A. Komiya, H. Suzuki, T. Imamoto, N. Kamiya, N. Nihei et al., Neuroendocrine differentiation in the progression of prostate cancer, Int J Urol, vol.16, pp.37-44, 2009.

E. C. Nelson, A. J. Cambio, J. C. Yang, J. H. Ok, L. Jr et al., Clinical implications of neuroendocrine differentiation in prostate cancer, Prostate Cancer Prostatic Dis, vol.10, pp.6-14, 2007.

D. Hirano, Y. Okada, S. Minei, Y. Takimoto, and N. Nemoto, Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy, Eur Urol, vol.45, pp.586-92, 2004.

A. H. Ismail, F. Landry, A. G. Aprikian, and S. Chevalier, Androgen ablation promotes neuroendocrine cell differentiation in dog and human prostate, Prostate, vol.51, pp.117-142, 2002.

A. Berruti, E. Bollito, C. M. Cracco, M. Volante, G. Ciccone et al., The prognostic role of immunohistochemical chromogranin a expression in prostate cancer patients is significantly modified by androgen-deprivation therapy, Prostate, vol.70, pp.718-744, 2010.

L. J. Mcwilliam, C. Manson, and N. J. George, Neuroendocrine differentiation and prognosis in prostatic adenocarcinoma, Br J Urol, vol.80, pp.287-90, 1997.

S. Marchiani, L. Tamburrino, G. Nesi, M. Paglierani, S. Gelmini et al., Androgen-responsive and -unresponsive prostate cancer cell lines respond differently to stimuli inducing neuroendocrine differentiation, Int J Androl, vol.33, pp.784-93, 2010.

T. C. Yuan, S. Veeramani, F. F. Lin, D. Kondrikou, S. Zelivianski et al., Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells, Endocr Relat Cancer, vol.13, pp.151-67, 2006.

P. D. Deeble, M. E. Cox, H. F. Frierson, R. A. Sikes, J. B. Palmer et al., Androgen-independent growth and tumorigenesis of prostate cancer cells are enhanced by the presence of PKA-differentiated neuroendocrine cells, Cancer Res, vol.67, pp.3663-72, 2007.

R. Grobholz, M. Griebe, C. G. Sauer, M. S. Michel, L. Trojan et al., Influence of neuroendocrine tumor cells on proliferation in prostatic carcinoma, Hum Pathol, vol.36, pp.562-70, 2005.

J. Alonzeau, D. Alexandre, L. Jeandel, M. Courel, C. Hautot et al., The neuropeptide 26RFa is expressed in human prostate cancer and stimulates the neuroendocrine differentiation and the migration of androgeno-independent prostate cancer cells, Eur J Cancer, vol.49, pp.511-520, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01960628

C. Berenguer-daizé, F. Boudouresque, C. Bastide, A. Tounsi, Z. Benyahia et al., Adrenomedullin blockade suppresses growth of human hormone-independent prostate tumor xenograft in mice, Clin Cancer Res, vol.19, pp.6138-50, 2013.

M. Montero-hadjadje, S. Vaingankar, S. Elias, H. Tostivint, S. K. Mahata et al., Chromogranins A and B and secretogranin II: evolutionary and functional aspects, Acta Physiol (Oxf), vol.192, pp.309-333, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02334366

M. Courel, A. Soler-jover, J. L. Rodriguez-flores, S. K. Mahata, S. Elias et al., Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells, J Biol Chem, vol.285, pp.10030-10073, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02334607

M. L. Malosio, T. Giordano, A. Laslop, and J. Meldolesi, Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype, J Cell Sci, vol.117, pp.743-752, 2004.

Y. Anouar, C. Desmoucelles, Y. L. Leprince, J. Breault, L. Gallot-payet et al., Identification of a novel secretogranin II-derived peptide (SgII(187-252)) in the adult and fetal human adrenal glands using antibodies raised against the human recombinant peptide, J Clin Endocr Metab, vol.83, pp.2944-51, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02334627

M. Guerin, J. Guillemot, E. Thouennon, A. Pierre, F. Z. El-yamani et al., Granins and their derived peptides in normal and tumoral chromaffin tissue: implications for the diagnosis and prognosis of pheochromocytoma, Regul Pept, vol.165, pp.21-30, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01706413

R. Ischia, A. Hobisch, R. Bauer, U. Weiss, R. W. Gasser et al., Elevated levels of serum secretoneurin in patients with therapy resistant carcinoma of the prostate, J Urol, vol.163, pp.1161-1166, 2000.

M. Courel, M. S. Vasquez, V. Y. Hook, S. K. Mahata, and L. Taupenot, Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N-and C-terminal alpha-helical domains, J Biol Chem, vol.283, pp.11807-11829, 2008.

R. El-meskini, J. L. Marx, R. Bruzzaniti, A. Lee, J. Emeson et al., A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules, Endocrinology, vol.142, pp.864-73, 2001.

E. Thouennon, A. Pierre, Y. Tanguy, J. Guillemot, D. L. Manecka et al., Expression of trophic amidated peptides and their receptors in benign and malignant pheochromocytomas: high expression of adrenomedullin RDC1 receptor and implication in tumoral cell survival, Endocr Relat Cancer, vol.17, pp.637-51, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01827582

S. Bolte and F. P. Cordeliere, A guided tour into subcellular colocalization analysis in light microscopy, J Microsc, vol.224, pp.213-245, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132481

M. Courel, C. Rodemer, S. T. Nguyen, A. Pance, A. P. Jackson et al., Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A, J Biol Chem, vol.281, pp.38038-51, 2006.

M. Montero-hadjadje, S. Elias, L. Chevalier, M. Benard, Y. Tanguy et al., Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N-and C-terminal peptides, J Biol Chem, vol.284, pp.12420-12451, 2009.

S. Elias, C. Delestre, S. Ory, S. Marais, M. Courel et al., Chromogranin A induces the biogenesis of granules with calcium-and actin-dependent dynamics and exocytosis in constitutively secreting cells, Endocrinology, vol.153, pp.4444-56, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02323411

J. S. Horoszewicz, S. S. Leong, E. Kawinski, J. P. Karr, H. Rosenthal et al., LNCaP model of human prostatic carcinoma, Cancer Res, vol.43, pp.1809-1827, 1983.

C. De-nunzio, S. Albisinni, F. Presicce, R. Lombardo, F. Cancrini et al., Serum levels of chromogranin A are not predictive of high-grade, poorly differentiated prostate cancer: results from an Italian biopsy cohort, Int Braz J Urol, vol.39, pp.793-802, 2013.

L. Masieri, M. Lanciotti, P. Gontero, G. Marchioro, A. Mantella et al., The prognostic role of preoperative chromogranin A expression in prostate cancer after radical prostatectomy, Arch Ital Urol Androl, vol.84, pp.17-21, 2012.

M. H. Ather, F. Abbas, N. Faruqui, M. Israr, and S. Pervez, Correlation of three immunohistochemically detected markers of neuroendocrine differentiation with clinical predictors of disease progression in prostate cancer, BMC Urol, vol.8, p.21, 2008.

J. Guillemot, Y. Anouar, M. Montero-hadjadje, E. Grouzmann, L. Grumolato et al., Circulating EM66 is a highly sensitive marker for the diagnosis and follow-up of pheochromocytoma, Int J Cancer, vol.118, pp.2003-2015, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01706431

A. K. Kvissel, H. Ramberg, T. Eide, A. Svindland, B. S. Skålhegg et al., Androgen dependent regulation of protein kinase A subunits in prostate cancer cells, Cell Signal, vol.19, pp.401-410, 2007.

M. Sarwar, S. Sandberg, P. A. Abrahamsson, and J. L. Persson, Protein kinase A (PKA) pathway is functionally linked to androgen receptor (AR) in the progression of prostate cancer, Urol Oncol, vol.32, pp.1-12, 2014.

D. Merkle and R. Hoffmann, Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor, Cell Signal, vol.23, pp.507-522, 2011.

M. H. Park, H. S. Lee, C. S. Lee, S. T. You, D. J. Kim et al., P21-Activated kinase 4 promotes prostate cancer progression through CREB, Oncogene, vol.32, pp.2475-82, 2013.

Y. J. Bang, F. Pirnia, W. G. Fang, W. K. Kang, O. Sartor et al., Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP, Proc Natl Acad Sci, vol.91, pp.5330-5334, 1994.

M. E. Cox, P. D. Deeble, S. Lakhani, and S. J. Parsons, Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression, Cancer Res, vol.59, pp.3821-3851, 1999.

F. Gackiere, G. Bidaux, P. Delcourt, F. Van-coppenolle, M. Katsogiannou et al., CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells, J Biol Chem, vol.283, pp.10162-73, 2008.

S. Hafiz, J. C. Dennis, D. Schwartz, R. Judd, Y. X. Tao et al., Expression of melanocortin receptors in human prostate cancer cell lines: MC2R activation by ACTH increases prostate cancer cell proliferation, Int J Oncol, vol.41, pp.1373-80, 2012.

K. Albrecht-schgoer, W. Schgoer, J. Holfeld, M. Theurl, D. Wiedemann et al., The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells, Circulation, vol.126, pp.2491-501, 2012.