A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, Advances in neural information processing systems, pp.1097-1105, 2012.

M. Liu, R. Chen, D. Li, Y. Chen, G. Guo et al., Scene recognition for indoor localization using a multi-sensor fusion approach, Sensors, vol.17, issue.12, p.2847, 2017.

L. Zheng, Y. Yang, and Q. Tian, SIFT meets CNN: A decade survey of instance retrieval, IEEE transactions on pattern analysis and machine intelligence, vol.40, pp.1224-1244, 2017.

V. D. Sachdeva, J. Baber, M. Bakhtyar, I. Ullah, W. Noor et al., Performance evaluation of SIFT and Convolutional Neural Network for image retrieval, Performance Evaluation, vol.8, issue.12, 2017.

D. G. Lowe, Distinctive image features from scale-invariant keypoints, International journal of computer vision, vol.60, issue.2, pp.91-110, 2004.

H. Chatoux, F. Lecellier, and C. Fernandez-maloigne, Comparative study of descriptors with dense key points, 23rd International Conference on Pattern Recognition (ICPR), pp.1988-1993, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461562

D. G. Lowe, Object recognition from local scale-invariant features, Proceedings of the 7th IEEE international conference on Computer vision, vol.2, pp.1150-1157, 1999.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.

Y. Ke and R. Sukthankar, PCA-SIFT: A more distinctive representation for local image descriptors, vol.4, pp.506-513, 2004.

L. Ledwich and S. Williams, Reduced SIFT features for image retrieval and indoor localisation, Australian conference on robotics and automation, vol.322, p.3, 2004.

H. Bay, T. Tuytelaars, and L. Van-gool, SURF: Speeded Up Robust Features, European conference on computer vision, pp.404-417, 2006.

J. Wu, Z. Cui, V. S. Sheng, P. Zhao, D. Su et al., A comparative study of SIFT and its variants, Measurement science review, vol.13, issue.3, pp.122-131, 2013.

K. A. Peker, Binary SIFT: Fast image retrieval using binary quantized sift features, 9th International Workshop on Content-Based Multimedia Indexing (CBMI), pp.217-222, 2011.

W. Zhou, H. Li, R. Hong, Y. Lu, and Q. Tian, BSIFT: toward data-independent codebook for large scale image search, IEEE Transactions on Image Processing, vol.24, issue.3, pp.967-979, 2015.

J. Heinly, E. Dunn, and J. Frahm, Comparative Evaluation of Binary Features, European Conference on Computer Vision (ECCV), 2012.

W. Hartmann, M. Havlena, and K. Schindler, Predicting matchability, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.9-16, 2014.

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.

Z. Zivkovic and B. Kröse, On matching interest regions using local descriptors -can an information theoretic approach help, Proceedings of the British Machine Vision Conference (BMVC), pp.50-58, 2005.

J. J. Foo and R. Sinha, Pruning SIFT for scalable nearduplicate image matching, Proceedings of the 18th conference on Australasian database, pp.63-71, 2007.

S. Nikolopoulos, S. Zafeiriou, I. Patras, and I. Kompatsiaris, High order pLSA for indexing tagged images, Signal Processing, vol.93, pp.2212-2228, 2013.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.

H. Jégou, M. Douze, and C. Schmid, Hamming Embedding and Weak Geometry Consistency for Large Scale Image Search -extended version, Research Report, vol.6709, 2008.

S. Konlambigue, J. Pothin, P. Honeine, and A. Bensrhairt, Fast and accurate gaussian pyramid construction by extended box filtering, 26th European Signal Processing Conference (EUSIPCO), pp.400-404, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01965908

G. Treen and A. Whitehead, Efficient SIFT matching from keypoint descriptor properties, Workshop on Applications of Computer Vision (WACV), pp.1-7, 2009.

W. Dong, Z. Wang, M. Charikar, and K. Li, High-confidence near-duplicate image detection, Proc. of the 2nd International Conference on Multimedia Retrieval, pp.1-8, 2012.

L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Transactions, vol.20, issue.11, pp.1254-1259, 1998.

J. Harel, C. Koch, and P. Perona, Graph-based visual saliency, Advances in neural information processing systems, pp.545-552, 2007.

H. M. Sergieh, E. Egyed-zsigmond, M. Doller, D. Coquil, J. Pinon et al., Improving SURF image matching using supervised learning, 8th International Conference on Signal Image Technology and Internet based Systems (SITIS), pp.230-237, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01353098

D. Zhao, J. Wang, J. Wan, and T. Xiao, Fast SIFT scene matching algorithm based on saliency detection and frequency segmentation for downward-viewing images, Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, 2013.

D. Awad, V. Courboulay, and A. Revel, Saliency filtering of SIFT detectors: Application to cbir, International Conference on Advanced Concepts for Intelligent Vision Systems, pp.290-300, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00753886

K. Mikolajczyk and C. Schmid, Indexing based on scale invariant interest points, pp.525-53, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00548276

J. Philbin, M. Isard, J. Sivic, and A. Zisserman, Descriptor learning for efficient retrieval, European Conference on Computer Vision, pp.677-691, 2010.

H. Jégou, M. Douze, and C. Schmid, On the burstiness of visual elements, IEEE Conference on Computer Vision and Pattern Recognition, pp.1169-1176, 2009.