Sharp error terms for return time statistics under mixing conditions *

Abstract : We describe the statistics of repetition times of a string of symbols in a stochastic process. We consider a string A of length n and prove: 1) The time elapsed until the process starting with A repeats A, denoted by τA, has a distribution which can be well approximated by a degenerated law at the origin and an exponential law. 2) The number of consecutive repetitions of A, denoted by SA, has a distribution which is approximately a geometric law. We provide sharp error terms for each of these approximations. The errors we obtain are point-wise and allow to get also approximations for all the moments of τA and SA. Our results hold for processes that verify the φ-mixing condition.
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02337198
Contributeur : Nicolas Vergne <>
Soumis le : mardi 29 octobre 2019 - 12:37:26
Dernière modification le : jeudi 31 octobre 2019 - 01:26:53

Fichier

return.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02337198, version 1

Collections

Citation

Miguel Abadi, Nicolas Vergne. Sharp error terms for return time statistics under mixing conditions *. Journal of Theoretical Probability, Springer, 2009. ⟨hal-02337198⟩

Partager

Métriques

Consultations de la notice

4

Téléchargements de fichiers

9