L. Afriat, C. Roodveldt, G. Manco, and D. S. Tawfik, The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase, Biochemistry, vol.45, pp.13677-13686, 2006.

S. K. Ahn, L. Cuthbertson, and J. R. Nodwell, Genome context as a predictive tool for identifying regulatory targets of the TetR family transcriptional regulators, PLoS One, vol.7, p.50562, 2012.

J. P. Bacik, C. M. Yeager, S. N. Twary, and R. Martí-arbona, Modulation of FadR binding capacity for acyl-CoA fatty acids through structure-guided mutagenesis, Protein J, vol.34, pp.359-366, 2015.

H. P. Bais, Shoot the messages not the messengers, Plant Soil, vol.358, pp.7-10, 2012.

C. Barbey, A. Crépin, D. Bergeau, A. Ouchiha, L. Mijouin et al., In Planta biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis involves silencing of pathogen communication by the rhodococcal gamma-lactone catabolic pathway, PLoS One, vol.8, p.66642, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00857499

C. Barbey, A. Crépin, A. Cirou, A. Budin-verneuil, N. Orange et al., Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis, J. Proteome Res, vol.11, pp.206-216, 2012.

A. M. Barnard and G. P. Salmond, Quorum sensing in Erwinia species, Anal. Bioanal. Chem, vol.387, pp.415-423, 2007.

E. Bouffartigues, J. A. Moscoso, R. Duchesne, T. Rosay, L. Fito-boncompte et al., The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level, Front. Microbiol, vol.6, p.630, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166905

G. Brader, S. Sjöblom, H. Hyytiäinen, K. Sims-huopaniemi, and E. T. Palva, Altering substrate chain length specificity of an acylhomoserine lactone synthase in bacterial communication, J. Biol. Chem, vol.280, pp.10403-10409, 2005.

A. Ceniceros, L. Dijkhuizen, and M. Petrusma, Molecular characterization of a Rhodococcus jostii RHA1 ?-butyrolactone(-like) signalling molecule and its main biosynthesis gene gblA, Sci. Rep, vol.7, p.17743, 2017.

A. Ceniceros, L. Dijkhuizen, M. Petrusma, and M. H. Medema, , 2017.

, Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus, BMC Genomics, vol.18, p.593

C. Cha, P. Gao, Y. C. Chen, P. D. Shaw, F. et al., Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plantassociated bacteria, Mol. Plant Microbe. Interact, vol.11, pp.1119-1129, 1998.

A. Cirou, S. Diallo, C. Kurt, X. Latour, and D. Faure, Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum, Environ. Microbiol, vol.9, pp.1511-1522, 2007.

A. Cirou, S. Mondy, S. An, A. Charrier, A. Sarrazin et al., Efficient biostimulation of the native and introduced quorum-quenching Rhodococcus erythropolis is revealed by a combination of analytical chemistry, microbiology and pyrosequencing, Appl. Environ. Microbiol, vol.78, pp.481-492, 2012.

A. Cirou, A. Raffoux, S. Diallo, X. Latour, Y. Dessaux et al., Gamma-caprolactone stimulates growth of quorum-quenching Rhodococcus populations in a large-scale hydroponic system for culturing Solanum tuberosum, Res. Microbiol, vol.162, pp.945-950, 2011.

A. Crépin, C. Barbey, A. Beury-cirou, V. Hélias, L. Taupin et al., Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.), PLoS One, vol.7, p.35176, 2012.

A. Crépin, C. Barbey, A. Cirou, M. Tannières, N. Orange et al., Biological control of pathogen communication in the rhizosphere: a novel approach applied to potato soft rot due to Pectobacterium atrosepticum, Plant Soil, vol.358, pp.27-37, 2012.

A. Crépin, A. Beury-cirou, C. Barbey, C. Farmer, V. Hélias et al., N-acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: diversity, abundance, and involvement in virulence, Sensors, vol.12, pp.3484-3497, 2012.

L. Cuthbertson and J. R. Nodwell, The TetR family of regulators. Microbiol, Mol. Biol. Rev, vol.77, pp.440-475, 2013.

D. , C. Faure, D. Penot, I. Dessaux, and Y. , Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere, Appl. Microbiol. Biotechnol, vol.7, pp.715-726, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019086

T. Defoirdt, N. Boon, and P. Bossier, Can bacteria evolve resistance to quorum sensing disruption?, PLoS Pathog, vol.6, p.1000989, 2010.

Y. Dessaux, C. Grandclément, and D. Faure, Engineering the Rhizosphere, Trends Plant Sci, vol.21, pp.266-278, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443849

C. Dirusso, T. L. Heimert, and A. K. Metzger, Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acid coenzyme A, J. Biol. Chem, vol.267, pp.8685-8691, 1992.

Y. H. Dong, L. H. Wang, J. L. Xu, H. B. Zhang, X. F. Zhang et al., Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase, Nature, vol.411, pp.813-817, 2001.

Y. H. Dong, L. H. Wang, and L. H. Zhang, Quorum-quenching microbial infections: mechanisms and implications, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.362, pp.1201-1211, 2007.

Y. H. Dong, J. L. Xu, X. Z. Li, and L. H. Zhang, AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.3526-3531, 2000.

A. El-sahili, A. Kwasiborski, N. Mothe, C. Velours, P. Legrand et al., Natural guided genome engineering reveals transcriptional regulators controlling quorum-sensing signal degradation, PLoS One, vol.10, p.141718, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01429877

A. K. El-sayed, J. Hothersall, and C. M. Thomas, Quorum-sensingdependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586, Microbiology, vol.147, pp.2127-2139, 2001.

S. Fetzner, Quorum quenching enzymes, J. Biotechnol, vol.201, pp.2-14, 2015.

R. Garcia-contreras, Is quorum sensing interference a viable alternative to treat Pseudomonas aeruginosa infections?, Front. Microbiol, vol.7, p.1454, 2016.

R. Garcia-contreras, T. Maeda, and T. K. Wood, Resistance to quorumquenching compounds, Appl. Environ. Microbiol, vol.79, pp.6840-6846, 2013.

C. Grandclément, M. Tannières, S. Moréra, Y. Dessaux, and D. Faure, Quorum quenching: role in nature and applied developments, FEMS Microbiol. Rev, vol.40, pp.86-116, 2016.

A. Guendouze, Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors, Front. Microbiol, vol.14, p.227, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01489514

Y. Helman and L. Chernin, Silencing the mob: disrupting quorum sensing as a means to fight plant disease, Mol. Plant Pathol, vol.16, pp.316-329, 2015.

P. N. Jimenez, G. Koch, J. A. Thompson, K. B. Xavier, R. H. Cool et al., The multiple signaling systems regulating virulence in Pseudomonas aeruginosa, Microbiol. Mol. Biol. Rev, vol.76, pp.46-65, 2012.

G. F. Kaufmann, R. Sartorio, S. H. Lee, C. J. Rogers, M. M. Meijler et al., Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.309-314, 2005.

S. R. Khan, F. , and S. K. , The BlcC (AttM) lactonase of Agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer, J. Bacteriol, vol.191, pp.1320-1329, 2009.

M. Knoppová, M. Phensaijai, M. Veseý, M. Zemanová, J. Ne?vera et al., Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis, Curr. Microbiol, vol.55, pp.234-239, 2007.

A. Kwasiborski, S. Mondy, T. M. Chong, C. Barbey, K. G. Chan et al., Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum, Heredity, vol.114, pp.476-484, 2015.

J. Lang and D. Faure, Functions and regulation of quorum-sensing in Agrobacterium tumefaciens, Front. Plant Sci, vol.5, p.14, 2014.

M. J. Larkin, L. A. Kulakov, A. , and C. C. , Biodegradation and Rhodococcus-masters of catabolic versatility, Curr. Opin. Biotechnol, vol.16, pp.282-290, 2005.

B. Lasarre and M. J. Federle, Exploiting quorum sensing to confuse bacterial pathogens. Microbiol, Mol. Biol. Rev, vol.77, pp.73-111, 2013.

X. Latour, C. Barbey, A. Chane, A. Groboillot, and J. F. Burini, Rhodococcus erythropolis and its ?-lactone catabolic pathway: an unusual biocontrol system that disrupts pathogen quorum sensing communication, Agronomy, vol.3, pp.816-838, 2013.

X. Latour, S. Diallo, S. Chevalier, D. Morin, B. Smadja et al., Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum, Appl. Environ. Microbiol, vol.73, pp.4078-4081, 2007.

J. R. Leadbetter and E. P. Greenberg, Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus, J. Bacteriol, vol.182, pp.6921-6926, 2000.

Y. H. Lin, J. L. Xu, J. Hu, L. H. Wang, S. L. Ong et al., , 2003.

, Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes, Mol. Microbiol, vol.47, pp.849-860

H. Liu, S. J. Coulthurst, L. Pritchard, P. E. Hedley, M. Ravensdale et al., Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum, PLoS Pathog, vol.20, p.1000093, 2008.

J. Mansfield, S. Genin, S. Magori, V. Citovsky, M. Sriariyanum et al., Top 10 plant pathogenic bacteria in molecular plant pathology, Mol. Plant Pathol, vol.13, pp.614-629, 2012.

L. Martínková, B. Uhnáková, M. Pátek, J. Ne?vera, and V. Kren, Biodegradation potential of the genus Rhodococcus, Environ. Int, vol.35, pp.162-177, 2009.

H. Matsuoka, K. Hirooka, and Y. Fujita, Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation, J. Biol. Chem, vol.282, pp.5180-5194, 2007.

B. Mellbye and M. Schuster, The sociomicrobiology of antivirulence drug resistance: a proof of concept, vol.2, pp.131-142, 2011.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem, vol.30, pp.2785-2791, 2009.

A. Mund, S. P. Diggle, H. , and F. , The fitness of Pseudomonas aeruginosa quorum sensing signal cheats is influenced by the diffusivity of the environment, vol.8, pp.353-370, 2017.

L. My, N. Ghandour-achkar, J. P. Viala, and E. Bouveret, Reassessment of the genetic regulation of fatty acid synthesis in Escherichia coli: global positive control by the functional dual regulator FadR, J. Bacteriol, vol.197, pp.1862-1872, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01458193

J. Njoroge and V. Sperandio, Jamming bacterial communication: new approaches for the treatment of infectious diseases, EMBO Mol. Med, vol.1, pp.201-210, 2009.

H. S. Oh, S. R. Kim, W. S. Cheong, C. H. Lee, and J. K. Lee, Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant, Appl. Microbiol. Biotechnol, vol.97, pp.10223-10231, 2013.

K. Papenfort and B. L. Bassler, Quorum sensing signal-response systems in gram-negative bacteria, Nat. Rev. Microbiol, vol.14, pp.576-588, 2016.

J. P. Pearson, M. Feldman, B. H. Iglewski, and A. Prince, Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection, Infect. Immun, vol.68, pp.4331-4334, 2000.

A. Pech-canul, J. Nogales, A. Miranda-molina, L. Álvarez, O. Geiger et al., FadD is required for utilization of endogenous fatty acids released from membrane lipids, J. Bacteriol, vol.193, pp.6295-6304, 2011.

A. V. Polkade, S. S. Mantri, U. J. Patwekar, J. , and K. , Quorumsensing: an under-explored phenomenon in the phylum, Actinobacteria. Front. Microbiol, vol.7, p.131, 2016.

L. Põllumaa, T. Alamäe, and A. Mäe, Quorum sensing and expression of virulence in Pectobacteria, Sensors, vol.12, pp.3327-3349, 2012.

L. G. Rahme, F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov et al., Plants and animals share functionally common bacterial virulence factors, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.8815-8821, 2000.

L. G. Rahme, M. W. Tan, L. Le, S. M. Wong, R. G. Tompkins et al., Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.13245-13250, 1997.

J. L. Ramos, M. Martinez-bueno, A. J. Molina-henares, W. Teran, K. Watanabe et al., The TetR family of transcriptional repressors. Microbiol, Mol. Biol. Rev, vol.69, pp.326-356, 2005.

S. E. Reichheld, Z. Yu, and A. R. Davidson, The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.22263-22268, 2009.

C. Reimmann, N. Ginet, L. Michel, C. Keel, P. Michaix et al., Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1, Microbiology, vol.148, pp.923-932, 2002.

M. Romero, R. Avendano-herrera, B. Magarinos, M. Cámara, and A. Otero, Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group, FEMS Microbiol. Lett, vol.304, pp.131-139, 2010.

S. T. Rutherford and B. L. Bassler, Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb, Perspect. Med, vol.2, p.12427, 2012.

D. Si, N. Urano, S. Shimizu, and M. Kataoka, LplR, a repressor belonging to the TetR family, regulates expression of the L-pantoyl lactone dehydrogenase gene in Rhodococcus erythropolis, Appl. Environ. Microbiol, vol.78, 2012.

R. Simon, U. Priefer, and A. Pühler, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria, Nat. Biotechnol, vol.1, pp.784-791, 1983.

B. Smadja, X. Latour, D. Faure, S. Chevalier, Y. Dessaux et al., Involvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum), Mol. Plant Microbe. Interact, vol.17, pp.1269-1278, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122908

B. Smadja, X. Latour, S. Trigui, J. F. Burini, S. Chevalier et al., Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.), Can. J. Microbiol, vol.50, pp.19-27, 2004.

V. Solovyev and A. Salamov, Automatic annotation of microbial genomes and metagenomic sequences, Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies, pp.61-78, 2011.

K. Swain, I. Casabon, L. D. Eltis, and W. W. Mohn, Two transporters essential for reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1, J. Bacteriol, vol.194, pp.6720-6727, 2012.

E. Takano, Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation, Curr. Opin. Microbiol, vol.9, pp.287-294, 2006.

O. Trott and A. J. Olson, AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. comput. Chem, vol.31, pp.455-461, 2010.

S. Uroz, S. R. Chhabra, M. Càmara, P. Williams, P. Oger et al., N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities, Microbiology, vol.151, pp.3313-3322, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019097

S. Uroz, C. D'angelo-picard, A. Carlier, M. Elasri, C. Sicot et al., Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria, Microbiology, vol.149, 1981.
URL : https://hal.archives-ouvertes.fr/hal-00135468

S. Uroz, P. M. Oger, E. Chapelle, M. T. Adeline, D. Faure et al., , 2008.

, A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases, Appl. Environ. Microbiol, vol.74, pp.1357-1366

R. S. Valente, P. Nadal-jimenez, A. F. Carvalho, F. J. Viera, and K. B. Xavier, Signal integration in quorum sensing enables cross-species induction of virulence in Pectobacterium wasabiae, mBio, vol.8, pp.398-415, 2017.

R. Dijkhuizen and L. , Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications, Frontiers in Microbiology | www.frontiersin.org van der Geize, vol.7, pp.255-261, 2004.

S. B. Von-bodman, W. D. Bauer, and D. L. Coplin, Quorum sensing in plant-pathogenic bacteria, Annu. Rev. Phytopathol, vol.41, pp.455-482, 2003.

M. Welch, J. M. Dutton, F. G. Glansdorp, G. L. Thomas, D. S. Smith et al., Structure-activity relationships of Erwinia carotovora quorum sensing signaling molecules, Bioorg. Med. Chem. Lett, vol.15, pp.4235-4238, 2005.

Y. H. Yang, T. H. Lee, J. H. Kim, E. J. Kim, H. S. Joo et al., Highthroughput detection method of quorum-sensing molecules by colorimetry and its applications, Anal. Biochem, vol.356, pp.297-299, 2006.

L. Zhang, P. J. Murphy, A. Kerr, and M. E. Tate, Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones, Nature, vol.362, pp.446-448, 1993.

W. Zhang, L. , and C. , Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications, Front. Microbiol, vol.6, p.1535, 2016.