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Abstract Aim: In prostate cancer (PCa), neuroendocrine differentiation (NED) is commonly
observed in relapsing, hormone therapy-resistant tumours after androgen deprivation. How-
ever, the molecular mechanisms involved in the NED of PCa cells remain poorly understood.
In this study, we investigated the expression of the neuroendocrine secretory protein secretogr-
anin II (SgII) in PCa, and its potential involvement in the progression of this cancer as a gran-
ulogenic factor promoting NED.
Methods: We have examined SgII immunoreactivity in 25 benign prostate hyperplasia and 32
PCa biopsies. In vitro experiments were performed to investigate the involvement of SgII in the
neuroendocrine differentiation and the proliferation of PCa cell lines.
Results: We showed that immunoreactive SgII intensity correlates with tumour grade in PCa
patients. Using the androgen-dependent lymph node cancer prostate cells (LNCaP) cells, we
found that NED triggered by androgen deprivation is associated with the induction of SgII
expression. In addition, forced expression of SgII in LNCaP cells implemented a regulated
secretory pathway by triggering the formation of secretory granule-like structures competent
tute for
4 6946.
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for hormone storage and regulated release. Finally, we found that SgII promotes prostate
cancer (CaP) cell proliferation.
Conclusion: The present data show that SgII is highly expressed in advanced PCa and may
contribute to the neuroendocrine differentiation by promoting the formation of secretory
granules and the proliferation of PCa cells.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Neuroendocrine differentiation (NED) is a common
dynamic feature of prostate cancer (PCa), one of the
most frequent malignancies in western world [1]. The
NED process has recently gained considerable interest,
as it may represent a mechanism underlying the complex
phenomenon of PCa progression to an androgen-
independent state frequently observed in relapsing PCa
and associated to a life expectancy of only 15–20 months
[2]. Indeed, clinical studies have shown that the number
of neuroendocrine cells increases specifically in
hormone-refractory tumours [3,4], and this increase is
correlated to poor prognosis and shorter survival time
[5,6]. Moreover, numerous experimental in vitro and
in vivo studies have shown that steroid-deprived media
or animal castration promote transdifferentiation of
PCa cells into neuroendocrine-like cells [4,7,8], indicat-
ing that NED is directly associated to the hormonal
status and may represent a consequence of hormone
deprivation therapy in PCa [1].

Several lines of evidence suggest that prostatic neuro-
endocrine-like cells may influence the proliferation and
aggressiveness of surrounding PCa cells through para-
crine stimulation. Indeed, converging data from clinical
and experimental studies have linked tumour cell prolif-
eration to the presence of neuroendocrine-like cells,
[9,10] and the production of peptides, such as bombesin,
adrenomedullin or 26RFa, which influence tumoural
cell growth [11,12].

In addition to peptides, neuroendocrine cells produce
different secretory proteins which may play a role in PCa
pathophysiology. In particular, the neuroendocrine
secretory proteins chromogranin A (CgA) and secretogr-
anin II (SgII), which belong to the granin family of acidic
soluble proteins, are widely distributed throughout the
neuroendocrine system [13] and co-stored with hormones
and neuropeptides into specialised secretory granules.
Owing to its major role in the formation of secretory
granules [14], SgII is crucial for the establishment of
the regulated secretory pathway which represents one
of the main features of the neuroendocrine phenotype
allowing the storage and release of hormones and
peptides [15]. Besides, SgII may serve as a precursor of
bioactive peptides that could influence the activity
of other cells after secretion [13]. For instance, the
SgII-derived peptide secretoneurin (SN) acts as an
angiogenic cytokine that regulates the chemotactic activ-
ity of monocytes and vascular endothelial cells [13].
Finally, it should be noted that SgII and its derived pep-
tides such as SN and EM66 [16] are emerging as valuable
and effective markers for the diagnosis and prognosis of
neuroendocrine neoplasia [17]. Indeed, plasma levels of
SN are elevated in androgen-independent PCa [18] and
EM66 is now considered as a discriminating marker for
benign and malignant pheochromocytoma [17].

These observations highlight the association of SgII
with the neuroendocrine phenotype in physiological
and pathophysiological conditions, prompting us to
explore its potential involvement in the NED process
linked to the androgen-independent progression of
PCa. In the present study, we examined the intratumo-
ural expression of SgII to assess its correlation with
PCa status, and investigated the intracellular role of
SgII in the establishment of the secretory activity of
tumoural prostatic cells. In addition, we investigated
the possible effect of the granin on PCa cell growth.

2. Materials and methods

2.1. Cell culture

The lymph node cancer prostate cells (LNCaP) cell
line, clone FGC derived from a human PCa metastasis
in lymph node (ATCC� CRL-1740e) was purchased
from American Type Culture Collection (ATCC, Rock-
ville, MD). This cell line was routinely grown at 37 �C in
5% CO2 and used at passages 30–35 in the present work.
LNCaP cells were maintained in RPMI-1640 (Life Tech-
nologies, Saint Aubin, France) supplemented with 10%
foetal bovine serum (Lonza, Levallois, France), 2 mM
glutamine and 100 U/ml streptomycin and penicillin
(Life Technologies, Saint Aubin, France). For androgen
deprivation treatments, LNCaP cells were maintained in
a steroid-reduced medium constituted of phenol red-free
RPMI-1640, 5% charcoal-stripped foetal bovine serum
(Sigma), 2 mM glutamine and 100 U/ml streptomycin
and penicillin [8].

2.2. Expression vectors and DNA transfection

All the expression plasmids used in this study were
described previously, and encode the reporters green
fluorescent protein (GFP), red fluorescent protein
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(RFP) or a truncated form of embryonic alkaline phos-
phatase (EAP) fused to the carboxyl terminus of the fol-
lowing proteins: full-length human SgII (NM_003469),
including its predicted 30-residue signal peptide SIG
(SgII-GFP, SgII-RFP and SgII-EAP; [14,19]); SgII signal
peptide alone (SIG-GFP and SIG-EAP; [19]); human
neuropeptide Y (NPY; NM_000905; NPY-GFP) was a
gift from R. Mains [20]. Forty-eight hours prior to trans-
fection, LNCaP cells were split onto poly-D + L-lysine
(Sigma)-coated 12-well plates (BD Biosciences, Le
Pont-de-Claix, France) or onto poly-D + L-lysine-coated
4-well Lab-Tek� chamber Permanox� slides (NALGE-
NUNC, Cergy-Pontoise, France). Cells were transfected
using the MagnetoFectione method and the LipoMag
Kit (Oz Biosciences, Marseille, France), with 1 lg
(Lab-Tek� slides) or 2 lg (12-well plates) of DNA per
well and 1:3 (DNA:DreamFecte gold reagent) and 1:1
(DNA:CombiMag reagent) ratios. Cells were placed on
the Super Magnetic Plate for 15 min, and the culture
medium was replaced 5 h after the onset of the
transfection.
2.3. RNA extraction and quantitative polymerase chain

reaction (Q-PCR)

Total RNA from LNCaP cells was extracted using the
NucleoSpin� RNA II kit (Macherey-Nagel, Düren,
Germany) according to the manufacturer’s instructions.
RNA (0.9 lg) was reverse transcribed during 1 h at 42 �C
using the ImProm-IIe Reverse Transcription System for
RT-PCR (Promega, Madison, WI) with 0.5 lg random
primers. PCR amplifications were done in duplicates
using 2 ll of cDNAs on the 7900 HT Fast Real-Time
PCR System running the SDS 2.3 analysis software
(Applied Biosystems, Courtaboeuf, France), as described
previously [21]. Gene-specific forward and reverse prim-
ers were designed using the Primer Express software
(Applied Biosystems, Courtaboeuf, France) as follows:
50-TCTGCGGCGGTGTTCTG-30 and 50-GCCGACCC
AGCAAGATCA-30 (PSA), 50-CGGAGAACGGGGA
GGAATA-30 and 50-GTCTTTGCTTCAGCCATGTT
TG-30 (SGII), 50-GATGCTGGAGTTGGATGGGA-30

and 50-ACACACGGCCAGAGACACAC-30 (NSE).
Q-PCR results were normalised using the multiple refer-
ence gene normalisation geNorm program (Visual Basic
application tool for Microsoft Excel) and the following
housekeeping genes: YWHAZ; GAPDH; HPRT1 and
ALAS1 as previously described [21]. The resulting
expression levels of the three genes of interest are further
expressed as a percentage of the expression level
measured before androgen deprivation.
2.4. Immunohistochemistry

Tissue procurement protocols were approved by the
University SMBA of Fez institutional committees and
were undertaken under informed consent of each patient
and all of the participants. Deparaffinised sections (3 lm
thick) from 25 benign prostate hyperplasia (BPH) and
32 PCa of various Gleason’s score were obtained from
the Department of Urology of the University Hospital
of Fez. All incubations were performed at room temper-
ature. Immunohistochemical staining was performed
using the UltraTech HRP streptavidin–biotin universal
detection system (Immunotech, Marseille, France), or
a standard avidin-biotin-peroxidase complex (Vector
Laboratories, Nanterre, France). Sections were micro-
waved in 10 mM citrate buffer (pH 6) for antigen retrie-
val and cooled in phosphate buffered saline (PBS). After
endogenous peroxidase activity quenching with 3%
hydrogen peroxide and tissue blocking, sections were
incubated for 2 h with rabbit polyclonal antibody
against human SgII (anti-EM66, 1:800; [16]) or mouse
monoclonal antibody against CgA (anti-CgA, clone
LK2H10, CellMarque), followed by biotinylated
secondary antibody (1:400; Vector Laboratories, Nanterre,
France) and the streptavidin–peroxidase reagent. Perox-
idase activity was revealed with diaminobenzidine
(DAB, Sigma). The slices were then counterstained
for 3 min with haematoxylin. Observations and photo-
micrographs were made under a Leica Leitz light
microscope.
2.5. Photoprotein fluorescence and immunocytochemistry

Cells were fixed for 30 min at room temperature with
4% paraformaldehyde in PBS, pH 7.4, permeabilised for
10 min with 0.5% Triton X100 in PBS, and exposed to
1 lg/mL of the nucleic acid stain Hoechst 33258 (Poly-
science, Inc., Eppelheim, Germany) for nuclei visualisa-
tion. For immunocytochemistry, permeabilised cells
were treated as described previously [19], except that
they were mounted in buffered Mowiol 4-88 (Poly-
science, Inc., Eppelheim, Germany). Primary antibodies
were a rabbit polyclonal anti-human EM66 (1:1500;
[16]), a sheep polyclonal anti-TGN46 (1:2000; AbD
Serotec, Colmar, France) or a mouse monoclonal anti-
GLUD1 antibody (1:1000; Sigma). Secondary antibod-
ies (1:300) were Alexa Fluor IgGs from Molecular
Probes (Saint Aubin, France): 488-conjugated donkey
anti-rabbit, 594-conjugated donkey anti-sheep and
594-conjugated donkey anti-mouse.
2.6. Fluorescence imaging

Images were acquired using a Leica TCS-SP2 AOBS
inverted confocal laser scanning microscope (DMIRE2;
Leica Microsystems, Reuil-Malmaison, France). For
each cell, 10–12 optical xy sections (0.42 lm thick) along
the z axis were acquired with a 63� oil immersion objec-
tive (N.A. 1.4). The following excitation and emission
wavelengths were used for imaging: GFP and Alexa
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Fluor 488-conjugated antibodies (green), kex 488/kem

525 ± 25 nm; RFP and Alexa Fluor 594 antibodies
(red), kex 561 nm/kem 650 ± 50 nm; Hoechst 33258
(nuclear DNA stain, blue), kex 405/kem 445 ± 30 nm.
Optical sections and 3D views were processed using
ImageJ and/or GIMP softwares.
2.7. Quantification of fluorescence colocalisation

The extent of colocalisation between fluorescence sig-
nals was analysed using the ImageJ software and the
JACoP colocalisation plug-in [22]. The averaged overlap
coefficient (Ro), quantitative of the degree of overlap
between two fluorescent signals, was calculated for every
10–12 optical xy sections along the z axis of 3–5 cells.
2.8. Protein extraction and western blotting

Total cell lysates were prepared as described previ-
ously [23]. Proteins (50 lg/well) were separated by
sodium dodecyl sulphate polyacrylamide gel electropho-
resis (SDS-PAGE) on 8% polyacrylamide gels and
transferred onto nitrocellulose sheets (LI-COR Biosci-
ences, Cambridge, United Kingdom (UK)). Membranes
were blocked for 30 min at room temperature in Odyssey�

blocking buffer (LI-COR Biosciences, Cambridge, UK)
and subsequently incubated at 4 �C overnight in 50%
Odyssey� blocking buffer plus 0.01% Tween 20 in PBS
with the following primary antibodies: a rabbit poly-
clonal anti-human SgII (anti-EM66, 1:2000, [16]); a
rabbit polyclonal anti-human prostate-specific antigen
(PSA, 1:500, Dako France); a mouse monoclonal anti-
human neuron-specific enolase (NSE, 1:50, Dako
France, Les Ulis, France); a mouse monoclonal anti-
GFP (1:1,000; Roche, Meylan, France); a mouse mono-
clonal anti-tubulin (1:1000; Sigma). Blots were then
incubated for 30 min at room temperature with IRDye�

800CW donkey anti-rabbit immunoglobulin G (IgG) or
IRDye� 680RD donkey anti-mouse IgG at 1:10,000 in
PBS containing 0.01% Tween 20 and 0.02% SDS. Immu-
noreactive bands were visualised with the Odyssey�

Infrared imaging system according to the manufac-
turer’s instructions. Quantitative analysis of immunore-
activity was done with the ImageJ software.
2.9. Secretion assay of EAP chimeras

Secretion experiments with cells transiently express-
ing the EAP fusion proteins were performed as
described previously [19], with the following modifica-
tions: cells were exposed for 30 min to the secretagogue
ionomycin (2 mM; Fischer BioReagents�, Illkirch,
France), and detection of EAP enzymatic activity
was achieved on a FlexStation� 3 (Molecular Devices,
Sunnyvale, CA). The secretion rate of EAP chimeras
was calculated as a percentage of the total EAP activity
present in the cells before stimulation. Total EAP activ-
ity is the sum of the amount released plus the amount
remaining in the cells.
2.10. Cell proliferation assay

Two days post-transfection, cells (5000 per well) were
seeded in triplicate in flat bottom 96-well plates (NAL-
GE-NUNC, Cergy-Pontoise, France). The number of
viable cells was determined using the CellTiter-Blue�

cell viability assay (Promega, Madison, WI) according
to the manufacturer’s instructions. The fluorescence
indicative of the metabolic capacity of the cells was
recorded on a FlexStation� 3 (kex 560/kem 590 nm) after
10 sec shaking. Cell growth rate was calculated as
the percentage of fluorescence measured on day 3
post-transfection, and doubling time was calculated
online (Roth V. 2006 <http://www.doubling-time.com/
compute.php>).
2.11. Presentation of data and statistical analyses

Values are given as the means ± S.E. of at least dupli-
cate determinations. In the figures, data are representa-
tive of a typical experiment repeated twice or more.
Statistical correlations in immunohistochemistry experi-
ments were performed using two-sided Fisher’s exact
test or v2-test, and other statistical analyses were per-
formed by analysis of variance with Dunnett’s or Bon-
ferroni’s post test, using the KaleidaGraph statistical
software package (Synergy Software, Reading, PA).
Differences were considered significant when p < 0.05.
3. Results

3.1. SgII immunoreactivity correlates with PCa
progression

We first assessed SgII immunoreactivity in biopsies
from patients with BPH and PCa with various Gleason’s
scores (Fig. 1). In BPH tissues and low grade PCa, SgII
immunoreactivity was virtually absent, and only occa-
sional faint positive staining was confined to some epi-
thelial cells of the acini (Fig. 1A and B). In contrast,
numerous SgII-positive cells were present in high grade
PCa tissues (Gleason’s score > 7), and several carcino-
matous masses were intensely labelled with anti-SgII
(Fig. 1C). Quantitative analysis of 32 PCa biopsy sec-
tions (Table 1a) revealed that 82% of high grade PCa
(Gleason’s score > 7) expressed the granin, while only
40% of low grade PCa (Gleason’s score < 7) did, thus
indicating a significant correlation between SgII expres-
sion and PCa progression (p = 0.036, Fischer’s probabil-
ity test; Table 1a). Concurrently, analysis of the 32
biopsies using an antibody directed against the
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Fig. 1. Secretogranin II (SgII) immunoreactivity in prostatic tissues. Biopsy sections from benign prostate hyperplasia (BPH) (A), low grade
(Gleason’s score < 7) prostate cancer (PCa) (B) or high grade (Gleason’s scores 8, 9 and 10) PCa (C) were processed for immunohistochemistry
using an anti-EM66 (SgII-derived peptide) antibody, and the immunoreactivity was revealed with diaminobenzidine (DAB) as peroxidase-based
substrate-chromogen. Representative photomicrographs are shown. Arrowheads indicate the occasional SgII-positive cells (A, B). Magnification
�10 (A, B), �25 (C).

Table 1
Secretogranin II (SgII) and chromogranin A (CgA) immunoreactivities
in prostatic tissues.

a. Relationship between granin expression and Gleason’s score

Gleason < 7 (n = 10) Gleason > 7 (n = 22) p value

SgII-IR (�): 6 (60%) (�): 4 (18%) p = 0.036

(+): 4 (40%) (+): 18 (82%)
CgA-IR (�): 7 (70%) (�): 6 (27%) p = 0.04

(+): 3 (30%) (+): 16 (73%)

b. Correlation between CgA and SgII expression in prostate cancer

(PCa)

p = 0.0002 CgA-IR

(�) (n = 13) (+) (n = 19)

SgII-IR (�) (n = 10) 9 (69%) 1 (5%)
(+) (n = 22) 4 (31%) 18 (95%)

Presence (+) or absence (�) of SgII or CgA immunoreactivity (IR) was
analysed and compared in 32 prostate adenocarcinomas of low
(Gleason < 7) or high (Gleason > 7) grades. Percentages in (a) repre-
sent the proportion of positive and negative tumours for each granin.
Percentages in (b) represent the proportion of tumours positive or
negative for both granins, or the proportion of tumours positive for
one or the other granin. Statistical significance was evaluated with a
two-tailed Fisher’s exact probability test (2 � 2 contingency table).
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commonly used neuroendocrine marker CgA revealed
an overall similar relationship between CgA expression
and tumour grade (p = 0.049; Fischer’s probability test;
Table 1a), in agreement with previous studies showing
that NED is associated with PCa progression [5,6].
When comparing CgA and SgII immunoreactivities in
the 32 PCa sections, SgII exhibited a higher diagnostic
value than CgA in high grade tumours (82% versus
73% immunoreactive tumours, respectively). Besides,
SgII was absent in 69% of the CgA-negative tumours
(Table 1b) and present in 95% of CgA-positive biopsies
(Table 1b), indicating a close relationship between the
expression of the two granins in prostate tumours
(p = 0.0002, two-tailed Fischer’s exact probability test).
However, few cases were positive for one granin but
not the other (Table 1b), suggesting that CgA and SgII
may represent complementary biomarkers in PCa.
3.2. Androgen deprivation induces SgII expression in

LNCaP cells

Next, we wondered whether SgII abundance in high
grade tumours could be recapitulated in in vitro condi-
tions mimicking androgen-independent PCa. We there-
fore analysed the expression profile of SgII in the
androgen-sensitive LNCaP cell line grown in a steroid-
reduced medium, mimicking androgen deprivation ther-
apy, for 1, 4 or 7 days (Fig. 2). As expected, incubation
in steroid-restricted medium provoked a rapid and sig-
nificant decrease in the expression of the prostate epithe-
lium-differentiation marker PSA, which reached very
low levels after 7 days in steroid-reduced conditions
(�25-fold decrease, p < 0.001, Dunnett’s post-test;
Fig. 2A). The reduction in PSA transcript levels in
LNCaP cells was accompanied by a decrease in PSA
protein concentration in the same conditions (Fig. 2B),
as previously reported [8]. We also monitored in these
conditions NSE expression, a neuronal protein com-
monly used in vitro as a marker for NED [8]. As shown
in Fig. 2A, LNCaP cells expressed a low level of NSE
mRNA that progressively and significantly increased
upon androgen starvation. A similar trend was observed
for the protein (Fig. 2B), confirming the acquisition of a
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neuroendocrine phenotype by LNCaP cells in these con-
ditions [8]. Steroid deprivation also triggered a signifi-
cant �6-fold increase in SgII mRNA levels after
7 days of treatment, (p < 0.01, Dunnett’s post-test;
Fig. 2A), which was associated with an important
increase (�20 fold) in SgII protein concentration
(Fig. 2B). Consistently, immunocytochemical analysis
showed that LNCaP cells grown in steroid-reduced
medium exhibit high levels of SgII immunoreactivity
as compared to LNCaP cells grown in regular medium
(Fig. 2C).
Fig. 2. Kinetics of secretogranin II (SgII) expression in LNCaP cells follo
grown in regular or steroid-reduced conditions during 1, 4 or 7 days were
western blot (B). (A) Normalised expression of the androgen-regulated pro
specific enolase (NSE) and SgII are plotted over time. Values are given as
*, p < 0.05; **, p < 0.01, ***, p < 0.001 as compared with untreated cells (
Representative immunoblot (n = 3) of PSA, NSE and SgII before (0) and
normalisation factor. Numbers under the blots represent the normalised S
considered as 1. (C) LNCaP cells grown in regular (a) or steroid-deprived
xy sections stained with the anti-EM66 primary antibody (SgII, green)
Magnification (8�) of the boxed area in (b) illustrating the punctate distri
3.3. Expressing SgII in prostate cancer (CaP) cells

induces features of NED

Because SgII expression is up-regulated both in vivo
in high grade PCa and in vitro in androgen-deprived
LNCaP cells, we next questioned whether SgII might
be an essential effector of the NED process by analysing
the consequences of the expression of ectopic SgII fusion
proteins in terms of neuroendocrine phenotype acquisi-
tion by LNCaP cells grown in a regular, androgen-
containing medium (Figs. 3 and 4). Five days after
wing androgen depletion. Total RNA and proteins from LNCaP cells
analysed by quantitative polymerase chain reaction (Q-PCR) (A) and
state-specific antigen (PSA) and the neuroendocrine markers neuron-

the mean ± S.E. of at least two independent experiments. ns, p > 0.05;
day 0), analysis of variance (ANOVA) with Dunnett’s post test. (B)
after 4 or 7 days of steroid removal. Tubulin (Tub) signal served as a
gII, NSE and PSA expression levels; the signal in untreated cells was
medium during 4 days (b, c) were processed for confocal microscopy.
and Hoechst 33258 (nuclei, blue) are shown. Scale bars, 20 lm. (c)
bution of SgII.
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transfection of LNCaP cells, the SIG-GFP (SgII signal
peptide fused to GFP) and the SgII-GFP fusion proteins
were correctly produced, as revealed by their expected
molecular weights (Fig. 3A). Several bands with lower
molecular weights and immunoreactive for both GFP
and SgII were detected as well in transfected cells, sug-
gesting the occurrence of a functional proteolytic pro-
cessing of the granin in LNCaP cells (Fig. 3A).

Formation of functional secretory vesicles to estab-
lish a regulated secretory pathway represents a major
feature of the neuroendocrine phenotype [15]. As shown
in Fig. 3B, the SgII-GFP fusion protein transiently
Fig. 3. Neuroendocrine differentiation features of LNCaP cells transfecte
regular conditions were transfected for 5 (A) or 2 days (B) with plasmids
subjected to immunoblotting (A) or immunocytochemistry (B). Anti-GF
antibodies were used (A). Arrows indicate the full-length GFP fusion pro
endogenous SgII (�80 kD) and asterisk shows the proteolytic fragments o
Fluor 594-conjugated secondary antibodies were used. Confocal microscopy
representative xy section (0.42 lm) views of the transfected cells. The distr
(red) was compared in merged images, and the yellow colour is indicative of
bars, 5 lm.
expressed in LNCaP cells displayed a discrete punctuate
distribution of fluorescent signal throughout the cyto-
plasm, which is reminiscent of secretory granules in typ-
ical neuroendocrine cells [19,24]. In sharp contrast, the
fluorescence signal of the SIG-GFP fusion protein accu-
mulated in the perinuclear region of the transfected cells
(Fig. 3B). Indeed, SIG-GFP colocalised with the Golgi
marker TGN46 (Ro = 0.59 ± 0.13, n = 3; Fig. 3B), while
SgII-GFP did not (Ro = 0.35 ± 0.10, n = 3; Fig. 3B).
These data indicate that SgII-GFP, but not SIG-GFP,
is able to induce the formation of secretory granule-like
structures in CaP cells.
d with secretogranin II (SgII) fusion proteins. LNCaP cells grown in
encoding SIG-GFP or SgII-GFP fusion proteins. LNCaP cells were

P, anti-EM66 (SgII) or anti-tubulin (Tub; loading control) primary
teins (�110 kD: SgII-GFP; �27 kD: SIG-GFP), arrowhead indicates
f processed SgII. (B) Anti-TGN46 (Golgi marker) primary and Alexa
data sets were processed to generate three-dimensional (3D) volume or

ibution of the GFP chimera (green) and the endogenous TGN marker
colocalisation. Nuclei were visualised with Hoechst 33258 (blue). Scale



Fig. 4. Properties of secretogranin II (SgII)-containing structures in transfected LNCaP cells. (A) Cells transiently transfected with a plasmid
encoding neuropeptide Y (NPY)-GFP, alone (upper panels) or together with a plasmid encoding SgII-RFP (lower panels), were processed for
confocal microscopy. Anti-GLUD1 (Mito) primary antibody was used for mitochondrial staining (upper panels). Colocalisation (yellow) of NPY-
GFP (green) with either mitochondrial network or SgII-RFP (red) is shown in the merged images of representative 3D views or optical xy sections.
Nuclei were visualised with Hoechst 33258 (blue). Scale bar, 5 lm. (B) Cells transiently expressing SIG-EAP or SgII-EAP were exposed for 30 min
to Calcium Saline Buffer alone (mock) or to 2 mM ionomycin. Embryonic alkaline phosphatase (EAP) secretion was calculated relative to total
enzymatic activity present in the cells before stimulation. Basal release of EAP (in mock) is expressed as %EAP activity secretion in the left diagram,
while secretagogue-evoked secretion of EAP is expressed relative to basal enzymatic activity release in the right diagram. Values are given as the
means ± S.E. of triplicate determinations. ns, p > 0.05; ***, p < 0.001 as compared with basal release (mock), analysis of variance (ANOVA) with
Dunnett’s post test. The experiment was repeated three times with similar results.
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3.4. SgII-containing structures are competent for peptide

storage and regulated release

NPY is a prototype neuropeptide whose secretion
depends on the presence of a regulated secretory path-
way in neuroendocrine cells [14]. When expressed alone
in LNCaP cells, NPY-GFP displayed a cluttered cyto-
plasmic distribution similar to that of the mitochondrial
network (Ro = 0.57 ± 0.12, n = 4; Fig. 4A, upper pan-
els), in agreement with previous studies showing the
missorting of exogenous NPY to mitochondria in non-
neuroendocrine cells [14]. In contrast, LNCaP cells co-
expressing NPY-GFP and SgII-RFP showed a marked
punctate pattern for NPY-GFP which substantially
overlapped with SgII-RFP signal (Ro = 0.63 ± 0.08,
n = 3; Fig. 4A, lower panel). This finding suggests that
SgII-induced secretory granule-like structures are com-
petent for peptide storage in prostatic cells.

A sine qua none characteristic of a functional neuro-
endocrine secretory pathway is the ability of secretory
vesicles to release their cargo upon stimulation
[15,19,25]. Using the EAP reporter as a highly sensitive
assay to quantify the secretory activity by chemilumines-
cence [19], we tested the competence of SgII-containing
vesicles for regulated exocytosis (Fig. 4B). In basal con-
ditions, the release of the constitutive secretory protein
SIG-EAP was elevated (6.1 ± 0.1%), while that of
SgII-EAP chimera was low (1.4 ± 0.2%; Fig. 4B, left
panel), consistent with a storage of the granin, but not
SIG-EAP, within secretory granule-like structures in
transfected cells. Stimulation of LNCaP cells with the
potent Ca2+ ionophore ionomycin provoked only a
marginal increase in the relative release of the control
SIG-EAP protein in comparison to mock treatment
(p > 0.05, Dunnett’s post test; Fig. 4B, right panel), con-
sistent with a release of this protein through the consti-
tutive pathway of secretion [19,24]. In contrast,
ionomycin stimulation triggered a significant �3.6-fold
increase over basal of SgII-EAP secretion (p < 0.001,
Dunnett’s post test; Fig. 4B, right panel), thus demon-
strating the occurrence of a regulated secretory activity
in SgII-expressing tumoural prostatic cells.

3.5. Expression of SgII increases the proliferation of

LNCaP cells in androgen-containing medium

The effect of SgII on the growth rate of LNCaP cells
was investigated in an androgen-containing medium
(Fig. 5). LNCaP cells expressing the control SIG-GFP
fusion protein exhibited a typical LNCaP growth rate,
with a calculated doubling time of �50 h (Fig. 5) similar
to that reported previously [26]. Remarkably, LNCaP
cells expressing SgII-GFP exhibited a significant
increase in their proliferation rate (p < 0.001, Bonferron-
i’s post-test; Fig. 5), with a doubling time of only �30 h
(Fig. 5), indicating that SgII expression promotes the
proliferation of PCa cells.

4. Discussion

The present clinical and experimental investigations
are the first to show that: (i) SgII expression levels are
correlated with PCa progression, (ii) SgII expression is
induced by androgen deprivation, (iii) SgII triggers the



Fig. 5. Effect of secretogranin II (SgII) expression on the proliferation
rate of LNCaP cells. Cells transiently transfected with plasmids
encoding SIG-GFP or SgII-GFP were seeded in triplicates (5000 cells
per well) 48 h post-transfection. Cell viability was measured after 3, 4
or 6 days post-transfection. Relative cell growth rate was calculated by
taking day 3 as 100. Values are given as the means ± S.E. of triplicate
determinations. ***, p < 0.001 as compared with SIG-GFP-transfected
cells, analysis of variance (ANOVA) with Bonferroni’s post test. The
experiment was repeated twice with similar results.
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appearance of neuroendocrine features in PCa cells, and
(iv) SgII promotes cancer cell proliferation. Although
high circulating levels of the SgII-derived peptide SN
have been previously described in hormone therapy-
resistant PCa [18], SgII occurrence and its possible role
in PCa tissue have not been investigated before. Our
present data revealed that SgII is a better indicator of
PCa grade than the archetypal neuroendocrine marker
CgA in the tested cohort. It should be noted that the
value of CgA for the diagnosis of localised PCa [27,28]
and for predicting time to recurrence and survival in
patients with advanced PCa [3,5] is still a matter of
debate. In fact, no other neuroendocrine marker (e.g.
NSE, synaptophysin) has proved to be reliable for
PCa survey [29]. The granin SgII represents a valuable
tool for the diagnosis and prognosis of neuroendocrine
tumours such as pheochromocytomas [17,30], but its
use as a marker of other endocrine-related cancers
remains infrequent. Even though our present findings
need to be substantiated in a larger cohort, they strongly
suggest that SgII may also represent a valuable marker
that can be used alone or in combination with other neu-
roendocrine markers, e.g. CgA, for the diagnosis and
follow-up of PCa.

Consistent with its overexpression in androgen-inde-
pendent PCa, we found that SgII is induced by androgen
deprivation in LNCaP cells, both at the mRNA and
protein levels. Interestingly, our results show a rapid
increase in SgII expression in LNCaP cells after andro-
gen depletion, while increased CgA expression is only
observed after long-term androgen deprivation [8],
which may explain the moderate prognostic value of
CgA in PCa. The molecular mechanism leading to the
up-regulation of SgII gene expression upon androgen
deprivation is not known yet but is presumably related
to the activation of the protein kinase A (PKA) pathway
usually observed under these conditions. Indeed, it has
been shown that androgen reduction is accompanied
by an increase in PKA subunit expression in LNCaP
cells and PCa specimens [31], suggesting that androgen
therapy-refractory tumours acquire a neuroendocrine
phenotype through activation of the PKA signalling
pathway. In fact, it is now well established that PKA
plays a key role in the progression of PCa through a
cross-talk with the androgen receptor [32]. The PKA-
mediated signalling exerts important effects on cellular
growth in various cell types including prostatic cells
[33], by regulating the androgen receptor activity [32]
and the expression of various PKA-regulated genes
involved in neuroendocrine differentiation [34]. We have
previously shown that SgII gene expression is also stim-
ulated by the cyclic adenosine monophosphate (cAMP)/
PKA pathway in the androgen-independent tumoural
prostatic cells DU145 [11], suggesting that the increase
in SgII levels observed in androgen-deprived LNCaP
cells is likely due to activation of PKA which occurs
during NED and PCa progression. Thus, PKA-medi-
ated increase in SgII expression would contribute to
the neuroendocrine differentiation and the associated
implementation of a secretory activity in PCa. Using
transient ectopic expression of fusion proteins in native
LNCaP cells, we showed in the present study that SgII
induces the formation of functional intracellular vesi-
cles, competent for peptide storage and Ca2+-depen-
dent regulated secretion. Together our data indicate
that SgII could play a granulogenic function in
advanced PCa. The fact that SgII is induced by andro-
gen deprivation in the androgen-dependent LNCaP cells
(the present study) or cAMP/PKA stimulation in the
androgen-independent DU145 cells [11] indicates that
its granulogenic role accompanies NED in PCa. Because
NED in PCa cells has been shown to be associated with
the formation of secretory granules [35,36] and the
increase in Ca2+-dependent secretion [37], our results
support the notion that SgII plays a fundamental role
in NED by recapitulating key features of this process
which allows the release of cancer-promoting factors.
Our published [24] and unpublished (Delestre et al.)
results indicate that granins such as CgA and SgII inter-
act with lipids present in the membranes of the Golgi
apparatus and with molecular motors such as myosins
in order to induce the budding and formation of secre-
tory granules. Together, these mechanistic insights into
the regulated secretion from tumoural prostatic cells
indicate that PKA activation could play an important
role in secretory granule formation through SgII regula-
tion during NED and may help to propose additional
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therapeutic options for advanced PCa. Such important
role of PKA in NED of advanced PCa should be sub-
stantiated in future studies.

Expression of SgII led to increased proliferation of
LNCaP cells, indicating that the granin confers a prolif-
erative advantage to tumoural prostatic cells. Although
the mechanism of action of SgII cannot directly be
inferred from our present data, it is tempting to specu-
late that SgII-mediated secretory activity is responsible
for a higher tumoural cell growth. In support of this
hypothesis, it has been shown that neuroendocrine dif-
ferentiation promotes the growth and tumourigenesis
of PCa cells through secretion of peptides with mito-
genic activity [9,38]. Therefore, SgII by promoting the
formation of secretory granules containing bioactive
peptides in transdifferentiated prostate cells may lead
to a higher proliferation rate of adenocarcinomatous
cells which are predominant in PCa [1]. In addition,
our results indicate that SgII processing products are
also produced by tumoural cells and could impact PCa
cell growth. Previous studies have shown that the SgII-
derived peptide SN could act as a growth factor that
stimulates angiogenic processes [39]. The direct effect
of SN on tumour cell growth is not known yet, but its
high levels in the plasma of patients [18] suggest that this
SgII-derived peptide may exert a role in PCa
progression.

In conclusion, the present data show for the first time
that SgII is expressed in PCa and that its increased levels
correlate with high grade tumours. Therefore, SgII may
represent a valuable clinical tool to assess PCa progres-
sion. In addition, SgII expression triggers a secretory
activity in tumoural cells, including the appearance of
secretory granules that store and release bioactive pep-
tides, a hallmark of NED in PCa, indicating that this
granin may play a pivotal role in PCa progression.
Because the NED process is exacerbated in advanced
PCa and the possible SgII-inducing proliferative effect,
this pathway may represent a new target for therapeutic
intervention.
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