C. Steindler, Z. Li, M. Algarté, A. Alcover, and V. Libri, Jamip1 (marlin-1) defines a family of proteins interacting with janus kinases and microtubules, J Biol Chem, vol.279, p.15277531, 2004.

R. L. Vidal, O. A. Ramírez, L. Sandoval, R. Koenig-robert, and S. Härtel, Marlin-1 and conventional kinesin link GABAB receptors to the cytoskeleton and regulate receptor transport, Mol Cell Neurosci, vol.35, p.17532644, 2007.

R. L. Vidal, J. I. Valenzuela, R. Luján, and A. Couve, Cellular and subcellular localization of Marlin-1 in the brain, BMC Neurosci, vol.10, p.19386132, 2009.

R. L. Vidal, P. Fuentes, J. I. Valenzuela, C. P. Alvarado-diaz, and O. A. Ramírez, RNA interference of Marlin-1/Jakmip1 results in abnormal morphogenesis and migration of cortical pyramidal neurons, Mol Cell Neurosci, vol.51, p.22828129, 2012.

D. Cruz-garcia, R. Vazquez-martinez, J. R. Peinado, Y. Anouar, and M. C. Tonon, Identification and characterization of two novel (neuro)endocrine long coiled-coil proteins, FEBS Lett, vol.581, p.17572408, 2007.

D. Cruz-garcía, A. Díaz-ruiz, Y. Rabanal-ruiz, J. R. Peinado, and F. Gracia-navarro, The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells, Biochem J, vol.443, p.22250954, 2012.

A. Rose and I. Meier, Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins, Cell Mol Life Sci, vol.61, p.15316650, 1996.

A. K. Gillingham and S. Munro, Long coiled-coil proteins and membrane traffic, Biochim Biophys Acta, vol.1641, pp.71-85, 2003.

S. Schoch and E. D. Gundelfinger, Molecular organization of the presynaptic active zone, Cell Tissue Res, vol.326, pp.379-391, 2006.

Y. Hida and T. Ohtsuka, CAST and ELKS proteins: structural and functional determinants of the presynaptic active zone, J Biochem, vol.148, p.20581014, 2010.

I. B. Ramirez and M. Lowe, Golgins and GRASPs: holding the Golgi together, Semin Cell Dev Biol, vol.20, p.19508854, 2009.

C. G. Hansen and B. J. Nichols, Exploring the caves: cavins, caveolins and caveolae, Trends Cell Biol, vol.20, pp.177-186, 2010.

C. M. Thomas and E. J. Smart, Caveolae structure and function, J Cell Mol Med, vol.12, pp.796-809, 2008.

P. Strålfors, Caveolins and caveolae, roles in insulin signalling and diabetes, Adv Exp Med Biol, vol.729, p.22411317, 2012.

S. Peiró, J. X. Comella, C. Enrich, D. Martín-zanca, and N. Rocamora, PC12 cells have caveolae that contain TrkA. Caveolae-disrupting drugs inhibit nerve growth factor-induced, but not epidermal growth factorinduced, MAPK phosphorylation, J Biol Chem, vol.275, p.10982788, 2000.

C. S. Huang, J. Zhou, A. K. Feng, C. C. Lynch, and J. Klumperman, Nerve growth factor signaling in caveolae-like domains at the plasma membrane, J Biol Chem, vol.274, p.10593976, 1999.

A. Reynolds, D. Leake, Q. Boese, S. Scaringe, and W. S. Marshall, Rational siRNA design for RNA interference, Nat Biotechnol, vol.22, p.14758366, 2004.

A. Béglé, P. Tryoen-tóth, J. De-barry, M. F. Bader, and N. Vitale, ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells, J Biol Chem, vol.284, p.19124467, 2009.

F. Rodríguez-pacheco, R. Vázquez-martínez, A. J. Martínez-fuentes, M. R. Pulido, and M. D. Gahete, Resistin regulates pituitary somatotrope cell function through the activation of multiple signaling pathways, Endocrinology, vol.150, pp.4643-4652, 2009.

J. Couet, L. Shengwen, T. Okamoto, P. E. Scherer, and M. P. Lisanti, Molecular and cellular biology of caveolae paradoxes and plasticities, Trends Cardiovasc Med, vol.7, issue.97, p.21235872, 1997.

R. M. Epand, Proteins and cholesterol-rich domains, Biochim Biophys Acta, vol.1778, p.18423371, 2008.

D. E. Gordon, M. Mirza, D. A. Sahlender, J. Jakovleska, and A. A. Peden, Coiled-coil interactions are required for post-Golgi R-SNARE trafficking, EMBO Rep, vol.10, p.19557002, 2009.

B. D. Manning and L. C. Cantley, AKT/PKB signaling: navigating downstream, Cell, vol.129, p.17604717, 2007.

A. Hayer, M. Stoeber, C. Bissig, and A. Helenius, Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes, Traffic, vol.11, pp.361-382, 2010.

T. Kaneko, L. Li, and S. S. Li, The SH3 domain--a family of versatile peptide-and protein-recognition module, Front Biosci, vol.13, p.18508559, 2008.

C. A. Hanson, K. R. Drake, M. A. Baird, B. Han, and L. J. Kraft, Overexpression of caveolin-1 is sufficient to phenocopy the behavior of a disease-associated mutant, Traffic, 2013.

E. J. Jung and C. W. Kim, Caveolin-1 inhibits TrkA-induced cell death by influencing on TrkA modification associated with tyrosine-490 phosphorylation, Biochem Biophys Res Commun, vol.402, p.20977883, 2010.

J. H. Chidlow and W. C. Sessa, Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation, Cardiovasc Res, vol.86, p.20202978, 2010.

N. Briand, I. Dugail, L. Lay, and S. , Cavin proteins: New players in the caveolae field, Biochimie, vol.93, p.20363285, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01389574

P. Thomsen, K. Roepstorff, M. Stahlhut, and B. Van-deurs, Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking, Mol Biol Cell, vol.13, p.11809836, 2002.

G. R. Chichili and W. Rodgers, Cytoskeleton-membrane interactions in membrane raft structure, Cell Mol Life Sci, vol.66, pp.2319-2328, 2009.

D. I. Mundy, T. Machleidt, Y. S. Ying, R. G. Anderson, and G. S. Bloom, Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton, J Cell Sci, vol.115, p.12376564, 2002.

R. M. Epand, B. G. Sayer, and R. F. Epand, Caveolin scaffolding region and cholesterol-rich domains in membranes, J Mol Biol, vol.345, p.15571726, 2005.

B. M. Collins, M. J. Davis, J. F. Hancock, and R. G. Parton, Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions?, Dev Cell, vol.23, p.22814599, 2012.

Y. Wang, X. Liu, T. Biederer, and T. C. Südhof, A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones, Proc Natl Acad Sci U S A, vol.99, p.12391317, 2002.

B. S. Glick and A. Nakano, Membrane traffic within the Golgi apparatus, Annu Rev Cell Dev Biol, vol.25, p.19575639, 2009.

S. Suzuki, T. Numakawa, K. Shimazu, H. Koshimizu, and T. Hara, BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: roles in synaptic modulation, J Cell Biol, vol.167, p.15596541, 2004.

M. Schmitz, S. Klöppner, S. Klopfleisch, W. Möbius, and P. Schwartz, Mutual effects of caveolin and nerve growth factor signaling in pig oligodendrocytes, J Neurosci Res, vol.88, pp.572-588, 2010.

S. Pryor, G. Mccaffrey, L. R. Young, and M. L. Grimes, NGF causes TrkA to specifically attract microtubules to lipid rafts, PLOS ONE, vol.7, p.22496904, 2012.

M. G. Tansey, R. H. Baloh, J. Milbrandt, and E. M. Johnson, GFRalphamediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival, Neuron, vol.25, pp.611-623, 2000.

A. S. Limpert, J. C. Karlo, and G. E. Landreth, Nerve growth factor stimulates the concentration of TrkA within lipid rafts and extracellular signal-regulated kinase activation through c-Cbl-associated protein, Mol Cell Biol, vol.27, p.17548467, 2007.

T. Yu, L. Calvo, B. Anta, S. López-benito, and E. Southon, Regulation of trafficking of activated TrkA is critical for NGF-mediated functions, Traffic, vol.12, pp.521-534, 2011.

L. F. Reichardt, Neurotrophin-regulated signalling pathways, Philos Trans R Soc Lond B Biol Sci, vol.361, p.16939974, 2006.

J. C. Arévalo and S. H. Wu, Neurotrophin signaling: many exciting surprises!, Cell Mol Life Sci, vol.63, pp.1523-1537, 2006.

A. M. Mackay, A. M. Ainsztein, D. M. Eckley, and W. C. Earnshaw, A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis, J Cell Biol, vol.140, p.9490714, 1998.

T. R. Bilderback, V. R. Gazula, M. P. Lisanti, and R. T. Dobrowsky, Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways, J Biol Chem, vol.274, p.9867838, 1999.

F. C. Bronfman, C. A. Escudero, J. Weis, and A. Kruttgen, Endosomal transport of neurotrophins: roles in signaling and neurodegenerative diseases, Dev Neurobiol, vol.67, p.17514710, 2007.

S. Kao, R. K. Jaiswal, W. Kolch, and G. E. Landreth, Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells, J Biol Chem, vol.276, p.11278445, 2001.

J. C. Arévalo, H. Yano, K. K. Teng, and M. V. Chao, A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membranespanning protein, EMBO J, vol.23, p.15167895, 2004.

H. Kouhara, Y. R. Hadari, T. Spivak-kroizman, J. Schilling, and D. Bar-sagi, A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway, Cell, vol.89, pp.693-702, 1997.

J. C. Arévalo, D. B. Pereira, H. Yano, K. K. Teng, and M. V. Chao, Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation, J Biol Chem, vol.281, p.16284401, 2006.

S. O. Meakin, J. I. Macdonald, E. A. Gryz, C. J. Kubu, and J. M. Verdi, The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation, J Biol Chem, vol.274, p.10092678, 1999.

E. Sztul and V. Lupashin, Role of vesicle tethering factors in the ER-Golgi membrane traffic, FEBS Lett, vol.583, pp.3770-3783, 2009.

B. Goud and P. A. Gleeson, TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways, Trends Cell Biol, vol.20, p.20227882, 2010.

M. Zürner and S. Schoch, The mouse and human Liprin-alpha family of scaffolding proteins: genomic organization, expression profiling and regulation by alternative splicing, Genomics, vol.93, p.19013515, 2009.

Y. Dai, H. Taru, S. L. Deken, B. Grill, and B. Ackley, SYD-2 Liprinalpha organizes presynaptic active zone formation through ELKS, Nat Neurosci, vol.9, p.17115037, 2006.

C. M. Stern and P. G. Mermelstein, Caveolin regulation of neuronal intracellular signaling, Cell Mol Life Sci, vol.67, pp.3785-3795, 2010.

J. E. Braun and D. V. Madison, A novel SNAP25-caveolin complex correlates with the onset of persistent synaptic potentiation, J Neurosci, vol.20, p.10934248, 2000.

J. Bu, S. R. Bruckner, T. Sengoku, J. W. Geddes, and S. Estus, Glutamate regulates caveolin expression in rat hippocampal neurons, J Neurosci Res, vol.72, p.12671992, 2003.

S. B. Gaudreault, J. F. Blain, J. P. Gratton, and J. Poirier, A role for caveolin-1 in post-injury reactive neuronal plasticity, J Neurochem, vol.92, pp.831-839, 2005.