J. D. Schmahmann, Rediscovery of an early concept, Int. Rev. Neurobiol, vol.41, pp.3-27, 1997.

M. Manto and T. Lorivel, Cognitive repercussions of hereditary cerebellar disorders, Cortex, vol.47, issue.1, pp.81-100

K. Burk, Cognitive deficits in spinocerebellar ataxia 2. Brain, vol.122, pp.769-77, 1999.

L. Pira and F. , Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables, J. Neurol. Sci, vol.201, issue.1-2, pp.53-60, 2002.

A. Lilja, Cognitive impairment in spinocerebellar ataxia type 8, J. Neurol. Sci, vol.237, issue.1-2, pp.31-39, 2005.

M. Suenaga, Cognitive impairment in spinocerebellar ataxia type 6, J. Neurol. Neurosurg. Psychiatry, vol.79, issue.5, pp.496-505, 2008.

P. Garrard, Cognitive and social cognitive functioning in spinocerebellar ataxia : a preliminary characterization, J. Neurol, vol.255, issue.3, pp.398-405, 2008.

N. Alekseeva, Hereditary ataxia and behavior, Adv. Neurol, vol.96, pp.275-83, 2005.

J. D. Schmahmann, J. B. Weilburg, and J. C. Sherman, The neuropsychiatry of the cerebellum -insights from the clinic. Cerebellum, vol.6, pp.254-67, 2007.

M. I. Botez, Role of the cerebellum in complex human behavior, Ital. J. Neurol. Sci, vol.10, issue.3, pp.291-300, 1989.

M. Allin, Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, pp.60-66, 2001.

E. M. Arroyo-anllo and T. Botez-marquard, Neurobehavioral dimensions of olivopontocerebellar atrophy, J. Clin. Exp. Neuropsychol, vol.20, issue.1, pp.52-61, 1998.

M. G. Leggio, Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage, Brain, issue.131, pp.1332-1375, 2008.

K. T. Ciesielski, Hypoplasia of the cerebellar vermis and cognitive deficits in survivors of childhood leukemia, Arch. Neurol, vol.51, issue.10, pp.985-93, 1994.

M. D. Chafetz, The cerebellum and cognitive function: implications for rehabilitation, Arch. Phys. Med. Rehabil, vol.77, issue.12, pp.1303-1311, 1996.

P. Marien, Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study, Cortex, vol.45, issue.4, pp.527-563, 2009.

K. W. Greve, Cognitive and emotional sequelae of cerebellar infarct: a case report, Arch. Clin. Neuropsychol, vol.14, issue.5, pp.455-69, 1999.

J. Townsend, Spatial attention deficits in patients with acquired or developmental cerebellar abnormality, J. Neurosci, vol.19, issue.13, pp.5632-5675, 1999.

M. Gerwig, F. P. Kolb, and D. Timmann, The involvement of the human cerebellum in eyeblink conditioning, Cerebellum, vol.6, issue.1, pp.38-57, 2007.

M. E. Ioffe, L. A. Chernikova, and K. I. Ustinova, Role of cerebellum in learning postural tasks. Cerebellum, vol.6, pp.87-94, 2007.

H. Baillieux, Cerebellar neurocognition: insights into the bottom of the brain, Clin. Neurol. Neurosurg, vol.110, issue.8, pp.763-73, 2008.

A. Ozimek, Cerebellar mutism--report of four cases, J. Neurol, vol.251, issue.8, pp.963-72, 2004.

D. Riva and C. Giorgi, The contribution of the cerebellum to mental and social functions in developmental age, Fiziol. Cheloveka, vol.26, issue.1, pp.27-31, 2000.

D. Riva and C. Giorgi, The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours, Brain, issue.123, pp.1051-61, 2000.

L. Levisohn, A. Cronin-golomb, and J. D. Schmahmann, Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population, Brain, issue.123, pp.1041-50, 2000.

J. Z. Konarski, Is the cerebellum relevant in the circuitry of neuropsychiatric disorders?, J. Psychiatry Neurosci, vol.30, issue.3, pp.178-86, 2005.

J. J. Levitt, Quantitative volumetric MRI study of the cerebellum and vermis in schizophrenia: clinical and cognitive correlates, Am. J. Psychiatry, vol.156, issue.7, pp.1105-1112, 1999.

A. Keller, Progressive loss of cerebellar volume in childhood-onset schizophrenia, Am. J. Psychiatry, vol.160, issue.1, pp.128-161, 2003.

Y. Barak, Very late-onset schizophrenia-like psychosis: clinical and imaging characteristics in comparison with elderly patients with schizophrenia, J. Nerv. Ment. Dis, vol.190, issue.11, pp.733-739, 2002.

S. Lippmann, Cerebellar vermis dimensions on computerized tomographic scans of schizophrenic and bipolar patients, Am. J. Psychiatry, vol.139, issue.5, pp.667-675, 1982.

P. C. Nopoulos, An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept, Biol. Psychiatry, vol.46, issue.5, pp.703-714, 1999.

G. Okugawa, Selective reduction of the posterior superior vermis in men with chronic schizophrenia, Schizophr. Res, vol.55, issue.1-2, pp.61-68, 2002.

M. G. Reyes and A. Gordon, Cerebellar vermis in schizophrenia, Lancet, vol.2, issue.8248, pp.700-701, 1981.

K. D. Tran, Reduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia, Am. J. Psychiatry, vol.155, issue.9, pp.1288-90, 1998.

P. M. Gillig and R. D. Sanders, Psychiatry, neurology, and the role of the cerebellum, vol.7, pp.38-43

S. H. Fatemi, The role of cerebellar genes in pathology of autism and schizophrenia, Cerebellum, vol.7, issue.3, pp.279-94, 2008.

S. H. Mostofsky, Evaluation of cerebellar size in attention-deficit hyperactivity disorder, J. Child Neurol, vol.13, issue.9, pp.434-443, 1998.

J. Pujol, Mapping structural brain alterations in obsessive-compulsive disorder, Arch. Gen. Psychiatry, vol.61, issue.7, pp.720-750, 2004.

H. Baillieux, Developmental dyslexia and widespread activation across the cerebellar hemispheres, Brain Lang, vol.108, issue.2, pp.122-154, 2009.

K. Pierce and E. Courchesne, Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism, Biol. Psychiatry, vol.49, issue.8, pp.655-64, 2001.

S. M. Hodge, Cerebellum, language, and cognition in autism and specific language impairment, J. Autism. Dev. Disord, vol.40, issue.3, pp.300-316

A. J. Correa, Chronic cerebellar stimulation in the modulation of behavior, Acta Neurol. Latinoam, vol.26, issue.3, pp.143-53, 1980.

D. J. Schutter and J. Van-honk, A framework for targeting alternative brain regions with repetitive transcranial magnetic stimulation in the treatment of depression, J. Psychiatry Neurosci, vol.30, issue.2, pp.91-98, 2005.

J. D. Schmahmann and J. C. Sherman, Cerebellar cognitive affective syndrome, Int. Rev. Neurobiol, vol.41, pp.433-473, 1997.

J. D. Schmahmann, From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing, Hum. Brain Mapp, vol.4, issue.3, pp.174-98, 1996.

M. Ito, Control of mental activities by internal models in the cerebellum, Nat. Rev. Neurosci, vol.9, issue.4, pp.304-317, 2008.

M. Ito, Bases and implications of learning in the cerebellum--adaptive control and internal model mechanism. Prog, Brain Res, vol.148, pp.95-109, 2005.

J. D. Schmahmann, Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome, J. Neuropsychiatry Clin. Neurosci, vol.16, issue.3, pp.367-78, 2004.

C. J. Stoodley and J. D. Schmahmann, Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing, Cortex, vol.46, issue.7, pp.831-875

M. Ito, Cerebellar microcomplexes, Animal Models of Cognitive and Emotional Functions of the Cerebellum, vol.41, pp.475-87, 1997.

F. M. Krienen and R. L. Buckner, Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity, Cereb. Cortex, vol.19, issue.10, pp.2485-97, 2009.

F. A. Middleton and P. L. Strick, Cerebellar projections to the prefrontal cortex of the primate, J. Neurosci, vol.21, issue.2, pp.700-712, 2001.

C. J. Stoodley and J. D. Schmahmann, Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies, Neuroimage, vol.44, issue.2, pp.489-501, 2009.

P. Fusar-poli, Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies, J. Psychiatry Neurosci, vol.34, issue.6, pp.418-450, 2009.

J. Salmi, Orienting and maintenance of spatial attention in audition and vision: multimodal and modality-specific brain activations, Brain Struct. Funct, vol.212, issue.2, pp.181-94, 2007.

J. M. Zacks, A parametric study of mental spatial transformations of bodies, Neuroimage, vol.16, issue.4, pp.857-72, 2002.

T. M. Lee, The cerebellum's involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study, Neuropsychologia, vol.43, issue.13, pp.1870-1877, 2005.

K. Rubia and A. Smith, The neural correlates of cognitive time management: a review, Acta Neurobiol. Exp. (Wars), vol.64, issue.3, pp.329-369, 2004.

J. X. O'reilly, M. M. Mesulam, and A. C. Nobre, The cerebellum predicts the timing of perceptual events, J. Neurosci, vol.28, issue.9, pp.2252-60, 2008.

C. J. Stoodley and J. D. Schmahmann, The cerebellum and language: evidence from patients with cerebellar degeneration, Brain Lang, vol.110, issue.3, pp.149-53, 2009.

G. Allen, Magnetic resonance imaging of cerebellar-prefrontal and cerebellarparietal functional connectivity, Neuroimage, vol.28, issue.1, pp.39-48, 2005.

D. J. Schutter and J. Van-honk, An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS, Neuroimage, vol.33, issue.4, pp.1227-1258, 2006.

A. Beaton and P. Marien, Language, cognition and the cerebellum: grappling with an enigma, Cortex, vol.46, issue.7, pp.811-831

D. Timmann and I. Daum, How consistent are cognitive impairments in patients with cerebellar disorders?, Behav. Neurol, vol.23, issue.1-2, pp.81-100

I. Daum and H. Ackermann, Cerebellar contributions to cognition. Behav. Brain Res, vol.67, issue.2, pp.201-211, 1995.

M. Rapoport, R. Van-reekum, and H. Mayberg, The role of the cerebellum in cognition and behavior: a selective review, J. Neuropsychiatry Clin. Neurosci, vol.12, issue.2, pp.193-201, 2000.

B. Frank, Cerebellar lesion studies of cognitive function in children and adolescents -limitations and negative findings, Cerebellum, vol.6, issue.3, pp.242-53, 2007.

M. Glickstein and K. Doron, Cerebellum: connections and functions. Cerebellum, vol.7, pp.589-94, 2008.

M. Glickstein, Thinking about the cerebellum, Brain, vol.129, issue.2, pp.288-90, 2006.

C. T. Fuentes and A. J. Bastian, Motor cognition' -what is it and is the cerebellum involved? Cerebellum, vol.6, pp.232-238, 2007.

M. Kawato and H. Gomi, The cerebellum and VOR/OKR learning models, Trends Neurosci, vol.15, issue.11, pp.445-53, 1992.

M. Kawato, Internal models for motor control and trajectory planning, Curr. Opin. Neurobiol, vol.9, issue.6, pp.718-745, 1999.

M. Ito, Mechanisms of motor learning in the cerebellum, Brain Res, vol.886, issue.1-2, pp.237-245, 2000.

J. Jiao, Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning, PLoS One, vol.3, issue.2, p.1684, 2008.

J. C. Eccles, M. Ito, and J. Szentagothai, the cerebellum as a neuronal machine, 1967.

D. Marr, A theory of cerebellar cortex, J. Physiol, vol.202, issue.2, pp.437-70, 1969.

J. S. Albus, A theory of cerebellar function, Math. Biosci, vol.10, pp.25-61, 1971.

M. Ito, Cerebellar long-term depression: characterization, signal transduction, and functional roles, Physiol. Rev, vol.81, issue.3, pp.1143-95, 2001.

M. Fujita, Adaptive filter model of the cerebellum, Biol. Cybern, vol.45, issue.3, pp.195-206, 1982.

P. Dean and J. Porrill, Adaptive-filter models of the cerebellum: computational analysis, Cerebellum, vol.7, issue.4, pp.567-71, 2008.

D. Timmann, The human cerebellum contributes to motor, emotional and cognitive associative learning. A review, Cortex, vol.46, issue.7, pp.845-57

W. T. Thach, H. P. Goodkin, and J. G. Keating, The cerebellum and the adaptive coordination of movement, Annu. Rev. Neurosci, vol.15, pp.403-445, 1992.

W. T. Thach, Combination, complementarity and automatic control: a role for the cerebellum in learning movement coordination, Novartis Found Symp, vol.218, pp.219-247, 1998.

J. Caston, N. Jones, and T. Stelz, Role of preoperative and postoperative sensorimotor training on restoration of the equilibrium behavior in adult mice following cerebellectomy, Neurobiol. Learn Mem, vol.64, issue.3, pp.195-202, 1995.

J. Caston, The cerebellum and postural sensorimotor learning in mice and rats, Behav. Brain Res, vol.95, issue.1, pp.17-22, 1998.

N. Auvray, Role of the cerebellum in the ontogenesis of the equilibrium behavior in the young rat: a behavioral study, Brain Res, vol.505, issue.2, pp.291-301, 1989.

L. Rondi-reig, Role of the inferior olivary complex in motor skills and motor learning in the adult rat, Neuroscience, vol.77, issue.4, pp.955-63, 1997.

S. Nakanishi, Genetic manipulation study of information processing in the cerebellum, Neuroscience, vol.162, issue.3, pp.723-754, 2009.

M. W. Vogel, The Lurcher mouse: fresh insights from an old mutant, Brain Res, vol.1140, pp.4-18, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00082411

P. Hilber and J. Caston, Motor skills and motor learning in Lurcher mutant mice during aging, Neuroscience, vol.102, issue.3, pp.615-638, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02355839

J. Caston, Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behavior: studies in intact and cerebellectomized lurcher mutant mice, Brain Res. Dev. Brain Res, vol.86, issue.1-2, pp.311-317, 1995.

J. Cendelin, I. Korelusova, and F. Vozeh, The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice, Behav. Brain Res, vol.189, issue.1, pp.65-74, 2008.

L. Marec, N. , J. Caston, and R. Lalonde, Impaired motor skills on static and mobile beams in lurcher mutant mice, Exp. Brain Res, vol.116, issue.1, pp.131-139, 1997.

, Animal Models of Cognitive and Emotional Functions of the Cerebellum, vol.21

K. Doya, Complementary roles of basal ganglia and cerebellum in learning and motor control, Curr. Opin. Neurobiol, vol.10, issue.6, pp.732-741, 2000.

S. Rossi, Cerebellar control of cortico-striatal LTD, Restor Neurol. Neurosci, vol.26, issue.6, pp.475-80, 2008.

R. Lalonde, Sensorimotor learning in three cerebellar mutant mice, Neurobiol. Learn Mem, vol.65, issue.2, pp.113-133, 1996.

U. Grusser-cornehls and J. Baurle, Mutant mice as a model for cerebellar ataxia, Prog. Neurobiol, vol.63, issue.5, pp.489-540, 2001.

L. A. Hyde, Motor learning in Ts65Dn mice, a model for Down syndrome, Dev. Psychobiol, vol.38, issue.1, pp.33-45, 2001.

J. Caston, Effect of training on motor abilities of heterozygous staggerer mutant (Rora(+)/Rora(sg)) mice during aging, Behav. Brain Res, vol.141, issue.1, pp.35-42, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02355823

H. T. Kim, Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning, Neuroreport, vol.13, issue.13, pp.1607-1617, 2002.

R. Llinas and J. P. Welsh, On the cerebellum and motor learning, Curr. Opin. Neurobiol, vol.3, issue.6, pp.958-65, 1993.

J. P. Welsh, Normal motor learning during pharmacological prevention of Purkinje cell long-term depression, Proc. Natl. Acad. Sci. USA, vol.102, pp.17166-71, 2005.

G. Mandolesi, GluRdelta2 expression in the mature cerebellum of hotfoot mice promotes parallel fiber synaptogenesis and axonal competition, PLoS One, vol.4, issue.4, p.5243, 2009.

H. Hirai, Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes, EMBO Rep, vol.6, issue.1, pp.90-95, 2005.

P. F. Gilbert and W. T. Thach, Purkinje cell activity during motor learning, Brain Res, vol.128, issue.2, pp.309-337, 1977.

J. F. Medina and S. G. Lisberger, Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys, Nat. Neurosci, vol.11, issue.10, pp.1185-92, 2008.

R. Gerlai, Impaired motor learning performance in cerebellar En-2 mutant mice, Behav. Neurosci, vol.110, issue.1, pp.126-159, 1996.

A. M. Van-alphen, Motor performance and motor learning in Lurcher mice, Ann. N. Y. Acad. Sci, vol.978, pp.413-437, 2002.

A. Katoh, J. A. Jindal, and J. L. Raymond, Motor deficits in homozygous and heterozygous p/q-type calcium channel mutants, J. Neurophysiol, vol.97, issue.2, pp.1280-1287, 2007.

S. Nagao, Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits, Exp. Brain Res, vol.53, issue.1, pp.36-46, 1983.

S. K. Koekkoek, Gain adaptation and phase dynamics of compensatory eye movements in mice, Genes Funct, vol.1, issue.3, pp.175-90, 1997.

H. Rambold, Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR, J. Neurophysiol, vol.87, issue.2, pp.912-936, 2002.

F. Shutoh, Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation, Neuroscience, vol.139, issue.2, pp.767-77, 2006.

C. Hansel, alphaCaMKII Is essential for cerebellar LTD and motor learning, Neuron, vol.51, issue.6, pp.835-878, 2006.

T. Takeuchi, Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin, PLoS One, vol.3, issue.5, p.2297, 2008.

M. Kahlon and S. G. Lisberger, Changes in the responses of Purkinje cells in the floccular complex of monkeys after motor learning in smooth pursuit eye movements, J. Neurophysiol, vol.84, issue.6, pp.2945-60, 2000.

G. Ohtsuki, C. Piochon, and C. Hansel, Climbing fiber signaling and cerebellar gain control, Front Cell Neurosci, vol.3, p.4, 2009.

M. C. Ke, C. C. Guo, and J. L. Raymond, Elimination of climbing fiber instructive signals during motor learning, Nat. Neurosci, vol.12, issue.9, pp.1171-1180, 2009.

E. S. Boyden and J. L. Raymond, Active reversal of motor memories reveals rules governing memory encoding, Neuron, vol.39, issue.6, pp.1031-1073, 2003.

Y. Hirata and S. M. Highstein, Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells, J. Neurophysiol, vol.85, issue.5, pp.2267-88, 2001.

E. S. Boyden, A. Katoh, and J. L. Raymond, Cerebellum-dependent learning: the role of multiple plasticity mechanisms, Annu. Rev. Neurosci, vol.27, pp.581-609, 2004.

M. S. Milak, Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement, J. Neurophysiol, vol.78, issue.2, pp.939-59, 1997.

J. P. Welsh, Systemic harmaline blocks associative and motor learning by the actions of the inferior olive, Eur. J. Neurosci, vol.10, issue.11, pp.3307-3327, 1998.

R. R. Kimpo and J. L. Raymond, Impaired motor learning in the vestibulo-ocular reflex in mice with multiple climbing fiber input to cerebellar Purkinje cells, J. Neurosci, vol.27, issue.21, pp.5672-82, 2007.

R. F. Thompson, Associative learning, Int. Rev. Neurobiol, vol.41, pp.151-89, 1997.

C. Salas, Neuropsychology of learning and memory in teleost fish, Zebrafish, vol.3, issue.2, pp.157-71, 2006.

A. Gomez, Cerebellum lesion impairs eyeblink-like classical conditioning in goldfish, Neuroscience, vol.166, issue.1, pp.49-60

J. S. Lincoln, D. A. Mccormick, and R. F. Thompson, Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response, Brain Res, vol.242, issue.1, pp.190-193, 1982.

T. Horiuchi and S. Kawahara, Effects of ipsilateral cerebellum ablation on acquisition and retention of classically conditioned eyeblink responses in rats, Neurosci. Lett, vol.472, issue.2, pp.148-52

K. M. Christian and R. F. Thompson, Neural substrates of eyeblink conditioning: acquisition and retention, Learn Mem, vol.10, issue.6, pp.427-55, 2003.

B. E. Kalmbach, Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning, Learn Mem, vol.16, issue.1, pp.86-95, 2009.

J. J. Kim and R. F. Thompson, Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning, Trends Neurosci, vol.20, issue.4, pp.177-81, 1997.

G. A. Clark, Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses, Brain Res, vol.291, issue.1, pp.125-161, 1984.

C. H. Yeo, M. J. Hardiman, and M. Glickstein, Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei, Exp. Brain Res, vol.60, issue.1, pp.87-98, 1985.

C. H. Yeo, M. J. Hardiman, and M. Glickstein, Classical conditioning of the nictitating membrane response of the rabbit, II. Lesions of the cerebellar cortex. Exp. Brain Res, vol.60, issue.1, pp.99-113, 1985.

C. H. Yeo, M. J. Hardiman, and M. Glickstein, Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI. Exp, Brain Res, vol.60, issue.1, pp.114-140, 1985.

G. Hesslow, Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex, Journal of Physiology, vol.472, issue.2, pp.229-244, 1994.

R. A. Swain, Cerebellar stimulation as an unconditioned stimulus in classical conditioning, Behav. Neurosci, vol.106, issue.5, pp.739-50, 1992.

P. J. Attwell, Cerebellar cortical AMPA-kainate receptor blockade prevents performance of classically conditioned nictitating membrane responses, J. Neurosci, vol.19, issue.24, p.45, 1999.

S. Bao, Cerebellar cortical inhibition and classical eyeblink conditioning, Proc. Natl. Acad. Sci. USA, vol.99, pp.1592-1599, 2002.

A. Aiba, Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice, Cell, vol.79, issue.2, pp.377-88, 1994.

W. Kakegawa, Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2, J. Neurosci, vol.28, issue.6, pp.1460-1468, 2008.

M. Yuzaki, The delta2 glutamate receptor: a key molecule controlling synaptic plasticity and structure in Purkinje cells, Cerebellum, vol.3, issue.2, pp.89-93, 2004.

D. A. Jirenhed, F. Bengtsson, and G. Hesslow, Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace, J. Neurosci, vol.27, issue.10, pp.2493-502, 2007.

B. J. Anderson and J. E. Steinmetz, Cerebellar and brainstem circuits involved in classical eyeblink conditioning, Rev. Neurosci, vol.5, issue.3, pp.251-73, 1994.

S. P. Perrett, B. P. Ruiz, and M. D. Mauk, Cerebellar cortex lesions disrupt learningdependent timing of conditioned eyelid responses, J. Neurosci, vol.13, issue.4, pp.1708-1726, 1993.

M. J. Hardiman, N. Ramnani, and C. H. Yeo, Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit, Exp. Brain Res, vol.110, issue.2, pp.235-282, 1996.

P. J. Attwell, S. F. Cooke, and C. H. Yeo, Cerebellar function in consolidation of a motor memory, Neuron, vol.34, issue.6, pp.1011-1031, 2002.

N. Wada, Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission, Proc. Natl. Acad. Sci. USA, vol.104, pp.16690-16695, 2007.

A. F. Nordholm, Lidocaine infusion in a critical region of cerebellum completely prevents learning of the conditioned eyeblink response, Behav. Neurosci, vol.107, issue.5, pp.882-888, 1993.

K. Robleto and R. F. Thompson, Extinction of a classically conditioned response: red nucleus and interpositus, J. Neurosci, vol.28, issue.10, pp.2651-2659, 2008.

J. F. Medina, W. L. Nores, and M. D. Mauk, Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses, Nature, vol.416, issue.6878, pp.330-333, 2002.

J. F. Medina, K. S. Garcia, and M. D. Mauk, A mechanism for savings in the cerebellum, J. Neurosci, vol.21, issue.11, pp.4081-4090, 2001.

P. D. Nixon and R. E. Passingham, The cerebellum and cognition: cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys, Neuropsychologia, vol.38, issue.7, pp.1054-72, 2000.

L. Mandolesi, Features of sequential learning in hemicerebellectomized rats, J. Neurosci. Res, vol.88, issue.3, pp.478-86

R. Lalonde, Spontaneous alternation and habituation in lurcher mutant mice, Brain Res, vol.362, issue.1, pp.161-165, 1986.

R. Lalonde, M. I. Botez, and D. Boivin, Spontaneous alternation and habituation in a tmaze in nervous mutant mice, Behav. Neurosci, vol.100, issue.3, pp.350-352, 1986.

R. Lalonde, Delayed spontaneous alternation in weaver mutant mice, Brain Res, vol.398, issue.1, pp.178-80, 1986.

R. Lalonde, M. Manseau, and M. I. Botez, Spontaneous alternation and habituation in Purkinje cell degeneration mutant mice, Brain Res, vol.411, issue.1, pp.187-196, 1987.

R. Lalonde, M. Manseau, and M. I. Botez, Delayed spontaneous alternation in Purkinje cell degeneration mutant mice, Neurosci. Lett, vol.80, issue.3, pp.343-349, 1987.

R. Lalonde and M. I. Botez, Exploration of a hole-board matrix in nervous mutant mice, Brain Res, vol.343, issue.2, pp.356-365, 1985.

J. Caston, C. Chianale, and J. Mariani, Spatial memory of heterozygous staggerer (Rora(+)/Rora(sg)) versus normal (Rora(+)/Rora(+)) mice during aging, Behav. Genet, vol.34, issue.3, pp.319-343, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00077644

P. D. Nixon and R. E. Passingham, The cerebellum and cognition: cerebellar lesions do not impair spatial working memory or visual associative learning in monkeys, Eur. J. Neurosci, vol.11, issue.11, pp.4070-80, 1999.

L. Gaytan-tocaven and M. E. Olvera-cortes, Bilateral lesion of the cerebellar-dentate nucleus impairs egocentric sequential learning but not egocentric navigation in the rat, Neurobiol. Learn Mem, vol.82, issue.2, pp.120-127, 2004.

R. Lalonde, Spatial learning in a Z-maze by cerebellar mutant mice, Physiol. Behav, vol.59, issue.1, pp.83-89, 1996.

A. Gasbarri, Comparative effects of lesions to the ponto-cerebellar and olivocerebellar pathways on motor and spatial learning in the rat, Neuroscience, vol.116, issue.4, pp.1131-1171, 2003.

L. Rondi-reig, The role of climbing and parallel fibers inputs to cerebellar cortex in navigation, Behav. Brain Res, vol.132, issue.1, pp.11-19, 2002.

M. L. Willson, BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill, Brain, issue.131, pp.1099-112, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00275407

M. L. Willson, A. J. Bower, and R. M. Sherrard, Developmental neural plasticity and its cognitive benefits: olivocerebellar reinnervation compensates for spatial function in the cerebellum, Eur. J. Neurosci, vol.25, issue.5, pp.1475-83, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00148808

R. Lalonde and M. I. Botez, Navigational deficits in weaver mutant mice, Brain Res, vol.398, issue.1, pp.175-182, 1986.

L. Marec and N. , Effect of cerebellar granule cell depletion on spatial learning and memory and in an avoidance conditioning task: studies in postnatally X-irradiated rats, Brain Res. Dev. Brain Res, vol.99, issue.1, pp.20-28, 1997.

C. C. Gandhi, Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin, Behav. Brain Res, vol.109, issue.1, pp.37-47, 2000.

C. R. Goodlett, K. M. Hamre, and J. R. West, Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice, Behav. Brain Res, vol.47, issue.2, pp.129-170, 1992.

L. A. Martin, D. Goldowitz, and G. Mittleman, The cerebellum and spatial ability: dissection of motor and cognitive components with a mouse model system, Eur. J. Neurosci, vol.18, issue.7, pp.2002-2012, 2003.

P. Hilber, Differential roles of cerebellar cortex and deep cerebellar nuclei in learning and retention of a spatial task: studies in intact and cerebellectomized lurcher mutant mice, Behav. Genet, vol.28, issue.4, pp.299-308, 1998.

R. Lalonde, Visuospatial abilities, Int. Rev. Neurobiol, vol.41, pp.191-215, 1997.

C. C. Joyal, Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation, Brain Res, vol.739, issue.1-2, pp.1-11, 1996.

L. Petrosini, M. Molinari, and M. E. Dell'anna, Cerebellar contribution to spatial event processing: Morris water maze and T-maze, Eur. J. Neurosci, vol.8, issue.9, pp.1882-96, 1996.

L. Petrosini, M. G. Leggio, and M. Molinari, The cerebellum in the spatial problem solving: a co-star or a guest star, Prog. Neurobiol, vol.56, issue.2, pp.191-210, 1998.

E. Burguiere, Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit?, Nat. Neurosci, vol.8, issue.10, pp.1292-1296, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00131279

E. Burguiere, Role of the cerebellar cortex in conditioned goal-directed behavior, J. Neurosci, vol.30, issue.40, pp.13265-71

F. Federico, NMDA receptor activity in learning spatial procedural strategies II. The influence of cerebellar lesions, Brain Res. Bull, vol.70, pp.356-67, 2006.

M. G. Leggio, Representation of actions in rats: the role of cerebellum in learning spatial performances by observation, Proc. Natl. Acad. Sci. USA, vol.97, pp.2320-2325, 2000.

L. Petrosini, Watch how to do it! New advances in learning by observation, Brain Res. Brain Res. Rev, vol.42, issue.3, pp.252-64, 2003.

K. Manda, M. Ueno, and K. Anzai, Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid, Behav. Brain Res, vol.187, issue.2, pp.387-95, 2008.

R. Lalonde and M. I. Botez, The cerebellum and learning processes in animals, Brain Res. Brain Res. Rev, vol.15, issue.3, pp.325-357, 1990.

J. Caston, Role of the cerebellum in exploration behavior, Brain Res, vol.808, issue.2, pp.232-239, 1998.

B. Sacchetti, B. Scelfo, and P. Strata, Cerebellum and emotional behavior, Neuroscience, vol.162, issue.3, pp.756-62, 2009.

R. S. Dow and G. Moruzzi, the physiology and pathology of the Cerebellum, vol.692, 1958.

W. F. Supple, R. N. Jr, M. S. Leaton, and . Fanselow, Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats, Physiol. Behav, vol.39, issue.5, pp.579-86, 1987.

W. F. Supple, B. S. Jr, and . Kapp, The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit, J. Neurosci, vol.13, issue.9, pp.3705-3716, 1993.

W. F. Supple, R. N. Jr, and . Leaton, Lesions of the cerebellar vermis and cerebellar hemispheres: effects on heart rate conditioning in rats, Behav. Neurosci, vol.104, issue.6, pp.934-981, 1990.

F. Rodriguez, Cognitive and emotional functions of the teleost fish cerebellum, Brain Res. Bull, vol.66, pp.365-70, 2005.

B. Sacchetti, Cerebellar role in fear-conditioning consolidation, Proc. Natl. Acad. Sci. USA, vol.99, pp.8406-8417, 2002.

B. Sacchetti, T. Sacco, and P. Strata, Reversible inactivation of amygdala and cerebellum but not perirhinal cortex impairs reactivated fear memories, Eur. J. Neurosci, vol.25, issue.9, pp.2875-84, 2007.

B. Sacchetti, Long-term synaptic changes induced in the cerebellar cortex by fear conditioning, Neuron, vol.42, issue.6, pp.973-82, 2004.

L. Zhu, Membrane excitability and fear conditioning in cerebellar Purkinje cell, Neuroscience, vol.140, issue.3, pp.801-811, 2006.

L. Zhu, The effects of fear conditioning on cerebellar LTP and LTD, Eur. J. Neurosci, vol.26, issue.1, pp.219-246, 2007.

B. Scelfo, B. Sacchetti, and P. Strata, Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex, Proc. Natl. Acad. Sci. USA, vol.105, pp.769-74, 2008.

P. Hilber, Stress and anxious-related behaviors in Lurcher mutant mice, Brain Res, pp.108-120, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02355845

T. Lorivel and P. Hilber, Effects of chlordiazepoxide on the emotional reactivity and motor capacities in the cerebellar Lurcher mutant mice, Behav. Brain Res, vol.173, issue.1, pp.122-130, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02355825

T. Lorivel, M. Gras, and P. Hilber, Effects of corticosterone synthesis inhibitor metyrapone on anxiety-related behaviors in lurcher mutant mice, Physiol. Behav
URL : https://hal.archives-ouvertes.fr/hal-02355829

N. Mcnaughton and P. J. Corr, A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance, Neurosci Biobehav Rev, vol.28, issue.3, pp.285-305, 2004.

F. A. Middleton and P. L. Strick, Cerebellar output channels, Int. Rev. Neurobiol, vol.41, pp.61-82, 1997.

R. G. Heath, Feedback loop between cerebellum and septal-hippocampal sites: its role in emotion and epilepsy, Biol. Psychiatry, vol.15, issue.4, pp.541-56, 1980.

R. S. Snider and A. Maiti, Cerebellar contributions to the Papez circuit, J. Neurosci. Res, vol.2, issue.2, pp.133-179, 1976.

R. G. Heath, Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats, Biol. Psychiatry, vol.13, issue.5, pp.501-530, 1978.

E. Dietrichs, Hypothalamocerebellar and cerebellohypothalamic projections--circuits for regulating nonsomatic cerebellar activity?, Histol. Histopathol, vol.9, issue.3, pp.603-617, 1994.

J. N. Zhu, The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration, Brain Res. Rev, vol.52, issue.1, pp.93-106, 2006.

E. Dietrichs, Cerebellar cortical afferents from the periaqueductal grey in the cat, Neurosci. Lett, pp.21-27, 1983.

A. J. Beitz, Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat, Brain Res. Bull, vol.23, issue.1-2, pp.25-35, 1989.

L. A. Martin, D. Goldowitz, and G. Mittleman, Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism, Eur. J. Neurosci, vol.31, issue.3, pp.544-55

P. E. Dickson, Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss, Neurobiol. Learn Mem, vol.94, issue.2, pp.220-228

B. R. Walker, K. S. Diefenbach, and T. N. Parikh, Inhibition within the nucleus tractus solitarius (NTS) ameliorates environmental exploration deficits due to cerebellum lesions in an animal model for autism. Behav, Brain Res, vol.176, issue.1, pp.109-129, 2007.

J. Giza, Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2, J. Neurosci, vol.30, issue.44, pp.14805-14821

S. Macri, Perseverative responding and neuroanatomical alterations in adult heterozygous reeler mice are mitigated by neonatal estrogen administration, Psychoneuroendocrinology, vol.35, issue.9, pp.1374-87

G. Mittleman, Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia, Synapse, vol.62, issue.7, pp.544-50, 2008.

J. L. Ingram, Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism, Neurotoxicol. Teratol, vol.22, issue.3, pp.319-343, 2000.

J. E. Steinmetz, J. A. Tracy, and J. T. Green, Classical eyeblink conditioning: clinical models and applications, Integr. Physiol. Behav. Sci, vol.36, issue.3, pp.220-258, 2001.

C. L. Yochum, VPA-induced apoptosis and behavioral deficits in neonatal mice, Brain Res, vol.1203, pp.126-158, 2008.

S. H. Fatemi, Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice, Schizophr. Res, vol.112, issue.1-3, pp.46-53, 2009.

S. Beraki, Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice, Mol. Psychiatry, vol.10, issue.3, pp.299-308, 2005.

T. M. Delorey, Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder, Behav. Brain Res, vol.187, issue.2, pp.207-227, 2008.

T. Sadakata and T. Furuichi, Developmentally regulated Ca2+-dependent activator protein for secretion 2 (CAPS2) is involved in BDNF secretion and is associated with autism susceptibility, Cerebellum, vol.8, issue.3, pp.312-334, 2009.

S. Bobee, Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat, Behav. Brain Res, vol.112, issue.1-2, pp.107-124, 2000.

J. Caston, An animal model of autism: behavioural studies in the GS guinea-pig, Eur. J. Neurosci, vol.10, issue.8, pp.2677-84, 1998.

K. M. Van-loo and G. J. Martens, Identification of genetic and epigenetic variations in a rat model for neurodevelopmental disorders, Behav. Genet, vol.37, issue.5, pp.697-705, 2007.