A ROBUST LINK BETWEEN D-SERINE AND AMYLOID PATHOLOGY IN A MOUSE MODEL
E Ploux, L. Gorisse, I Radzishevsky, H Wolosker, Thomas Freret, Jean-Marie Billard

To cite this version:
E Ploux, L. Gorisse, I Radzishevsky, H Wolosker, Thomas Freret, et al.. A ROBUST LINK BETWEEN D-SERINE AND AMYLOID PATHOLOGY IN A MOUSE MODEL. 4th International Conference of D-Amino Acid Research, Sep 2019, Tokyo, Japan. hal-02331029

HAL Id: hal-02331029
https://hal-normandie-univ.archives-ouvertes.fr/hal-02331029
Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A ROBUST LINK BETWEEN D-SERINE AND AMYLOID PATHOLOGY IN A MOUSE MODEL

Eva PLOUX¹, Lucile GORISSE², Inna RADZISHEVSKY³, Herman WOLOSKER², Thomas FRERET², Jean-Marie BILLARD²

¹Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France
²Department of biochemistry, Technion, Israel Institute of Technology, Haifa, Israel

N-methyl-D-aspartate receptor (NMDAr) plays a crucial role in neuronal plasticity and higher brain functions such as memory and learning. Its activation requires, additionally to glutamate, binding of a coagonist, such as D-serine. NMDAr are affected by the β-amyloid (Aβ) pathology and growing number of evidences suggest an involvement of D-serine in plasticity and cognitive-related impairments. Therefore, transgenic 5xFAD mice (bearing 5 familial Alzheimer disease-linked mutations) which shows accentuated amyloidogenesis, was crossed with mice having a deletion of the gene coding for Serine-Racemase (SR), converting L- into D-serine, to generate a bicianic line of mice: 5xFAD/SR⁻/⁻.

To assess the role of D-serine within Aβ-induced alterations, transgenic lines of mice (10-12 months old) were compared through a combined approach (gathering biochemical analyses, hippocampal-dependent behavioral tests and extracellular electrophysiological recordings at CA3/CA1 hippocampal synapses).

Transgenic mouse line comparison

- WT
- 5xFAD
- 5xFAD/SR⁻/⁻

Data are expressed in mean ± sem

- Univariate test: p<0.05 vs 5xFAD
- ANOVA one-way: * p<0.05 vs WT
- ANOVA repeated measures: & p<0.05 vs WT

Behavior

- **Spontaneous alternative test**
 - Morris Water Maze
 - Learning
 - Probe-test 1: 8 trials of 60 sec/day
 - Probe-test 2: 8 trials of 60 sec/day
 - Worst to best session: Platform was removed and mice were free to explore the whole maze during 60 sec.

- **Relearning**
 - Learning
 - Probe-test: 4 trials of 60 sec/day
 - Platform was removed and mice were free to explore the entire maze during 60 sec.

- No genotype difference of swimming distance was observed.

- No genotype difference of swimming distance was observed.

Ex vivo electrophysiological recording

- Extracellular recording in CA1 stratum radiatum of hippocampal slices
 - High frequency stimulation (HFS)-induced long-term potentiation (LTP)

Biochemical analyses

- Hippocampal expression of Serine-Racemase and D-serine level

 - No expression of Serine Racemase in SR⁻/⁻ and bicianic mice, agreeing with the very low level of D-serine in these lines.

 - Of note, higher levels of D-serine were noticeable in 5xFAD mice (compared to WT).

- Hippocampal Aβ₁₋₄₂ level

 - Slight – but non significant – decrease of Aβ₄₂ in bicianic mice (compared to 5xFAD)

Results

- Altogether, these results highlight critical involvement of D-serine in Aβ-induced hippocampal network dysfunctions and related cognitive disabilities.