P. Albersheim, Oligosaccharins: Naturally occurring carbohydrates with biological regulatory functions" in Structure and Function of Plant Genomes, pp.293-312, 1983.

J. A. Van-kan, Licensed to kill: The lifestyle of a necrotrophic plant pathogen, Trends Plant Sci, vol.11, pp.247-253, 2006.

B. L. Ridley, M. A. O'neill, and D. Mohnen, Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling, vol.57, pp.929-967, 2001.

F. Sénéchal, C. Wattier, C. Rustérucci, and J. Pelloux, Homogalacturonan-modifying enzymes: Structure, expression, and roles in plants, J. Exp. Bot, vol.65, pp.5125-5160, 2014.

L. Hocq, J. Pelloux, and V. Lefebvre, Connecting homogalacturonan-type pectin remodeling to acid growth, Trends Plant Sci, vol.22, pp.20-29, 2017.

M. G. Hahn, A. G. Darvill, and P. Albersheim, Host-pathogen interactions: XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans, Plant Physiol, vol.68, pp.1161-1169, 1981.

E. Melotto, L. C. Greve, and J. M. Labavitch, Cell wall metabolism in ripening fruit (vii. Biologically active pectin oligomers in ripening tomato (Lycopersicon esculentum Mill.) fruits), Plant Physiol, vol.106, pp.575-581, 1994.

J. Messiaen, N. D. Read, P. Van-cutsem, and A. J. Trewavas, Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts, J. Cell Sci, vol.104, pp.365-371, 1993.

R. Moscatiello, P. Mariani, D. Sanders, and F. J. Maathuis, Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides, J. Exp. Bot, vol.57, pp.2847-2865, 2006.

S. Ferrari, Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3, Plant Physiol, vol.144, pp.367-379, 2007.

C. Denoux, Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings, Mol. Plant, vol.1, pp.423-445, 2008.

T. Moloshok, G. Pearce, and C. A. Ryan, Oligouronide signaling of proteinase inhibitor genes in plants: Structure-activity relationships of Di-and trigalacturonic acids and their derivatives, Arch. Biochem. Biophys, vol.294, pp.731-734, 1992.

S. D. Simpson, D. A. Ashford, D. J. Harvey, and D. J. Bowles, Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants, Glycobiology, vol.8, pp.579-583, 1998.

P. Davidsson, Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana, BMC Plant Biol, vol.17, p.19, 2017.

S. A. Sinclair, Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal, Curr. Biol, vol.27, pp.3403-3418, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02325060

H. J. An, Determination of pathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products of plant cell walls, Anal. Biochem, vol.338, pp.71-82, 2005.

M. Benedetti, Four Arabidopsis berberine bridge enzyme-like proteins are specific oxidases that inactivate the elicitor-active oligogalacturonides, Plant J, vol.94, pp.260-273, 2018.

G. A. Luzio and R. G. Cameron, Determination of degree of methylation of food pectins by chromatography, J. Sci. Food Agric, vol.93, pp.2463-2469, 2013.

C. Remoroza, Combined HILIC-ELSD/ESI-MS(n) enables the separation, identification and quantification of sugar beet pectin derived oligomers, Carbohydr. Polym, vol.90, pp.41-48, 2012.

A. G. Leijdekkers, M. G. Sanders, H. A. Schols, and H. Gruppen, Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection, J. Chromatogr. A, vol.1218, pp.9227-9235, 2011.

C. Remoroza, H. C. Buchholt, H. Gruppen, and H. A. Schols, Descriptive parameters for revealing substitution patterns of sugar beet pectins using pectolytic enzymes, Carbohydr. Polym, vol.101, pp.1205-1215, 2014.

A. Have, W. O. Breuil, J. P. Wubben, J. Visser, and J. A. Van-kan, Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues, Fungal Genet. Biol, vol.33, pp.97-105, 2001.

I. Kars, M. Mccalman, L. Wagemakers, and J. A. Van-kan, Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10, Mol. Plant Pathol, vol.6, pp.641-652, 2005.

A. Have, W. Mulder, J. Visser, and J. A. Van-kan, The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea, Mol. Plant Microbe Interact, vol.11, pp.1009-1016, 1998.

I. Kars, Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris, Plant J, vol.43, pp.213-225, 2005.

G. Lorenzo and S. Ferrari, Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi, Curr. Opin. Plant Biol, vol.5, pp.295-299, 2002.

M. Benedetti, Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.5533-5538, 2015.

R. J. Linhardt, P. M. Galliher, and C. L. Cooney, Polysaccharide lyases. Appl. Biochem. Biotechnol, vol.12, pp.135-176, 1986.

M. Leroch, Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage, Eukaryot. Cell, vol.12, pp.614-626, 2013.

L. Caarls, Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6388-6393, 2017.

E. Smirnova, Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinereal infection, Mol. Plant, vol.10, pp.1159-1173, 2017.

F. Zhang, Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling, Nature, vol.525, pp.269-273, 2015.

D. Pontiggia, Sensitive detection and measurement of oligogalacturonides in Arabidopsis. Front, Plant Sci, vol.6, p.258, 2015.

R. Pressey, Oxidized oligogalacturonides activate the oxidation of indoleacetic Acid by peroxidase, Plant Physiol, vol.96, pp.1167-1170, 1991.

D. Cantu, L. C. Greve, S. Lurie, and J. M. Labavitch, Detection of uronic oxidase activity in ripening peaches, Phytochemistry, vol.67, pp.13-18, 2006.

D. Expert, Dickeya dadantii pectic enzymes necessary for virulence are also responsible for activation of the Arabidopsis thaliana innate immune system, Mol. Plant Pathol, vol.19, pp.313-327, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02001363