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Drifting Markov Models with Polynomial
Drift and Applications to DNA Sequences∗

Nicolas Vergne

Abstract

In this article, we introduce the drifting Markov models (DMMs) which are inhomogeneous
Markov models designed for modeling the heterogeneities of sequences (in our case DNA or pro-
tein sequences) in a more flexible way than homogeneous Markov chains or even hidden Markov
models (HMMs). We focus here on the polynomial drift: the transition matrix varies in a poly-
nomial way. To show the reliability of our models on DNA, we exhibit high similarities between
the probability distributions of nucleotides obtained by our models and the frequencies of these
nucleotides computed by using a sliding window. In a further step, these DMMs can be used
as the states of an HMM: on each of its segments, the observed process can be modeled by a
drifting Markov model. Search of rare words in DNA sequences remains possible with DMMs
and according to the fits provided, DMMs turn out to be a powerful tool for this purpose. The
software is available on request from the author. It will soon be integrated onseq++ library
(http://stat.genopole.cnrs.fr/seqpp/).
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1 Introduction

Modeling DNA sequences with stochastic models and developing statistical meth-

ods to analyze the enormous set of data that results from the multiple projects of

DNA sequencing are challenging questions for statisticians and biologists. The

most popular model in this domain is the Markov model on the nucleotides that

gives a description of the local behaviour of the sequence (see Almagor (1983),

Blaisdell (1985), Phillips et al. (1987), Gelfand et al. (1992)).

Thanks to the statistical properties of these Markov models, we can enlighten

different biological properties of DNA or protein sequences. Different Markov

models may be proposed. First of all, classical homogeneous with some order k
Markov chains provide a general description of a sequence (for instance, the differ-

ent frequencies of the dinucleotides). Simons et al. (2005) provides a good discus-

sion about this global Markov model. See also Almagor (1983) or Blaisdell (1985)

on this point. Schbath et al. (1995) identifies exceptional motifs in sequences using

Markov models. Reinert & Schbath (1998) gives another way to detect rare words

in biological sequences and Nuel (2001) proposes a comparison between the most

used methods for discovering relevant patterns in sequences modeled by classical

Markov chains.

The main drawback in considering classical Markov models for the analysis of

sequences is that it supposes the homogeneity of sequences, whereas it turns out

that long biological sequences are inhomogeneous. A way to take into account

this heterogeneity is the use of hidden Markov models (HMMs). HMM is largely

used for modeling biological sequences. For instance Churchill (1989) analyzes the

heterogeneity of DNA sequences using HMMs. See for example Stanke & Waack

(2003) or Krogh et al. (1994) for applications to gene prediction. Thanks to HMMs,

one can detect coding or non-coding regions, exons or introns, but also homologies

between sequences or discover horizontal transfers (Nicolas et al. 2002). HMM

corresponds to the biological fact that some signals succeed one another along the

sequence. For example, on a DNA strand, a gene may be followed by a non-coding

region, then by a promoter, an other gene and so on. Proteins are often composed of

various “domains” separated by hinge. It is natural to think that the way the letters

succeed differs from one of these regions to the others, and this explains the success

of HMM in the search of regions with different biological roles.

Nevertheless, it is common to observe gradual variations along a biological se-

quence, either at a global level, either within one of the regions we just mentioned.

For example, the gc-richness of a sequence varies according to the position. A first

model refers to two kinds of behaviours: high percentage of gc (denoted by H)

against low percentage of gc (denoted by L). Then a refined model has been devel-

oped, introducing H1, H2, H3, and L1, L2 regions. But there is a broad consensus
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about the simplifying aspect of this model, in particular its inability of a sharp deter-

mination of the limits of the regions belonging to one of the two (or five) categories:

a soft transition from a gc-richness to another one is always observed. As an exam-

ple, we will use our model on Phage lambda complete genome (see Wu & Taylor

(1971)). Figures 3(a), 3(b), 3(c) and 3(d) show an estimation of the richness of

each of the four nucleotides as a function of the position along this genome (this

estimation was obtained using a sliding window of width 2000). The figure shows

that “at each position” at least one of the 4 curves has a soft variation. Even around

positions 22000, where 3 richness curves seem to have a discontinuity (smoothed

by the usage of a window), the fourth one (corresponding to the a nucleotide) has

a continuous variation. Even inside genes, for example, this type of behaviour is

observed (see Nicolas et al. (2002)).

It is then necessary to develop mathematical tools to account for such gradual

changes and we propose such a model, the drifting Markov model (DMM, see pre-

cise definition below). It can be seen as a competitive model to the HMM one:

a DMM can be adjusted to a whole sequence; and it turns out that the classical

problem of the search of rare words remains tractable with this model. But it over

all can be understood as a complementary tool: the hidden models of an HMM,

usually fixed Markov chains, can be replaced by DMM. This second approach will

be treated in a further paper, the present one presenting the necessary tool and first

results about its ability for the modeling of biological sequences.

Walking Markov models (WMM), introduced by Fickett et al. (1992) were the

first models with a continuous change of base composition. They want to model

gc and at composition in a DNA sequence as we just discussed above isochores.

For example, they cut a sequence in 1000-base windows and estimate a Markov

model on all the windows containing between 300 and 400 at, 400 and 500 at,

500 and 600 at, 600 and 700 at, to have four Markov models. Then for any

value w (the at-content), a Markov model Mw is defined by linear interpolation of

these primary processes. At last, WMM is defined by a random walk on w: they

choose an initial value for w between 1/3 and 2/3 (that changes according to the

studied sequence), and to choose each succeeding base, they add or subtract (with

probability 0.5) 0.0015 from w and use Mw to generate the next base. We use a

totally different way to define our DMMs. First, we do not use a random walk

to choose our transition matrix: our models are based on the sequence. Second,

our models are adapted for any size of state space without a lot of preliminary

treatments such as the estimation of some Markov models. It would be difficult to

adapt WMM to state space of size 20. Of course, WMMs, just as well as DMMs,

do not model detailed local structure, such as the local structure of genes. They are

intended to model the large-scale background variation of base composition in the

genome.
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At now, let us explain the principle of a DMM. Instead of fitting a transition

matrix on a whole sequence (homogeneous Markov model) or different transition

matrices on different homogeneous parts of the sequence (HMM), we allow the

transition matrix to vary (to drift) from the beginning to the end of the sequence.

At each position, we obtain a different transition matrix. Our models are thus con-

strained heterogeneous Markov models. In this paper, we focus on a polynomial

drift. The use of such models, where the transition matrix on DNA-alphabet or

protein-alphabet (state space) may vary along the genome is a completely new ap-

proach.

In the second part of this work, the correct adjustment of probability distri-

butions of nucleotides in DMMs to nucleotide frequencies computed on real se-

quences shows that our new models provide a more flexible, higher-dimensional

parameterization of the data that can be hoped to result in better fits than homoge-

neous Markov models or HMMs (see Figures from 3(a) to 3(d) and from 4(a) to

4(h)). Then, we compute some model selection criteria (AIC and BIC) to com-

pare different models. Two applications of our models are proposed here. Relying

on the compositional asymmetries between the leading and the lagging strand of

replication, the program ORILOC (Lobry 2000) helps to predict replication origins

in bacterial genomes. We propose an alternative method based on our modeling

to detect replication origins which present the advantage of being able to compute

analytically a maximum. At last, we discuss a new application for the search of

rare words in sequences modeled by a DMM. We offer a simple example with the

Chi (gctggtgg motif) of Escherichia coli and we give different classifications of

words according to different models. Many papers treat of rare words and patterns

in biological sequences modeled by Markov chains (Schbath et al. 1995, Reinert &

Schbath 1998), but all of them are based on Markov chains and their homogeneity.

We offer the possibility to study rare words with a model which better correspond

to the real sequence, so we can assume the reliability of our result in a better way

than before.

This paper is organized in the following way. In Section 2, we describe the

drifting Markov models with polynomial drift. Different methods of estimation are

proposed and explained. In Section 3, we give first results concerning these new

models. We establish reliability of DMMs by adjusting probability distributions of

nucleotides and nucleotide frequencies (Section 3.1). We compare different models

using AIC and BIC. We propose an alternative to the software ORILOC (Lobry

2000) for detecting replication origins (Section 3.3) and another application to the

search of rare words in DNA sequences (Section 3.4). At last, in Section 4, we

discuss our results and offer perspectives about these models.
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2 Drifting Markov models

A sequence modeled by an order k drifting Markov model is a sequence of random

variables Xt:

X = (Xt)t∈{0,...,n}

where n + 1 is the length of the sequence and where instead of fitting only one

transition matrix on the whole sequence, we fit a possibly different transition matrix

at each position in the sequence. Hence, the distribution of Xt is defined in the

following way:

P (Xt = v|Xt−k . . .Xt−1 = u) = Π t

n

(u, v)

with u = u1u2 . . . uk a k-word and (u1, u2, . . . , uk, v) ∈ Ak+1 where A is the state

space (the alphabet A = {a,c,g,t} for example). Drifting Markov models are

inhomogeneous Markov models and without constraints they cannot be estimated.

Thus we propose a polynomial evolution of the transition matrix, according to the

position in the sequence. We begin by using a linear drift (and later we will more

generally use polynomial drifts).

2.1 Drifting Markov models: linear drift

We fix a transition matrix Π0 at the beginning of the sequence and a transition

matrix Π1 at the end of the sequence and we allow the transition matrix to vary

linearly from Π0 to Π1:

Π t

n

=

(
1 − t

n

)
Π0 +

t

n
Π1.

Polynomials (1− t/n) and t/n are chosen to establish the stochasticity of Π0 to

Π1. Obviously, role of Π0 to Π1 is artificial as any model parameters but stochastic

matrices make easier the understanding of the model. We want to estimate these

two matrices in order to build the model. In the case of a simple Markov model,

the method of maximum likelihood is successfully used but, because of numerical

complexity, we cannot use it here. Hence, we propose two different methods to

estimate Π0 and Π1: a matrix regression method and a point by point method. We

describe these two methods in the following subsections.

We just give the example of an attempt of likelihood maximisation for a DMM

of order 1 and degree 1, to conclude that numerical complexity precludes the use

of the estimation by maximum likelihood. The likelihood ℓ of a DMM of order 1
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and degree 1 is the product over t of the transition matrices Π t

n

(Xt−1, Xt). Then

the log-likelihood L is:

L(X, Π0, Π1) = log ν0(X0) +

n∑

t=1

∑

u∈A

1{Xt−1=u}

∑

v∈A

1{Xt=v} log
(
Π t

n

(u, v)
)

.

In order to obtain the maximum likelihood, we look for the zero of the derivative

of L. We obtain a system of 2|A|(|A| − 1) equations with 2|A|(|A| − 1) vari-

ables. In fact, it reduces to |A| systems of 2(|A| − 1) equations with 2(|A| − 1)
variables. In Appendix A, we give an example of one of these systems with alpha-

bet A = {a,c,g,t}, in order to see that all the variables are in the denominator

and that it is unthinkable to solve these systems by analytical or numerical meth-

ods. Obviously the same problem exists with polynomial DMMs of higher order or

higher degree. It is sheer madness to envisage to solve numerically such a system.

2.1.1 Estimation by a matrix regression method.

A first idea to obtain estimators of the matrices Π0 and Π1 is to divide the sequence

in N segments of size m (size m will be chosen later). The idea of this method

is to use an “approximated homogeneity” on each segment. Then, we fit on each

segment Sℓ, for 1 ≤ ℓ ≤ N , a Markov model Π̂Sℓ
classically estimated by maxi-

mum likelihood estimation. In order to fit our heterogeneous model on the whole

sequence, we choose one point in each segment. We choose the N centers τℓ of the

N segments Sℓ because E(Π̂Sℓ
) tends to Πτℓ

as m goes to infinity. We could choose

more than one point by segment but that induces numerical complexities without

improving the estimation. We want our matrix Π t

n

to be the nearest possible to each

Π̂Sℓ
at the center of each segment Sℓ. Thus, for the matrix regression, we minimize

the sum of distances between the estimated matrices on each segment Sℓ and the

transition matrices Π t

n

at the center τℓ of the ℓthsegment:

N∑

ℓ=1

d
(
Π̂Sℓ

, (1 − τℓ)Π0 + τℓΠ1

)
.

We choose a quadratic distance for d. Hence, we minimize with respect to Π0(u, v)
and Π1(u, v) the following function:

N∑

ℓ=1

∑

u∈Ak

∑

v∈A

(
Π̂Sℓ

(u, v) − (1 − τℓ)Π0(u, v) − τℓΠ1(u, v)
)2

.
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For all u in Ak and v in A, we obtain the following estimators by Lagrange mini-

mization:

Π̂0(u, v) =
b1c2(u, v) − b2c1(u, v)

a2b1 − a1b2

Π̂1(u, v) =
a2c1(u, v) − a1c2(u, v)

a2b1 − a1b2

where

a1 =
N∑

ℓ=1

(1 − τℓ), a2 =
N∑

ℓ=1

τℓ(1 − τℓ),

b1 =

N∑

ℓ=1

τℓ, b2 =

N∑

ℓ=1

τℓ
2,

c1(u, v) =
N∑

ℓ=1

Π̂Sℓ
(u, v), c2(u, v) =

N∑

ℓ=1

τℓΠ̂Sℓ
(u, v).

Matrices Π̂0 and Π̂1 are stochastic. In some cases, for small values of N , it is

possible to obtain negative terms in the estimated matrices. This problem is solved

by a proportional rescaling of the values. Note that we do not obtain a homogeneous

model on the segments and that this assumption is only used to get preliminary

estimators Π̂Sℓ
. Size m of the segments is chosen in order to minimize the variance

of the estimators. Simulations led us to conclude that the value of m minimizing

the variance is
√

n, where n is the length of the sequence. Variance of estimators is

analytically obtained using expectation and variance of estimators on each segment.

2.1.2 Estimation by a point by point method.

Another way to estimate Π0 and Π1 is a least squares method. We minimize a

quadratic form of the different parameters which is the sum of “prediction errors”.

At each position t in the sequence, knowing the k-word u = Xt−k . . . Xt−1 preced-

ing Xt, we want Π t

n

(u, v) to be the nearest possible to 1 if Xt = v or the nearest

possible to 0 if Xt 6= v. We minimize the sum of error squares:

1{Xt−k...Xt−1=u}Π t

n

(u, v) − 1{Xt−k...Xt=uv}.

Let us note 1u for 1{Xt−k...Xt−1=u} and 1uv for 1{Xt−k ...Xt−1=u,Xt=v}. We choose a

quadratic distance and then we minimize the following function:

n∑

t=1

∑

u∈Ak

∑

v∈A

1{Xt−k...Xt−1=u}

(
Π t

n

(u, v) − 1{Xt=v}

)2

.
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For all u in Ak and v in A, we obtain the following estimators by Lagrange mini-

mization

Π̂0(u, v) =
B2(u)C1(u, v) − B1(u)C2(u, v)

A1(u)B2(u) − A2(u)B1(u)

Π̂1(u, v) =
A1(u)C2(u, v) − A2(u)C1(u, v)

A1(u)B2(u) − A2(u)B1(u)

with

A1(u) = 2

n∑

t=1

1u

(
1 − t

n

)2

, A2(u) = 2

n∑

t=1

1u

(
1 − t

n

)(
t

n

)
,

B1(u) = 2
n∑

t=1

1u

(
1 − t

n

)(
t

n

)
, B2(u) = 2

n∑

t=1

1u

(
t

n

)2

,

C1(u, v) = 2

n∑

t=1

1uv

(
1 − t

n

)
, C2(u, v) = 2

n∑

t=1

1uv

(
t

n

)
.

Once again, matrices Π̂0 and Π̂1 are stochastic except in rare cases where negative

terms appear. But they are then modified by a proportional rescalement.

2.2 Drifting Markov models: polynomial drift

Up to now, we have only considered a linear variation of the transition matrix

(DMM of degree 1), but we can generalize to DMMs of higher degree. Thus DMMs

have two order parameters: the order k of the Markov model and the degree d of

the polynomial drift. To describe such a polynomial model of degree d, we need

d + 1 points of support. For linear drift (d = 1), the model was based on the only

two matrices of parameters Π0 and Π1. Now, we base our model on d + 1 matrices

Π i

d

, for 0 ≤ i ≤ d. We choose Π i

d

uniformly spaced along the sequence. Any

other choice would not be penalizing. Indeed, simulations show that the obtained

transition matrices Π t

n

are similar. The drifting transition matrix has the following

form

Π t

n

(u, v) =

d∑

i=0

pi(t)Π i

d

(u, v),

where pi are the polynomial functions of degree d such that

∀(i, j) ∈ {0, . . . , d}2, pi

(
nj

d

)
= 1{i=j}.

Polynomials pi are chosen to have stochastic matrices Π i

d

. Hence, for t = ni/d,

we have Π t

n

= Π i

d

and for all integer 0 ≤ t ≤ n, we have
∑

v∈A Π t

n

(u, v) = 1.

7
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For d = 1, we intuitively obtain p0(t) = 1 − t/n and p1(t) = t/n in order to

have Π t

n

= (1 − t/n) Π0 + (t/n)Π1. We give their expression for degree d = 2
to illustrate that polynomial functions pi have not a so simple expression than for

degree 1. Indeed,

Π t

n

= p0(t)Π0 + p1(t)Π 1

2

+ p2(t)Π1

leads to

Π t

n

=

(
2

t2

n2
− 3

t

n
+ 1

)
Π0 +

(
−4

t2

n2
+ 4

t

n

)
Π 1

2

+

(
2

t2

n2
− t

n

)
Π1.

Note that such a system is easy to solve for any degree because it is a simple linear

system of (d + 1)(d + 1) independent equations with (d + 1)(d + 1) variables.

Nonetheless, we cannot give a general explicit expression for pi with any degree d.

At degree 3, we have

Π t

n

=

(
−9

2

t3

n3
+ 9

t2

n2
− 11

2

t

n
+ 1

)
Π0 +

(
27

2

t3

n3
− 45

2

t2

n2
+ 9

t

n

)
Π 1

3

+

(
−27

2

t3

n3
+ 18

t2

n2
− 9

2

t

n

)
Π 2

3

+

(
9

2

t3

n3
− 9

2

t2

n2
+

t

n

)
Π1.

2.2.1 Estimation by a matrix regression method.

As for the linear drift, we minimize the following function

N∑

ℓ=1

∑

u∈Ak

∑

v∈A

(
Π̂Sℓ

(u, v) −
d∑

i=0

pi(nτℓ)Π i

d

(u, v)

)2

.

Hence, for each (u, v) in Ak ×A, solving system AX = B where A, X and B are

defined below, gives us Π̂ i

d

, estimators of Π i

d

.

• Aij =

N∑

ℓ=1

pi(nτℓ)pj(nτℓ), 0 ≤ i, j ≤ d;

• Xi = Π̂ i

d

(u, v), 1 ≤ i ≤ d;

• Bi =

N∑

ℓ=1

pi(nτℓ)Π̂Sℓ
(u, v), 1 ≤ i ≤ d.

8
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2.2.2 Estimation by a point by point method.

Once again, as in the linear drift case, we need to minimize the following function

n∑

t=1

∑

u∈Ak

∑

v∈A

1{Xt−k...Xt−1=u}

(
Π t

n

(u, v) − 1{Xt=v}

)2

. (1)

As in the matrix regression method, we need to solve for each (u, v) in Ak × A, a

system AX = B where

• Aij =
n∑

t=k

1{Xt−k...Xt−1=u}pi(t)pj(t), 0 ≤ i, j ≤ d;

• Xi = Π̂ i

d

(u, v), 1 ≤ i ≤ d;

• Bi =

n∑

t=k

pi(t)1{Xt−k...Xt−1=u,Xt=v}, 1 ≤ i ≤ d.

Hence, we obtain Π̂ i

d

, estimators of Π i

d

.

2.3 Comparison of the methods

There are some differences between matrix regression method and point by point

method. Matrix regression method uses preliminary estimations on each segment

Sℓ and the global estimators are computed at a unique point of each segment (the

center τℓ). Point by point method enables a direct estimation on all the points of the

sequence.

We use the log-likelihood to compare the two methods of estimation of drifting

Markov models (see Table 1). We estimate models on the phage Lambda com-

plete genome (see Wu & Taylor (1971)) and we consider these models as the true

models. Then, we simulate a sequence with each one of these models and we com-

pute the log-likelihood for the two estimation methods. We notice that whatever

the order, point by point method always gives better likelihood than the regression

method. That is a little bit more apparent when we compute the log-likelihood on

the real phage Lambda complete genome (see Table 2). Thus, point by point method

presents the advantages of a more practical implementation and better results and it

is the method which we will privilege thereafter.

9
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Table 1: Log-likelihood of drifting Markov models computed on sequence simu-

lated by each one of these models (R means regression method and P means point

by point method).

Degree 0 1 2 3 4 5
Order R −67191 −66999 −66962 −66910 −66909 −66907

0 P −67191 −66999 −66962 −66910 −66909 −66907

Order R −66718 −66504 −66448 −66382 −66376 −66368
1 P −66710 −66501 −66445 −66380 −66374 −66366

Order R −66706 −66482 −66407 −66321 −66295 −66275
2 P −66693 −66477 −66402 −66317 −66290 −66270

Order R −66630 −66331 −66186 −66038 −65938 −65883
3 P −66612 −66320 −66169 −66014 −65898 −65817

Table 2: Log-likelihood of drifting Markov models on phage Lambda (R means

regression method and P means point by point method).

Degree 0 1 2 3 4 5
Order R −67191 −66973 −66934 −66873 −66760 −66680

0 P −67191 −66973 −66934 −66873 66760 −66680

Order R −66743 −66500 −66439 −66362 −66234 −66146
1 P −66714 −66483 −66419 −66345 −66220 −66135

Order R −66052 −65657 −65577 −65438 −65281 −65160
2 P −66005 −65631 −65544 −65410 −65255 −65139

Order R −65661 −65168 −65033 −64809 −64597 −64432
3 P −65579 −65116 −64951 −64746 −64497 −64329

2.4 Consistence of the estimators

We assume that our estimators are asymptotically unbiased and their variances con-

verge to zero (these theoretical results are not presented here). Thus, our estimators

are consistent. In order to show this consistence, we simulate some data where the

true model is known. Firstly, we estimate a model on the phage Lambda complete

genome and we consider this model as the true model. Then, we simulate some

sequences with this model and estimate a mean model on all these sequences. In

Appendix B, we give an example with both true and estimated models. For each pa-

rameter of the model, we note the absolute value of the difference between the true
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parameter and the estimated one. In Table 3, we give the mean of these differences

for some different drifting Markov models to assume consistence.

Table 3: Comparison between true models and estimated ones. We give the mean

of absolute values of differences between true parameters and estimated ones. The

number of simulated sequences is given by N .

Degree 0 2 4 6
N

1 0.0026691 0.00943604 0.00920864 0.00996372
Order 1 10 0.0018065 0.00323508 0.00381477 0.00338738

100 0.0001906 0.00081519 0.00092941 0.00114088
1 0.0356951 0.0499792 0.0484183 0.0549545

Order 2 10 0.0346129 0.0447842 0.0421838 0.0500320
100 0.0333321 0.0442818 0.0406379 0.0482310

3 Implementation and results

We developed a program, called DRIMM (as drifting Markov model), dedicated

to the estimation of drifting Markov models. This software is written in ANSI

C++ and developed on x86 GNU/Linux systems with GCC 3.4, and successfully

tested with GCC latest versions on Sun and Apple Mac OSX systems. It relies on

seq++ library (Miele et al. 2005) and will soon be integrated on seq++ library.

Compilation and installation are compliant with the GNU standard procedure. It

is available on request from the author. The software is licensed under the GNU

General Public License (http://www.gnu.org).

3.1 Marginal distributions

DMMs offer models which describe faithfully real sequences. This fact is particu-

larly highlighted by the study of the probability distributions of nucleotides in the

present section. Indeed, analyzing µt, the probability distribution of nucleotides at

position t associated with our models, is the main way to evaluate their quality. At

order 1, the distribution µt is recursively defined as follows:

µt+1(v) =
∑

u∈A

µt(u)Π t

n

(u, v) ∀v ∈ A.
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There are similar definitions for order greater than 1. We recall that an ergodic

Markov chain Π on a finite state space has a unique stationary probability distribu-

tion ν (such that νΠ = ν). The transition matrix Π0 is ergodic thus, we choose µ0 as

the stationary probability distribution ν0 of Π0. We compute the probability distri-

bution µt for each position t to analyze the composition of phage Lambda complete

genome. First, we draw the evolution, with respect to t, of these distributions of a,

c, g and t to observe the differences of composition in the sequence.

We present in Figures 1(a), 1(b), 1(c) and 1(d) these distributions for a modeling

of the phage Lambda sequence by a DMM respectively of degree 2, 4, 6 and 8. For

degree d = 2, we already notice that gc-rate decreases with respect to the position

in the sequence. For degree d = 8, we observe the first gc-rich segment already

obtained by an HMM algorithm developed by Muri (1997).

Moreover, comparing the HMM segmentation in Muri (1997) and the DMM

evolution of distributions, we observe similarities. Looking at Figure 1(d), we ob-

serve very reliable probability distributions of letters which correspond to the HMM

segmentation (see Figure 2). This comparison is interesting because it shows the

limits of HMM. Although the first long gc-rich segment is well known and pro-

vided by HMM, other parts of the HMM segmentation are not really convincing in

view of the evolution of transition probability. Moreover, DMMs are more tractable

numerically and they provide a soft evolution contrary to the sudden segmentation

of HMMs.

To establish reliability of drifting Markov models, we compare evolutions of

probability distributions with nucleotide frequencies. To compute these frequen-

cies, we use sliding windows of size 2000 nucleotides. Figures 3(a), 3(b), 3(c) and

3(d) show that probability distributions of nucleotides of our degree 8 models are

very close to the real distribution of nucleotides in the sequence (respectively nu-

cleotide a, c, g and t). Degree 8 is sufficient to observe a good similarity between

the curves. In order to compare our polynomial DMM to other Markov models, we

draw in Figures 3(a), 3(b), 3(c) and 3(d) the evolutions of probability distributions

under an order 1 DMM of degree 0 (it corresponds to a classical homogeneous

order 1 Markov model). It turns out that the distance between the two curves is

smaller in the case of degree 8 DMM. In the HMM case, we do not observe only

one constant probability for each letter as in the Markov model, but few regions

with constant probability corresponding to the HMM segmentation. From Figure

4(a) to Figure 4(h), we compare evolutions of probability distributions for an or-

der 1 HMM with 3 hidden states and an order 1 degree 3 DMM on the Phage T4

complete genome (see Miller et al. (2003)).
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Figure 1: Probability distributions µ of the 4 nucleotides a, c, g and t for degree 2 DMM in Phage Lambda genome.
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Figure 1: Probability distributions µ of the 4 nucleotides a, c, g and t for degree 4 DMM in Phage Lambda genome.
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Figure 1: Probability distributions µ of the 4 nucleotides a, c, g and t for degree 6 DMM in Phage Lambda genome.
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Figure 1: Probability distributions µ of the 4 nucleotides a, c, g and t for degree 8 DMM in Phage Lambda genome.
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Figure 3: Frequency f and probability distribution µ of c for degrees d = 0 and d = 8 DMM in Phage Lambda genome.
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Figure 3: Frequency f and probability distribution µ of g for degrees d = 0 and d = 8 DMM in Phage Lambda genome.
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Figure 3: Frequency f and probability distribution µ of t for degrees d = 0 and d = 8 DMM in Phage Lambda genome.
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Figure 4: Frequency f and probability distribution µ of a for a 3-states HMM in Phage T4 genome.
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Figure 4: Frequency f and probability distribution µ of a for a degree 3 DMM in Phage T4 genome.
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Figure 4: Frequency f and probability distribution µ of c for a 3-states HMM in Phage T4 genome.
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Figure 4: Frequency f and probability distribution µ of c for a degree 3 DMM in Phage T4 genome.

25

Vergne: Drifting Markov Models

Published by The Berkeley Electronic Press, 2008



 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0  20000  40000  60000  80000  100000  120000  140000  160000  180000

D
is

tr
ib

u
ti
o
n
 o

f 
g

Position in the sequence

f(g)
µ(g)

(e) Nucleotide g for HMM

Figure 4: Frequency f and probability distribution µ of g for a 3-states HMM in Phage T4 genome.
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Figure 4: Frequency f and probability distribution µ of g for a degree 3 DMM in Phage T4 genome.
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Figure 4: Frequency f and probability distribution µ of t for a degree 3 DMM in Phage T4 genome.
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We also compute a distance ddf between these evolutions and nucleotide fre-

quencies:

ddf =
∑

v∈A

∑

t

(ft(v) − µt(v))2,

where ft(v) is the frequency of the nucleotide v at position t and µt(v) the prob-

ability distribution of v at position t. In the way to avoid long computations, we

do not take into account all positions t. Then we have no more than 10000 posi-

tions, uniformly distributed. It is sufficient in order to compute ddf . An order 1
HMM with 3 hidden states and an order 1 DMM with degree 3 have approximately

the same number of parameters (in fact, this number is 42 for the HMM and 48
for the DMM). However, we already note that ddf is lightly smaller for the DMM:

5.865 versus 5.873. Obviously, this distance is still smaller for a degree 8 DMM

(ddf = 3.391). In that sense, we show that DMMs represent a new class of flexible

models for DNA sequences that can be hoped to provide better fits than HMMs in

many cases.

In order to illustrate this fact in another way, we draw in Figure 5, the frequency

of gc in the complete genome of phage Lambda. As we said in the introduction,

biologists are very concerned in the gc-percent because it may induce presence of

genes. They consider five families of isochores: two gc-poor families (L1 and L2)

and three gc-rich families (H1, H2 and H3) (Bernardi 1993, Oliver et al. 2001). But

the transition between two families is often judged to be too sudden when modeled

by HMMs. DMM, with its continuous evolution, is a good way to model these

transitions. For instance, in Figure 5, between the position 26000 and 32000, we

observe a linear increase of the gc content that we model with a degree 1 DMM.

Thus DMMs are useful for modeling of heterogeneous phenomena, in particular the

linear evolution of gc content, whereas HMM would predict a constant evolution

or an abrupt change.

3.2 AIC and BIC: comparisons between different models.

In order to analyze drifting Markov models, we compute AIC and BIC values of

these models. First of all, we recall the definition of AIC and BIC values (Akaike

Information Criterion and Bayesian Information Criterion, introduced respectively

by Akaike (1974) and Schwarz (1978)):

AIC = −(2L(θ) − 2K)

BIC = −(2L(θ) − K log n)
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where L(θ) is the log-likelihood of the model, K the number of parameters and

n the sample size. The model which has the smallest AIC or BIC is considered as

the “best” model according to this criterion.

AIC and BIC are usually built by adding a penalization to the log-likelihood

evaluated at the maximum of likelihood. Although least squares estimator is the

only disposal, we use here adapted criteria obtained by a penalization of the log-

likelihood taken in this estimator. This can be justified by the fact that for Markov

chain the mean-square estimation (based on a formula similar to our formula (1)) is

asymptotically equivalent to the maximum of likelihood one.

In Table 4, we compute BIC for order 0, 1, 2 and 3 a DMM of degrees from 0
to 5, estimated by the point by point method. These results have been obtained on

the Haemophilus influenzae complete genome (see Fleischmann et al. (1995)).

Table 4: BIC of drifting Markov models on Haemophilus influenzae.

Degree 0 1 2 3 4 5
Order 0 4970473 4970494 4969534 4969471 4969472 4969358

Order 1 4907845 4907947 4907011 4907051 4907108 4907117
Order 2 4892907 4893442 4892907 4890996 4893807 4894224
Order 3 4868040 4870422 4871721 4874079 4876395 4878650

Whereas AIC prefers models with a lot of parameters (results are not presented

here, but AIC-values generally decrease with order and degree), BIC prefers mod-

els with a small number of parameters. That is why a DMMs with high degrees are

partially ignored by BIC. Indeed, for an order k DMM of degree d, the number of

parameters K is equal to (d + 1)|A|k(|A| − 1). You can choose to select order and

degree of a DMM with BIC, but higher-dimensional parameterization of DMM

provides better fits to the real sequence, as you can see in the precedent section.

Moreover, in order to compare DMMs with other currents methods, the main

way is to see in Figures 3(a), 3(b), 3(c) and 3(d) that variations of nucleotides are

continuous whatever the position. According to BIC, DMMs are better models

than classical Markov models (whatever the order and the degree), but HMMs are

better models than DMMs. As DMM can be adjusted to a whole sequence, DMM

can be seen as competitive model to HMM. However note that a perspective of this

work is to introduce DMMs in HMMs: a DMM could be a hidden state of an HMM.

Even if this difference of BIC is not very large, the essential thing to remember is

that we provide the first models including the possibility of a continuous variation of

the transition matrix. Combined to the quality of HMM, DMM provides powerful

tools for sequences analysis.
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3.3 Replication origin

An example of application of our new models is the search of replication origins

on the bacteria. This application draws its inspiration from the program ORILOC

(Lobry 2000), which has been developed for the prediction of bacterial replications

origins. DNA replication is the process of copying a double-stranded DNA strand

in a cell, prior to cell division. The two resulting double strands are identical,

and each of them consists of one original and one newly synthesized strand. The

replication origin is a unique DNA sequence at which DNA replication is initiated.

DNA replication may proceed from this point bidirectionally or unidirectionally.

Based on the compositional asymmetries between the leading and the lagging strand

of replication, the program performs a DNA walk (see Lobry (1999)) to obtain the

position of the replication origin. A curve is drawn by this program and the peak

of this curve corresponds to the replication origin. The values allowing to draw the

curve are computed as follows. The first value is 0, and during the walk along the

DNA sequence, ORILOC adds 1 each time letter g is found and subtracts 1 each

time letter c is found. Thus ORILOC does not rely on a probabilistic model, it

draws a curve by running along the real sequence.

We use the same properties of asymmetries in bacterial genomes to perform a

detection of the replication origins based on DMMs. Indeed, thanks to the computa-

tion of probability distributions of nucleotides at each position t in the sequence, we

draw a curve similar to ORILOC. The values of our curve are computed as follows.

The first value is 0, and at each position in the sequence, we add the probability of

letter g and subtract the probability of letter c.

This work was done on the complete genome of Chlamydia trachomatis (see

Stephens et al. (1998)). Note on Figure 6 the great similarity between the curve

obtained by the software ORILOC and the one obtained by DMMs. Note also that

our curve is softer than the one of ORILOC because the aim of DMM is to model

soft transitions. Although search of replication origins is a break-point detection

problem, our method works in the sense that it offers to biologists a window which

permits to find the replication origin “in vivo”. Then soft transitions do not prevent

us to locate the origin of replication. The advantage of our method is to be able to

compute analytically a maximum.

3.4 Rare words

A second and important example of application of DMMs is the search of rare

words in DNA sequences. Many DNA sequence analysis are based on the distribu-

tion of the occurrences of patterns having some special biological function.
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Markov Models (DMM).
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An important problem is to determine the statistical significance of a word fre-

quency in a DNA sequence. Nicodème et al. (2002) discuss this relevance of find-

ing over- or under-represented words. The naive idea is the following: a word may

have a significant low frequency in a DNA sequence because it disrupts replication

or gene expression, whereas a significantly frequent word may have a fundamental

activity with regard to genome stability. Well-known examples of words with ex-

ceptional frequencies in DNA sequences are biological palindromes corresponding

to restriction sites avoided for instance in E. coli (Karlin et al. 1992), the Cross-over

Hotspot Instigator sites in several bacteria, in E. coli for example (Smith et al. 1981,

El Karoui et al. 1999), and uptake sequences (Smith et al. 1999) or polyadenylation

signals (van Helden et al. 2000). The most popular approach consist in fitting a

Markov model on the sequence and computing the p-value which is P(N > Nobs)
for an over-represented word or P(N < Nobs) for an under-represented word, where

N is the random variable of the number of occurrences of the studied word and Nobs

the number of observed occurrences. We define the pattern statistic associated to

any number Nobs by:

S =

{
− log10 P(N > Nobs) if N ≥ E(N)
+ log10 P(N < Nobs) if N < E(N)

.

This way, a pattern has a positive statistic if it is seen more than expected, a negative

statistic if seen less than expected, in both cases, the corresponding p-value is given

(in log scale) by the magnitude of the statistic. See Nuel (2006) for a review of

the methods available to compute pattern statistics on text generated by a Markov

source.

As these probabilities are computed under a model, small p-value can be pro-

vided for some words without biological interest if the model is not reliable. That

is why it is preferable to rely on a background model the most possible close to the

real sequence. DMMs provide it. It always will be more convincing to obtain p-

values for the most realistic models. In that way, considering a DMM for searching

rare words in sequences seems to be a better approach than using Markov models

(see on Figures 3(a), 3(b), 3(c) and 3(d) that DMM offers a model closer to the

reality than Markov model).

Numerical complexities appear when we want to compute exact p-value of in-

homogeneous Markov models but a new approach proposed by Nuel (2004), using

finite Markov chain imbedding (FMCI, see Lou (1996)), provides solutions to this

problem. We refer to Nuel & Prum (2007) for a detailed description of this method.
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Table 5: Classification of words of size 5 of Phage lambda complete genome, for different models according to their

pattern statistic S. Nobs is the observed number of occurrences of the word. Exp means Expected value. We only give the

five first under-represented words and the five first over-represented words.

MM HMM 3 states DMM degree 1
Words Nobs Exp S Words Nobs Exp S Words Nobs Exp S

aattg 32 88.22 −11.41 aattg 32 83.38 −10.07 aattg 32 86.53 −10.94
ttggg 20 65.12 −10.33 acttg 13 47.59 −8.57 ttgga 21 64.94 −9.76
ttgga 21 66.70 −10.29 tctag 2 24.60 −8.19 ttggg 20 62.94 −9.66
acttg 13 50.74 −9.59 ttgga 21 59.47 −8.15 acttg 13 50.27 −9.44

taggg 3 29.60 −9.21 tcgag 9 39.01 −8.11 tcgag 9 40.69 −8.68
gccgg 114 53.97 12.13 gctgg 127 65.44 14.23 gctgg 127 64.80 11.77
ctgaa 124 61.02 12.16 ctgaa 124 61.34 14.90 ctgaa 124 60.85 12.21
tccgg 100 39.98 15.08 ccgga 112 44.00 20.58 tccgg 100 38.81 16.18
ccgga 112 43.11 17.93 tccgg 100 36.50 20.65 ccgga 112 43.57 18.10
gcaga 141 57.51 20.20 gcaga 141 58.35 22.66 gcaga 141 57.59 20.31
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We just give here one example of search of rare words. We choose the most

popular word in this domain, the Chi site of Escherichia coli K12 (see Blattner

et al. (1997)). We consider the complete sequence of the bacteria where the Chi

site gctggtgg appears 499 times. As can be seen in Table 6, the Chi site was

expected to appear 70.10 times by an order 1 DMM of degree 0 and 175.31 times

by an order 2 DMM of order 8. In a more realistic model such as DMM, Chi

sites are more expected than in other models. As already said, we cannot compare

p-value of different models between them. But we could compare the different

classification provided by the different models. Which classification do you prefer?

That one given by HMM and its segmentation or that one given by DMM and its soft

evolution? Obviously, it is more reliable to consider p-values in the model which

provide a better fit to the data even if it is higher-dimensional parameterized. Thus,

polynomial DMMs are very useful for the search of rare words in DNA sequences.

In Table 5, we give classification of words of size 5, for classical Markov model,

3-states HMM and degree 1 DMM, at order 1.

Table 6: Pattern statistic S (log p-value) of the over-represented word gctggtgg

for DMMs of different orders and degrees: the Chi of E. coli which appears 499
times in the sequence. Note that a DMM of degree 0 corresponds to a classical

Markov model.

Order Degree Expected value S

1 0 70.10 240.814
1 1 70.26 240.398
1 2 71.88 238.766
1 3 71.87 238.774
1 8 71.94 238.605
2 0 173.84 88.902
2 1 174.03 88.747
2 2 175.16 87.837
2 3 175.10 87.881
2 8 175.31 87.717

4 Discussion and conclusion

We introduce a new class of inhomogeneous Markov models, the drifting Markov

models. These new models allow the transition matrix to vary along the sequence.
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Notwithstanding the fact that classical Markov models are homogeneous, hidden

Markov models cannot model every heterogeneity structures. Heterogeneity of se-

quences encourages us to consider more flexible models such as drifting Markov

models and the continuous variation of their transition matrix. An important illus-

tration of these models concerns the gc-content of a DNA sequence. It is commonly

accepted that a high gc-content may induce presence of genes (Zoubak et al. 1996).

Since they provide a soft evolution and a different transition matrix at each position

in the sequence, DMM provides a better fit to the gc-content than HMM with its

sudden changes of state. Other applications such as the search of replication origins

and especially the search of rare words are very relevant examples of the possibil-

ities of DMMs. We conclude that DMMs are convenient tools for the statistical

analysis of sequences. They provide detailed description of the sequence and can

be used for structural analysis or direct biological applications. Moreover, it would

be interesting not to limit our studies to polynomial drift. Future prospects are to fit

new models with co-variables such as the gc-content, the degree of hydrophobicity

or an indicator of the protein structure (α-helix, β-sheet. . . ).

Appendix A: Estimation by maximum of likelihood

We give here an example of the systems we would need to solve to provide estima-

tion by maximum likelihood. It corresponds to one of the 4 systems of 6 equations

with 6 variables obtained for an order 1 DMM of degree 1 for the nucleotide al-

phabet A = {a, c, g, t}. Knowing that n is very high (as the length of the DNA

sequence) and that all the parameters Π0(u, v) and Π1(u, v) are in the denominator

of each equality, you can note the numerical complexity which precludes the use of

this natural method. Obviously, complexity still is a problem for DMM of higher

order and degree.


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
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Appendix B: Consistence of the estimators

In order to show consistence of our estimators, we give here one example of the re-

sults of some simulations. In this example, we estimate an order 1 degree 2 drifting

Markov model on the phage Lambda complete genome (see Wu & Taylor (1971))

and we consider this model as the true model. Then, we simulate 10 sequences

with this model and estimate a mean model on all these sequences. Both true and

estimated models are shown in Table 7. You can see the great similarity between

matrices.
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Table 7: Comparison between transition matrices of true and estimated models

Matrix True model Estimated model

Π0

0.2637 0.2753 0.2623 0.1986
0.2559 0.2889 0.3090 0.1462
0.2107 0.3712 0.2582 0.1600
0.1201 0.4873 0.2011 0.1914

0.2634 0.2811 0.2596 0.1958
0.2573 0.2839 0.3114 0.1472
0.2077 0.3656 0.2662 0.1606
0.1240 0.4884 0.1967 0.1910

Π0.5

0.2931 0.2156 0.2044 0.2870
0.2424 0.2445 0.2760 0.2371
0.2976 0.2533 0.2127 0.2364
0.1856 0.2891 0.2301 0.2953

0.2913 0.2145 0.2065 0.2878
0.2422 0.2469 0.2733 0.2376
0.2954 0.2558 0.2127 0.2361
0.1838 0.2883 0.2320 0.2959

Π1

0.3480 0.2017 0.1833 0.2670
0.3061 0.2032 0.2686 0.2221
0.3076 0.2457 0.2037 0.2433
0.2073 0.2997 0.2132 0.2798

0.3559 0.1972 0.1781 0.2689
0.3047 0.2034 0.2682 0.2238
0.3047 0.2460 0.2017 0.2476
0.2092 0.3044 0.2119 0.2744
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