A. Miyata, A. Arimura, and R. Dahl, Isolation of a novel 38-residues hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells, Biochem Biophys Res Commun, vol.164, pp.567-574, 1989.

A. Miyata, L. Jiang, and R. Dahl, Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase-activating polypeptide with 38-residues (PACAP 38), Biochem Biophys Res Commun, vol.170, pp.643-648, 1990.

A. Arimura, Pituitary adenylate cyclase-activating polypeptide (PACAP): discovery and current status of research, Regul Pept, vol.37, pp.287-303, 1992.

N. Chartrel, M. C. Tonon, H. Vaudry, and J. M. Conlon, Primary structure of frog pituitary adenylate cyclase-activating polypeptide (PACAP) and effects of ovine PACAP on frog pituitary, Endocrinology, vol.129, pp.3367-3371, 1991.

S. R. Rawlings and M. Hezareh, Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: action on the anterior pituitary gland, Endocr Rev, vol.17, pp.4-29, 1996.

C. J. , Type I receptors for PACAP (a neuropeptide even more important than VIP?), Biochim Biophys Acta, vol.1154, pp.183-199, 1993.

A. Arimura and S. Shioda, Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction, Front Neuroendocrinol, vol.16, pp.53-88, 1995.

T. Ishihara, R. Shigemoto, K. Mori, K. Takahashi, and S. Nagata, Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide, Neuron, vol.8, pp.811-819, 1992.

E. M. Lutz, W. J. Sheward, K. M. West, J. A. Morrow, G. Fink et al., The VIP-2 receptor: molecular characterization of a cDNA encoding a novel receptor for vasoactive intestinal polypeptide, FEBS Lett, vol.33, pp.3-8, 1993.

D. Spengler, C. Waeber, and C. Pantaloni, Differential signal transduction by five splice variants of the PACAP receptor, Nature, vol.365, pp.170-175, 1993.

M. A. Ghatei, K. Takahashi, Y. Suzuki, J. Gardiner, P. M. Jones et al., , 1993.

, Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues, J Endocrinol, vol.36, pp.159-166

L. Yon, M. Feuilloley, N. Chartrel, A. Arimura, A. Fournier et al., , 1993.

, Localization, characterization and activity of pituitary adenylate cyclase-activating polypeptide in the frog adrenal gland, J Endocrinol, vol.139, pp.183-194

A. Tabarin, D. Chen, R. Håkanson, and F. Sundler, Pituitary adenylate cyclaseactivating peptide in the adrenal gland of mammals: distribution, characterization and responses to drugs, Neuroendocrinology, vol.59, pp.113-119, 1994.

Y. Masuo, F. Tokito, Y. Matsumoto, N. Shimamoto, and M. Fujino, Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) and its binding sites in the rat brain, Neurosci Lett, vol.170, pp.43-46, 1994.

I. Tatsuno, A. Somogyvari-vigh, and A. Arimura, Developmental changes of pituitary adenylate cyclase-activating polypeptide (PACAP) ands its receptors in the rat brain, Peptides, vol.15, pp.55-60, 1994.

M. Basille, B. J. Gonzalez, P. Leroux, L. Jeandel, A. Fournier et al., Localization and characterization of PACAP receptors in the rat cerebellum during development: evidence for a stimulatory effect of PACAP on immature cerebellar granule cells, Neuroscience, vol.57, pp.329-338, 1993.

M. Basille, B. J. Gonzalez, A. Fournier, and H. Vaudry, Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the rat cerebellum: a quantitative autoradiographic study, Dev Brain Res, vol.82, pp.81-89, 1994.

B. J. Gonzalez, M. Basille, D. Vaudry, A. Fournier, and H. Vaudry, Pituitary adenylate cyclase-activating polypeptide (PACAP) promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts, Neuroscience, vol.78, pp.419-430, 1997.

H. Matsumoto, C. Koyama, and T. Sawada, Pituitary folliculostellate-like cell line (TtT/GF) responds to novel hypophysiotropic peptide (pituitary adenylate cyclase-activating polypeptide), showing increased adenosine 3?, 5?-monophosphate and interleukin-6 secretion and cell proliferation. Endocrinology, vol.133, pp.2150-2155, 1993.

B. Shivers, T. Gö-rcs, and P. Gottschall, Two high-affinity binding sites for pituitary adenylate cyclase-activating polypeptide (PACAP) have different tissue distribution, Endocrinology, vol.128, pp.3055-3065, 1991.

T. Watanabe, Y. Masuo, and H. Matsumoto, Pituitary adenylate cyclaseactivating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline, Biochem Biophys Res Commun, vol.182, pp.403-411, 1992.

K. Moller and F. Sundler, Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP type I receptors in the rat adrenal medulla, Regul Pept, vol.63, pp.129-139, 1996.

M. Frö-din, H. J. Wulff, B. S. Gammeltoft, S. Fahrenkrug, and J. , Neuronal localization of pituitary adenylate cyclase-activating polypeptide-38 in the adrenal medulla and growth inhibitory effect on chromaffin cells, Neuroscience, vol.65, pp.599-608, 1995.

A. S. Tischler, J. C. Riseberg, and R. Gray, Mitogenic and antimitogenic effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in adult rat chromaffin cell cultures, Neurosci Lett, vol.189, pp.135-138, 1995.

N. Wolf and K. Krieglstein, Phenotypic development of neonatal rat chromaffin cells in response to adrenal growth factors and glucocorticoids: focus on pituitary adenylate cyclase-activating polypeptide, Neurosci Lett, vol.200, pp.207-210, 1995.

J. Winter, Fetal and neonatal adrenocortical development, The adrenal gland, pp.159-189, 1992.

J. Bocian-sobkowska, L. K. Malendowicz, and T. Wozniak, Cytological aspects of the human adrenal cortex development in the course of intra-uterine life, Histol Histopathol, vol.8, pp.725-730, 1993.

M. J. Cooper, G. M. Hutchins, and M. A. Israel, Histogenesis of the human adrenal medulla, Am J Pathol, vol.137, pp.605-615, 1990.

M. Ehrhart-bornstein, M. Breidert, and P. Guadanucci, 17?-hydroxylase and chromogranin A in 6th week human fetal adrenals, Horm Metab Res, vol.29, pp.30-32, 1997.

N. Chartrel, J. M. Conlon, J. M. Danger, A. Fournier, M. C. Tonon et al., Characterization of melanotropin release-inhibiting factor (melanostatin) from frog brain: homology with human neuropeptide Y, Proc Natl Acad Sci, vol.6, pp.249-255, 1991.

A. Laquerrière, P. Leroux, B. Gonzalez, C. Bodenant, R. Benoit et al., Distribution of somatostatin receptors in the brain of the frog Rana ridibunda: correlation with the localization of somatostatin-containing neurons, J Comp Neurol, vol.280, pp.451-467, 1989.

L. Yon, N. Chartrel, and M. Feuilloley, Pituitary adenylate cyclaseactivating polypeptide stimulates both adrenocortical cells and chromaffin cells in the frog adrenal gland, Endocrinology, vol.135, pp.2749-2758, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02334686

G. L. Streeter, Weight, sitting height, head size, foot length and menstrual age of the human embryo, Contr Embryol, vol.11, pp.143-179, 1920.

P. Leroux, B. J. Gonzalez, C. Bucharles, and H. Vaudry, Autoradiographic study of somatostatin receptors in the rat cerebellum, Methods Neurosci, vol.5, pp.538-553, 1991.

L. Breault, J. G. Lehoux, and N. Gallo-payet, The angiotensin AT2 receptor is present in the fetal human adrenal gland throughout the second trimester of gestation, J Clin Endocrinol Metab, vol.81, pp.3914-3922, 1996.

N. Gallo-payet and M. D. Payet, Excitation-secretion coupling: involvement of potassium channels in ACTH-stimulated rat adrenocortical cells, J Endocrinol, vol.120, pp.409-421, 1989.

Y. Salomon, C. Londos, and M. Rodbell, A highly sensitive adenylate cyclase assay, Anal Biochem, vol.58, pp.541-548, 1974.

N. Gallo-payet, G. Guillon, M. N. Balestre, and S. Jard, Vasopressin induces breakdown of membrane phosphoinositides in adrenal glomerulosa and fasciculata cells, Endocrinology, vol.19, pp.1042-1047, 1986.

W. M. Molenaar, V. Lee, and J. Q. Trojanowski, Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins, Exp Neurol, vol.108, pp.1-9, 1990.

G. Mazzochi, L. K. Malendowicz, V. Meneghelli, G. Gottardo, and G. G. Nussdorfer, Vasoactive intestinal polypeptide (VIP) stimulates hormonal secretion of the rat adrenal cortex in vitro: evidence that adrenal chromaffin cells are involved in the mediation of the mineralocorticoid, but not glucocorticoid secretagogue action of VIP, Biomed Res, vol.14, pp.435-440, 1993.

J. P. Hinson, M. M. Ho, G. P. Vinson, and S. Kapas, Vasoactive intestinal peptide is a local regulator of adrenocortical function, Endocr Res, vol.22, pp.831-838, 1996.

S. R. Bornstein, A. Haidan, and M. Ehrhart-bornstein, Cellular communication in the neuro-adrenocortical axis: role of vasoactive intestinal polypeptide (VIP), Endocr Res, vol.22, pp.819-829, 1996.

K. Isobe, T. Nakai, and Y. Takuwa, Ca 2? -dependent stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine secretion from cultured porcine adrenal medullary chromaffin cells, Endocrinology, vol.132, pp.1757-1765, 1993.

J. R. Pisegna and S. A. Wank, Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclaseactivating polypeptide receptor, J Biol Chem, vol.271, pp.17267-17274, 1996.

P. D. Marley, C. Y. Cheung, K. A. Thomson, and R. Murphy, Activation of tyrosine hydroxylase by pituitary adenylate cyclase-activating polypeptide (PACAP-27) in bovine adrenal chromaffin cells, J Auton Nerv Syst, vol.60, pp.141-146, 1996.

G. Neri, P. Andreis, T. Prayer-galetti, G. Rossi, L. Malendowicz et al., Pituitary adenylate cyclase-activating polypeptide enhances aldosterone secretion of human adrenal gland: evidence for an indirect mechanism, probably involving the local release of catecholamines, J Clin Endocrinol Metab, vol.81, pp.169-173, 1996.

N. Gallo-payet, P. Pothier, and H. Isler, On the presence of chromaffin cells in the adrenal cortex: their possible role in adrenocortical function, Biochem Cell Biol, vol.65, pp.588-592, 1987.

S. R. Bornstein, J. A. Gonzalez-hernandez, M. Ehrhart-bornstein, G. Adler, and W. A. Scherbaum, Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions, J Clin Endocrinol Metab, vol.78, pp.225-232, 1994.

P. J. Deutsch, V. C. Shadlow, and N. Barzilai, 38-amino acid form of pituitary adenylate cyclase-activating polypeptide induces process outgrowth in human neuroblastoma cells, J Neurosci Res, vol.35, pp.312-320, 1993.

D. Vaudry, B. J. Gonzalez, M. Basille, Y. Anouar, A. Fournier et al., PACAP stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway, Neuroscience, vol.84, pp.801-812, 1998.

P. J. Deutsch and Y. Sun, The 38-amino acid form of pituitary adenylate cyclaseactivating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth, J Biol Chem, vol.267, pp.5108-5113, 1992.