, Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue, Nat Commun, vol.7, p.12917, 2016.

F. Koch-nolte, Use of genetic immunization to raise antibodies recognizing toxin-related cell surface ADP-ribosyltransferases in native conformation, Cellular Immunology, vol.236, pp.66-71, 2005.

C. Krebs, Flow cytometric and immunoblot assays for cell surface ADP-ribosylation using a monoclonal antibody specific for ethenoadenosine, Analytical Biochemistry, vol.314, pp.108-115, 2003.

N. Hara, M. Terashima, M. Shimoyama, and M. Tsuchiya, Mouse T-cell antigenrt6.1 has thiol-dependent NAD glycohydrolase activity, J. Biochem, vol.128, pp.601-607, 2000.

S. Hong, Basal and inducible expression of the thiol-sensitive ART2.1 ecto-ADP-ribosyltransferase in myeloid and lymphoid leukocytes, Purinergic Signalling, vol.5, pp.369-383, 2009.

M. B. Overdijk, Crosstalk between human IgG isotypes and murine effector cells, J. Immunol, vol.189, pp.3430-3438, 2012.

R. Khorooshi, Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis, Acta Neuropathol, vol.130, pp.107-118, 2015.

H. Landolt, Extracellular antioxidants and amino acids in the cortex of the rat: monitoring by microdialysis of early ischemic changes, Journal of Cerebral Blood Flow & Metabolism, vol.12, pp.96-102, 1992.

T. Magnus, H. Wiendl, and C. Kleinschnitz, Immune mechanisms of stroke, Current Opinion in Neurology, vol.25, pp.334-340, 2012.

F. Scheuplein, NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells, J. Immunol, vol.182, pp.2898-2908, 2009.

S. Adriouch, NAD+ released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of naive T cells in vivo, Journal of Immunology, vol.179, pp.186-194, 2007.

S. Hong, Differential regulation of P2X7 receptor activation by extracellular nicotinamide adenine dinucleotide and ecto-ADPribosyltransferases in murine macrophages and T cells, J. Immunol, vol.183, pp.578-592, 2009.

E. Okun, M. P. Mattson, and T. V. Arumugam, Involvement of Fc receptors in disorders of the central nervous system, Neuromolecular Med, vol.12, pp.164-178, 2010.

M. Komine-kobayashi, Dual role of Fcgamma receptor in transient focal cerebral ischemia in mice, Stroke, vol.35, pp.958-963, 2004.

F. Haag, F. Koch-nolte, M. Kühl, S. Lorenzen, and H. G. Thiele, Premature stop codons inactivate the RT6 genes of the human and chimpanzee species, Journal of Molecular Biology, vol.243, pp.537-546, 1994.

W. Ohlrogge, Generation and characterization of ecto-ADP-ribosyltransferase ART2.1/ART2.2-deficient mice, Mol. Cell. Biol, vol.22, pp.7535-7542, 2002.

T. L. Young and R. M. Santella, Development of techniques to monitor for exposure to vinyl chloride: monoclonal antibodies to ethenoadenosine and ethenocytidine, Carcinogenesis, vol.9, pp.589-592, 1988.

V. Bilan, M. Leutert, P. Nanni, C. Panse, and M. O. Hottiger, Combining HCD and EThcD fragmentation in a product dependentmanner confidently assigns proteome-wide ADP-ribose acceptor sites, Anal. Chem, 2016.