A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res, pp.41-399, 2011.

D. K. Macdonald, Thermoelectricity: An Introduction to the Principles

C. B. Vining, An inconvenient truth about thermoelectrics, Nat. Mater, vol.8, pp.83-85, 2009.

J. Yang and T. Caillat, Thermoelectric materials for space and automotive power generation, MRS Bull, vol.31, pp.224-229, 2006.

K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Oxide thermoelectric materials: a nanostructuring approach, Annu. Rev. Mater. Res, vol.40, pp.363-394, 2010.

H. Wang, W. Su, J. Liu, and C. Wang, Recent development of ntype perovskite thermoelectrics, J. Materiomics, vol.2, pp.225-236, 2016.

Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang et al., Thermoelectric Power Generation from Lanthanum Strontium Titanium Oxide at Room Temperature through the Addition of Graphene, ACS Appl. Mater. Interfaces, vol.7, pp.15898-15908, 2015.

Z. Lu, H. Zhang, W. Lei, D. C. Sinclair, and I. M. Reaney, High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO 3 Ceramics, Chem. Mater, vol.28, pp.925-935, 2016.

S. Ohta, H. Ohta, and K. Koumoto, Grain size dependence of thermoelectric performance of Nb-doped SrTiO 3 polycrystals, J. Ceram. Soc. Jpn, vol.114, pp.102-105, 2006.

A. V. Kovalevsky, A. A. Yaremchenko, S. Populoh, A. Weidenkaff, and J. R. Frade, Effect of A-Site Cation Deficiency on the Thermoelectric Performance of Donor-Substituted Strontium Titanate, J. Phys. Chem. C, vol.118, pp.4596-4606, 2014.

B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer et al., High thermoelectric performance of Nbdoped SrTiO 3 bulk materials with different doping levels, J. Mater. Chem. C, pp.3-11406, 2015.

J. Wang, X. Ye, X. Yaer, B. Zhang, W. Ma et al., High thermoelectric performance of niobium-doped strontium titanate bulk material affected by all-scale grain boundary and inclusions, Scr. Mater, vol.99, pp.25-28, 2015.

J. Wang, B. Zhang, H. Kang, Y. Li, X. Yaer et al., Record high thermoelectric performance in bulk SrTiO 3 via nano-scale modulation doping, Nano Energy, vol.35, pp.387-395, 2017.

D. Srivastava, C. Norman, F. Azough, M. C. Schafer, E. Guilmeau et al., Improving the thermoelectric properties of SrTiO 3 -based ceramics with metallic inclusions, J. Alloys Compd, vol.731, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02174382

H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura et al., Giant thermoelectric Seebeck coefficient of a twodimensional electron gas in SrTiO 3, Nat. Mater, vol.6, pp.129-134, 2007.

G. A. Slack and M. A. Hussain, The maximum possible conversion efficiency of silicon-germanium thermoelectric generators, J. Appl. Phys, vol.70, 1991.

L. Zhao, B. Zhang, W. Liu, and J. Li, Effect of mixed grain sizes on thermoelectric performance of Bi 2 Te 3 compound, J. Appl. Phys, p.23704, 2009.

K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff et al., Thermoelectric Ceramics for Energy Harvesting, J. Am. Ceram. Soc, vol.96, pp.1-23, 2013.

C. Bae, J. Park, and Y. Kim, Effect of Powder Characteristics on the Microstructure and Electrical Property of Nb-doped SrTiO 3, J. Kor. Phys. Soc, vol.32, pp.296-298, 1998.

C. Bae, J. Park, Y. Kim, and H. Jeon, Abnormal Grain Growth of Niobium-Doped Strontium Titanate Ceramics, J. Am. Ceram. Soc, vol.81, pp.3005-3009, 1998.

H. Lee, J. Kim, and D. Kim, Fabrication of BaTiO 3 single crystals using secondary abnormal grain growth, J. Eur. Ceram. Soc, vol.20, pp.1595-1597, 2000.

, ACS Sustainable Chemistry & Engineering Letter

, ACS Sustainable Chem. Eng, vol.6, pp.15988-15994, 2018.

E. Alleno, D. Be?ardan, C. Byl, C. Candolfi, R. Daou et al., Article: A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co 0.97 Ni 0.03 Sb 3, Rev. Sci. Instrum, vol.86, p.11301, 2015.

T. Mitsui and W. B. Westphal, Dielectric and X-Ray Studies of Ca x Ba 1-x TiO 3 and Ca x Sr 1-x TiO 3, Phys. Rev, vol.124, pp.1354-1359, 1961.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr, vol.32, pp.751-767, 1976.

K. Park, J. S. Son, S. I. Woo, K. Shin, M. Oh et al., Colloidal synthesis and thermoelectric properties of Ladoped SrTiO 3 nanoparticles, J. Mater. Chem. A, vol.2, pp.4217-4224, 2014.

K. Berland, X. Song, P. A. Carvalho, C. Persson, T. G. Finstad et al., Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb, J. Appl. Phys, p.125103, 2016.

H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mater, vol.3, p.41506, 2015.

M. Jeric, J. De-boor, J. Zavasnik, and M. Ceh, Lowering the thermal conductivity of Sr(Ti 0.8 Nb 0.2 )O 3 by SrO and CaO doping: microstructure and thermoelectric properties, J. Mater. Sci, vol.51, pp.7660-7668, 2016.