A. Guidotti, C. M. Forchetti, M. G. Corda, D. Konkel, C. D. Bennett et al., , 1983.

, Isolation, characterization and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors, Proc Natl Acad Sci, vol.80, pp.3531-3535

H. Marquardt, G. J. Todaro, and M. Shoyab, Complete amino acid sequences of bovine and human endozepines, J Biol Chem, vol.261, pp.9727-9731, 1986.

Z. W. Chen, B. Agerberth, K. Gell, M. Andersson, V. Mutt et al., Isolation and characterization of porcine diazepam-binding inhibitor, a polypeptide not only of cerebral occurrence but also common in intestinal tissues and with effects on regulation of insulin release, Eur J Biochem, vol.174, pp.239-245, 1988.

J. Knudsen, P. Hojrup, H. O. Hansen, H. F. Hansen, and P. Roepstorff, Acyl-CoA-binding protein in the rat, Biochem J, vol.262, pp.513-519, 1989.

T. M. Rose, E. R. Schultz, G. C. Sasaki, P. E. Kolattukudy, and M. Shoyab, Nucleotide sequence and genomic structure of duck acyl-CoA binding protein/ diazepam-binding inhibitor: co-localization with S-acyl fatty acid synthase thioesterase, DNA Cell Biol, vol.13, pp.669-678, 1994.

I. Lihrmann, J. C. Plaquevent, H. Tostivint, R. Raijmakers, M. C. Tonon et al., Frog diazepam-binding inhibitor: peptide sequence, cDNA cloning and expression in the brain, Proc Natl Acad Sci, vol.91, pp.6899-6903, 1994.

J. L. Chang and H. J. Tsai, Carp cDNA sequence encoding a putative diazepambinding inhibitor/endozepine/acyl-CoA-binding protein, Biochim Biophys Acta, vol.1298, pp.9-11, 1996.

E. Slobodyansky, A. Guidotti, C. Wambebe, A. Berkovich, and E. Costa, Isolation and characterization of a rat brain triakontatetraneuropeptide, a posttranslational product of diazepam binding inhibitor: specific action at the Ro5-4864 recognition site, J Neurochem, vol.53, pp.1276-1284, 1989.

A. Berkovich, P. Mc-phie, M. Campagnone, A. Guidotti, and P. Hensley, A natural processing product of rat diazepam binding inhibitor, triakontatetraneuropeptide (diazepam binding inhibitor 17-50) contains an ?-helix, which allows discrimination between benzodiazepine binding site subtypes, Mol Pharmacol, vol.37, pp.164-172, 1990.

P. Ferrero, M. R. Santi, B. Conti-tronconi, C. E. Guidotti, and A. , Study of an octadecaneuropeptide derived from diazepam binding inhibitor (DBI): biological activity and presence in rat brain, Proc Natl Acad Sci, vol.83, pp.827-831, 1986.

E. Slobodyansky, L. Antkiewicz-michaluk, and B. Martin, Purification of a novel DBI processing product, DBI 39 -75 , and characterization of its binding site in rat brain, Regul Pept, vol.50, pp.29-35, 1994.

H. Alho, R. T. Fremeau, H. Tiedge, J. Wilcox, P. Bovolin et al., Diazepam-binding inhibitor gene expression: location in brain and peripheral tissues of rat, Proc Natl Acad Sci, vol.85, pp.7018-7022, 1988.

P. Bovolin, J. Schlichting, M. Miyata, C. Ferrarese, A. Guidotti et al., Distribution and characterization of diazepam binding inhibitor (DBI) in peripheral tissues of rat, Regul Pept, vol.29, pp.267-281, 1990.

M. C. Tonon, L. Désy, P. Nicolas, H. Vaudry, and G. Pelletier, Immunocytochemical localization of the endogenous benzodiazepine ligand octadecaneuropeptide (ODN) in the rat brain, Neuropeptides, vol.15, pp.17-24, 1990.

H. Steyaert, M. C. Tonon, F. Smih-rouet, J. Testart, G. Pelletier et al., Distribution and characterization of endogenous benzodiazepine receptor ligand (endozepine)-like peptides in the rat gastrointestinal tract, Endocrinology, vol.129, pp.2101-2109, 1991.

Y. Tong, D. Toranzo, and G. Pelletier, Localization of diazepam-binding inhibitor (DBI) mRNA in the rat brain by high resolution in situ hybridization, Neuropeptides, vol.20, pp.33-40, 1991.

M. Malagon, H. Vaudry, F. Van-strien, G. Pelletier, F. Gracia-navarro et al., Ontogeny of diazepam-binding inhibitor-related peptides (endozepines) in the rat brain, Neuroscience, vol.57, pp.777-786, 1993.

M. C. Tonon, S. Adjeroud, M. Lamacz, E. Louiset, J. M. Danger et al., Central-type benzodiazepines and the octadecaneuropeptide modulate the effects of GABA on the release of ?-melanocytestimulating hormone from frog neurointermediate lobe in vitro, Neuroscience, vol.31, pp.485-493, 1989.

C. G. Ö-stenson, B. Ahren, S. Karlsson, J. Knudsen, and S. Efendic, Inhibition by rat diazepam-binding inhibitor/acyl-CoA-binding protein of glucose-induced insulin secretion in the rat, Eur J Endocrinol, vol.131, pp.201-204, 1994.

K. H. Herzig, . Schö-n-i, K. Tatemoto, Y. Ohe, Y. Li et al., Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine, Proc Natl Acad Sci, vol.93, pp.7927-7932, 1996.

D. Rego, J. L. Mensah-nyagan, A. G. Feuilloley, M. Ferrara, P. Pelletier et al., The endozepine triakontatetraneuropeptide diazepam-binding inhibitor [17-50] stimulates neurosteroid biosynthesis in the frog hypothalamus, Neuroscience, vol.83, pp.555-570, 1998.

D. Toranzo, Y. Tong, M. C. Tonon, H. Vaudry, and G. Pelletier, Localization of diazepam-binding inhibitor and peripheral type benzodiazepine binding sites in the rat ovary, Anat Embryol, vol.190, pp.383-388, 1994.

E. Rhéaume, M. C. Tonon, F. Smih, J. Simard, L. Désy et al., Localization of the endogenous benzodiazepine ligand octadecaneuropeptide (ODN) in the rat testis, Endocrinology, vol.127, pp.1986-1994, 1990.

V. Papadopoulos, A. Berkovich, K. E. Krueger, E. Costa, and A. Guidotti, Diazepam-binding inhibitor and its processing products stimulate mitochondrial steroid biosynthesis via an interaction with mitochondrial benzodiazepine receptors, Endocrinology, vol.129, pp.1481-1488, 1991.

K. Yanagibashi, Y. Ohno, N. Nakamichi, T. Matsui, K. Hayashida et al., Peripheral-type benzodiazepine receptors are involved in the regulation of cholesterol side chain cleavage in adrenocortical mitochondria, J Biochem, vol.106, pp.1026-1029, 1989.

M. Garnier, N. Boujrad, B. O. Oke, A. S. Brown, J. Riond et al., Diazepam binding inhibitor is a paracrine/autocrine regulator of Leydig cell proliferation and steroidogenesis: action via peripheral-type benzodiazepine receptor and independent mechanisms, Endocrinology, vol.132, pp.444-458, 1993.

O. Lesouhaitier, M. Feuilloley, I. Lihrmann, U. I. Fasolo, A. Tonon et al., Localization of diazepam-binding inhibitor-related peptides and peripheral type benzodiazepine receptors in the frog adrenal gland, Cell Tissue Res, vol.283, pp.403-412, 1996.

O. Lesouhaitier, M. Feuilloley, and H. Vaudry, Effect of the triakontatetraneuropeptide (TTN) on corticosteroid secretion by the frog adrenal gland, J Mol Endocrinol, vol.20, pp.45-53, 1998.

J. Leprince, P. Gandolfo, J. L. Thoumas, C. Patte, J. L. Fauchère et al., Structure-activity relationships of a series of analogues of the octa-FIG. 13. Schematic representation summarizing the mechanism of action of TTN in the frog adrenal gland. Activation of the TTN receptor increases adenylyl cyclase activity via a cholera toxin-sensitive G protein-coupled receptor. The resulting activation of a PKA causes stimulation of calcium influx through T-type calcium channels. Calcium entry is required for the stimulatory effect of TTN on corticosterone and aldosterone secretion. decaneuropeptide on calcium mobilization in rat astrocytes, J Med Chem, vol.41, pp.4433-4438, 1998.

L. Yon, N. Chartrel, M. Feuilloley, D. Marchis, S. et al., Pituitary adenylate cyclase-activating polypeptide stimulates both adrenocortical cells and chromaffin cells in the frog adrenal gland, Endocrinology, vol.135, pp.2749-2758, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02334686

M. Esneu, C. Delarue, A. Fournier, and H. Vaudry, Characterization of the receptor mediating the effect of calcitonin gene-related peptide in the frog adrenal gland, Eur J Pharmacol, vol.308, pp.187-193, 1996.

M. K. Kodjo, F. Leboulenger, P. Porcedda, M. Lamacz, J. M. Conlon et al., Evidence for the involvement of chromaffin cells in the stimulatory effect of tachykinins on corticosteroid secretion by the frog adrenal gland, Endocrinology, vol.136, pp.3253-3259, 1995.

P. Leroux, C. Delarue, F. Leboulenger, S. Jégou, M. C. Tonon et al., Development and characterization of a radioimmunoassay technique for aldosterone. Application to the study of aldosterone output from perifused frog interrenal tissue, J Steroid Biochem, vol.12, pp.473-478, 1980.

F. Leboulenger, C. Delarue, A. Bélanger, I. Perroteau, P. Netchitaïlo et al., Direct radioimmunoassay for plasma corticosterone and aldosterone in frog. I. Validation of the methods and evidence for daily rhythms in a natural environment, Gen Comp Endocrinol, vol.46, pp.521-532, 1982.

M. Feuilloley, P. Netchitaïlo, C. Delarue, F. Leboulenger, M. Benyamina et al., Involvement of the cytoskeleton in the steroidogenic response of frog adrenal glands to angiotensin II, acetylcholine and serotonin, J Endocrinol, vol.118, pp.365-374, 1988.

V. Contesse, C. Hamel, H. Lefebvre, A. Dumuis, H. Vaudry et al., Activation of 5-hydroxytryptamine 4 receptors causes calcium influx in adrenocortical cells: involvement of calcium in 5-hydroxytryptamine-induced steroid secretion, Mol Pharmacol, vol.49, pp.481-493, 1996.

A. Larcher, M. Lamacz, C. Delarue, and H. Vaudry, Effect of vasotocin on cytosolic free calcium concentrations in frog adrenocortical cells in primary culture, Endocrinology, vol.131, pp.1087-1093, 1992.

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, A new generation of Ca 2? indicators with greatly improved fluorescence properties, J Biol Chem, vol.260, pp.3440-3450, 1985.

F. Cartier, C. Delarue, R. Kodjo, M. K. Fournier, A. Vaudry et al., , 1999.

, The stimulatory effect of endothelin-1 on frog adrenocortical cells is mediated through both the phospholipase C and the adenylyl cyclase pathways, Mol Cell Endocrinol, vol.147, pp.27-36

N. Gallo-payet and G. Guillon, Regulation of adrenocortical function by vasopressin, Horm Metab Res, vol.30, pp.360-367, 1998.

A. Haidan, S. R. Bornstein, A. Glasow, K. Uhlmann, C. Lü-bke et al., Basal steroidogenic activity of adrenocortical cells is increased 10-fold by coculture with chromaffin cells, Endocrinology, vol.139, pp.772-780, 1998.

S. R. Bornstein and H. Vaudry, Paracrine and neuroendocrine regulation of the adrenal gland. Basic and clinical aspects, Horm Metab Res, vol.30, pp.292-296, 1998.

C. Patte, H. Vaudry, L. Desrues, P. Gandolfo, I. Strijdveen et al., The endozepine ODN stimulates polyphosphoinositide metabolism in rat astrocytes, FEBS Lett, vol.362, pp.106-110, 1995.

E. Tremblay, M. D. Payet, and N. Gallo-payet, Effects of ACTH and angiotensin II on cytosolic calcium in cultured adrenal glomerulosa cells. Role of cAMP production in the ACTH effect, Cell Calcium, vol.12, pp.655-673, 1991.

V. Perraudin, C. Delarue, D. Keyzer, Y. Bertagna, X. Kuhn et al., Vasopressin-responsive adrenocortical tumor in a mild Cushing's syndrome: in vivo and in vitro studies, J Clin Endocrinol Metab, vol.80, pp.2661-2667, 1995.

M. K. Kodjo, F. Leboulenger, J. M. Conlon, and H. Vaudry, Effect of ranakinin, a novel tachykinin, on cytosolic free calcium in frog adrenochromaffin cells, Endocrinology, vol.136, pp.4535-4542, 1995.

M. F. Rossier, E. A. Ertel, M. B. Vallotton, and A. M. Capponi, Inhibitory action of mibefradil on calcium signaling and aldosterone synthesis in bovine adrenal glomerulosa cells, J Pharmacol Exp Ther, vol.287, pp.824-831, 1998.

X. L. Chen, D. A. Bayliss, R. J. Fern, and P. Q. Barrett, A role for T-type Ca 2? channels in the synergistic control of aldosterone production by ANG II and K ?, Am J Physiol, vol.276, pp.674-683, 1999.

M. F. Rossier, M. M. Burnay, M. B. Vallotton, and A. M. Capponi, Distinct functions of T-and L-type calcium channels during activation of bovine adrenal glomerulosa cells, Endocrinology, vol.137, pp.4817-4826, 1996.

M. Esneu, N. Gallo-payet, and M. D. Payet, Mibefradil, a T-type calcium channel antagonist in Y1 cells, Endocr Res, vol.24, pp.449-454, 1998.

J. J. Enyeart and J. A. Enyeart, Activation of separate calcium and A-kinasedependent pathways by ACTH, Endocr Res, vol.24, pp.325-334, 1998.