L. A. Greene and A. S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc Natl Acad Sci, vol.73, pp.2424-2428, 1976.

A. S. Tischler and L. A. Greene, Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Lab Invest, vol.39, pp.77-89, 1978.

D. Vaudry, P. Stork, P. Lazarovici, and L. E. Eiden, Signaling pathways for PC12 cell differentiation, Science, vol.296, pp.1648-1649, 2002.

D. J. Anderson and A. Michelsohn, Role of glucocorticoids in the chromaffinneuron developmental decision, Int J Dev Neurosci, vol.7, pp.475-487, 1989.

A. Arimura, Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems, Jpn J Physiol, vol.48, pp.301-331, 1998.

D. Vaudry, B. J. Gonzalez, M. Basille, Y. L. Fournier, A. Vaudry et al., Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions, Pharmacol Rev, vol.52, pp.269-324, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02334694

D. Alexandre, H. Vaudry, L. Grumolato, V. Turquier, A. Fournier et al., Novel splice variants of type I pituitary adenylate cyclaseactivating polypeptide receptor in frog exhibit altered adenylate cyclase stimulation and differential relative abundance, Endocrinology, vol.143, pp.2680-2692, 2002.

P. J. Deutsch and Y. Sun, The 38-amino acid form of pituitary adenylate cyclaseactivating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth, J Biol Chem, vol.267, pp.5108-5113, 1992.

A. P. Barrie, A. M. Clohessy, C. S. Buensuceso, M. V. Rogers, and J. M. Allen, Pituitary adenylyl cyclase-activating peptide stimulates extracellular signalregulated kinase 1 or 2 (ERK1/2) activity in a Ras-independent, mitogenactivated protein kinase/ERK kinase 1 or 2-dependent manner in PC12 cells, J Biol Chem, vol.272, pp.19666-19671, 1997.

N. M. Sherwood, S. L. Krueckl, and J. E. Mcrory, The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily, Endocr Rev, vol.21, pp.619-670, 2000.

A. Hernandez, B. Kimball, G. Romanchuk, and M. W. Mulholland, Pituitary adenylate cyclase-activating peptide stimulates neurite growth in PC12 cells, Peptides, vol.16, pp.927-932, 1995.

P. Lazarovici, H. Jiang, and D. Fink, The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21 ras G protein, and pp60 c-src cytoplasmic tyrosine kinase, Mol Pharmacol, vol.54, pp.547-558, 1998.

L. Taupenot, S. K. Mahata, H. Wu, O. Connor, and D. T. , Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclase-activating polypeptide (PACAP), J Clin Invest, vol.101, pp.863-876, 1998.

V. Turquier, Y. L. Grumolato, L. Alexandre, D. Fournier, A. Vaudry et al., Pituitary adenylate cyclase-activating polypeptide stimulates secretoneurin release and secretogranin II gene transcription in bovine adrenochromaffin cells through multiple signaling pathways and increased binding of pre-existing activator protein-1-like transcription factors, Mol Pharmacol, vol.60, pp.42-52, 2001.

C. Hamelink, O. Tjurmina, R. Damadzic, W. S. Young, E. Weihe et al., Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis, Proc Natl Acad Sci, vol.99, pp.461-466, 2002.

C. Hamelink, H. W. Lee, Y. Chen, M. Grimaldi, and L. E. Eiden, Coincident elevation of cAMP and calcium influx by PACAP-27 synergistically regulates vasoactive intestinal polypeptide gene transcription through a novel PKAindependent signaling pathway, J Neurosci, vol.22, pp.5310-5320, 2002.

K. Tornøe, J. Hannibal, B. Jensen, T. , G. B. Rickelt et al., PACAP-(1-38) as neurotransmitter in the porcine adrenal glands, Am J Physiol, vol.279, pp.1413-1425, 2000.

S. Lamouche and N. Yamaguchi, PACAP release from the canine adrenal gland in vivo: functional role in adrenomedullary response to severe hypotension, Am J Physiol, vol.284, pp.588-597, 2003.

J. C. Reubi, U. Läderach, B. Waser, J. O. Gebbers, P. Robberecht et al., Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin, Cancer Res, vol.60, pp.3105-3112, 2000.

K. Takahashi, K. Totsune, O. Murakami, M. Sone, K. Itoi et al., Pituitary adenylate cyclase activating polypeptide (PACAP)-like immunoreactivity in pheochromocytomas, Peptides, vol.14, pp.365-369, 1993.

F. Zia, M. Fagarasan, K. Bitar, D. H. Coy, J. R. Pisegna et al., Pituitary adenylate cyclase activating peptide receptors regulate the growth of non-small cell lung cancer cells, Cancer Res, vol.55, pp.4886-4891, 1995.

N. Douziech, A. Lajas, Z. Coulombe, E. Calvo, J. Laine et al., Growth effects of regulatory peptides and intracellular signaling routes in human pancreatic cancer cell lines, Endocrine, vol.9, pp.171-183, 1998.

J. Leyton, T. Coelho, D. H. Coy, S. Jakowlew, and M. J. Birrer, Moody TW 1998 PACAP(6 -38) inhibits the growth of prostate cancer cells, Cancer Lett, vol.125, pp.131-139

L. Grumolato, E. Louiset, D. Alexandre, D. Ait-ali, V. Turquier et al., PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage: effects on electrical properties, gene markers and transcription factors in differentiating PC12 cells, Eur J Neurosci, vol.17, pp.71-82, 2003.

N. Chartrel, M. C. Tonon, H. Vaudry, and J. M. Conlon, Primary structure of frog pituitary adenylate cyclase-activating polypeptide (PACAP) and effects of ovine PACAP on frog pituitary, Endocrinology, vol.129, pp.3367-3371, 1991.

R. A. Delellis, F. B. Merk, P. Deckers, S. Warren, and K. Balogh, Ultrastructure and in vitro growth characteristics of a transplantable rat pheochromocytoma, Cancer, vol.32, pp.227-235, 1973.

T. Yang, J. A. Martignetti, S. M. Massa, and F. M. Longo, Leucocyte commonantigen-related tyrosine phosphatase receptor: altered expression of mRNA and protein in the New England Deaconess Hospital rat line exhibiting spontaneous pheochromocytoma, Carcinogenesis, vol.21, pp.125-131, 2000.

T. S. Tanaka, S. A. Jaradat, M. K. Lim, G. J. Kargul, X. Wang et al., , 2000.

, Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray, Proc Natl Acad Sci, vol.97, pp.9127-9132

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem, vol.162, pp.156-159, 1987.

S. V. Allander, N. N. Nupponen, M. Ringner, G. Hostetter, G. W. Maher et al., Gastrointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile, Cancer Res, vol.61, pp.8624-8628, 2001.

L. Diatchenko, Y. Lau, A. P. Campbell, A. Chenchik, F. Moqadam et al., Siebert PD 1996 Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc Natl Acad Sci, vol.93, pp.6025-6030

P. Khatri, S. Draghici, G. C. Ostermeier, and S. A. Krawetz, Profiling gene expression using Onto-Express, Genomics, vol.79, pp.266-270, 2002.

M. Meyyappan, H. Wong, C. Hull, and K. T. Riabowol, Increased expression of cyclin D2 during multiple states of growth arrest in primary and established cells, Mol Cell Biol, vol.18, pp.3163-3172, 1998.

J. A. Bernal, R. Luna, A. Espina, I. Lázaro, F. Ramos-morales et al., Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis, Nat Genet, vol.32, pp.306-311, 2002.

R. S. Orre, M. A. Cotter, C. Subramanian, and E. S. Robertson, Prothymosin ? functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro, J Biol Chem, vol.276, pp.1794-1799, 2001.

P. J. Weber, C. P. Eckhard, S. Gonser, H. Otto, G. Folkers et al., On the role of thymopoietins in cell proliferation. Immunochemical evidence for new members of the human thymopoietin family, Biol Chem, vol.380, pp.653-660, 1999.

T. Huff, C. Mü-ller, A. M. Otto, R. Netzker, and E. Hannappel, ?-Thymosins, small acidic peptides with multiple functions, Int J Biochem Cell Biol, vol.33, pp.205-220, 2001.

P. Mukunyadzi, R. D. Sanderson, C. Y. Fan, and B. R. Smoller, The level of syndecan-1 expression is a distinguishing feature in behavior between keratoacanthoma and invasive cutaneous squamous cell carcinoma, Mod Pathol, vol.15, pp.45-49, 2002.

A. Danguy, I. Camby, and R. Kiss, Galectins and cancer, Biochim Biophys Acta, vol.1572, pp.285-293, 2002.

R. S. Guenette, S. Sridhar, M. Herley, M. Mooibroek, P. Wong et al., Embigin, a developmentally expressed member of the immunoglobulin super family, is also expressed during regression of prostate and mammary gland, Dev Genet, vol.21, pp.268-278, 1997.

S. Onoue, Y. Waki, Y. Nagano, S. Satoh, and K. Kashimoto, The neuromodulatory effects of VIP/PACAP on PC-12 cells are associated with their Nterminal structures, Peptides, vol.22, pp.867-872, 2001.

H. Schafer, A. Trauzold, T. Sebens, W. Deppert, U. R. Folsch et al., The proliferation-associated early response gene p22/PRG1 is a novel p53 target gene, Oncogene, vol.16, pp.2479-2487, 1998.

E. M. Ruaro, L. Collavin, D. Sal, G. Haffner, R. Oren et al., A proline-rich motif in p53 is required for transactivation-independent growth arrest as induced by Gas1, Proc Natl Acad Sci, vol.94, pp.4675-4680, 1997.

J. P. Rouault, N. Falette, F. Guehenneux, C. Guillot, R. Rimokh et al., Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway, Nat Genet, vol.14, pp.482-486, 1996.

J. Massagué, TGF-? signal transduction, Annu Rev Biochem, vol.67, pp.753-791, 1998.

H. Oka, J. L. Kulig, E. Scheithauer, B. W. Lloyd, and R. V. , Pituitary adenylate cyclase-activating polypeptide inhibits transforming growth factor-?1-induced apoptosis in a human pituitary adenoma cell line, Am J Pathol, vol.155, pp.1893-1900, 1999.

D. Vaudry, Y. Chen, A. Ravni, C. Hamelink, A. G. Elkahloun et al., Analysis of the PC12 cell transcriptome after differentiation with pituitary adenylate cyclase-activating polypeptide (PACAP), J Neurochem, vol.83, pp.1272-1284, 2002.

P. Masiakowski and E. M. Shooter, Changes in PC12 cell morphology induced by transfection with 42C cDNA, coding for a member of the S-100 protein family, J Neurosci Res, vol.27, pp.264-269, 1990.

S. D. Karam, R. C. Burrows, C. Logan, S. Koblar, E. B. Pasquale et al., Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration, J Neurosci, vol.20, pp.6488-6500, 2000.

K. Carles-kinch, K. E. Kilpatrick, J. C. Stewart, and M. S. Kinch, Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior, Cancer Res, vol.62, pp.2840-2847, 2002.

R. M. Hill, P. K. Parmar, L. C. Coates, E. Mezey, J. F. Pearson et al., Neuroserpin is expressed in the pituitary and adrenal glands and induces the extension of neurite-like processes in AtT-20 cells, Biochem J, vol.345, pp.595-601, 2000.

T. Kake, S. Kimura, K. Takahashi, and K. Maruyama, Calponin induces actin polymerization at low ionic strength and inhibits depolymerization of actin filaments, Biochem J, vol.312, pp.587-592, 1995.

J. R. Bamburg, A. Mcgough, and S. Ono, Putting a new twist on actin: ADF/ cofilins modulate actin dynamics, Trends Cell Biol, vol.9, pp.364-370, 1999.

B. G. Border, S. C. Lin, W. S. Griffin, S. Pardue, and M. Morrison-bogorad, Alterations in actin-binding ?-thymosin expression accompany neuronal differentiation and migration in rat cerebellum, J Neurochem, vol.61, pp.2104-2114, 1993.

G. Meyer and E. L. Feldman, Signaling mechanisms that regulate actin-based motility processes in the nervous system, J Neurochem, vol.83, pp.490-503, 2002.

V. Cioce, V. Castronovo, B. M. Shmookler, S. Garbisa, W. F. Grigioni et al., Sobel ME 1991 Increased expression of the laminin receptor in human colon cancer, J Natl Cancer Inst, vol.83, pp.29-36

K. Satoh, K. Narumi, T. Sakai, T. Abe, T. Kikuchi et al., Cloning of 67-kDa laminin receptor cDNA and gene expression in normal and malignant cell lines of the human lung, Cancer Lett, vol.62, pp.199-203, 1992.

K. Satoh, K. Narumi, M. Isemura, T. Sakai, T. Abe et al., Increased expression of the 67kDa-laminin receptor gene in human small cell lung cancer, Biochem Biophys Res Commun, vol.182, pp.746-752, 1992.

L. Mills, C. Tellez, S. Huang, C. Baker, M. Mccarty et al., Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma, Cancer Res, vol.62, pp.5106-5114, 2002.

J. Filmus and S. B. Selleck, Glypicans: proteoglycans with a surprise, J Clin Invest, vol.108, pp.497-501, 2001.

A. D. Bradshaw and E. H. Sage, SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury, J Clin Invest, vol.107, pp.1049-1054, 2001.

R. Kollmar, S. K. Nakamura, J. A. Kappler, and A. J. Hudspeth, Expression and phylogeny of claudins in vertebrate primordia, Proc Natl Acad Sci, vol.98, pp.10196-10201, 2001.

D. Vaudry, B. J. Gonzalez, M. Basille, T. F. Pamantung, M. Fontaine et al., The neuroprotective effect of pituitary adenylate cyclaseactivating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32, Proc Natl Acad Sci, vol.97, pp.13390-13395, 2000.

Y. Irie, K. Yamagata, Y. Gan, K. Miyamoto, E. Do et al., Molecular cloning and characterization of Amida, a novel protein which interacts with a neuron-specific immediate early gene product Arc, contains novel nuclear localization signals, and causes cell death in cultured cells, J Biol Chem, vol.275, pp.2647-2653, 2000.

O. Platoshyn, S. Zhang, S. S. Mcdaniel, and J. Yuan, Cytochrome c activates K ? channels before inducing apoptosis, Am J Physiol, vol.283, pp.1298-1305, 2002.