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Abstract. The elliptic curve cryptography plays a central role in various
cryptographic schemes and protocols. For efficiency reasons, Edwards
curves and twisted Edwards curves have been introduced. In this paper,
we study the properties of twisted Edwards curves on the ring Z/nZ
where n = prqs is a prime power RSA modulus and propose a new
scheme and study its efficiency and security.
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1 Introduction

In 2007, Edwards [9] introduced a new normal form of elliptic curves over a field
K with characteristic not equal to 2. He showed that any elliptic curve over K
is birationally equivalent over some extension of K to a curve with an equation
of the form

x2 + y2 = c2 (1 + x2y2) , c ∈ K, c5 6= c.

Bernstein and Lange [2] generalized the former form to the short form

Ed : x2 + y2 = 1 + dx2y2,

where d ∈ K− {0, 1}. The addition law for Edwards curves is given by

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
y2y1 − x2x1

1− dx1y1x2y2

)
,

and the same formulas can also be used for doubling. For this law, the point (0, 1)
is the neutral element and the negative of a point (x, y) is (−x, y). Moreover, it
is shown in [2] that when d is not a square in K, then the sum of any two points
(x1, y1), (x2, y2) is always defined.

In [1], Bernstein et al. introduced the twisted Edwards curves with an equa-
tion

Ea,d : ax2 + y2 = 1 + dx2y2,
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where a, d ∈ K are non zero and distinct. The addition law is defined on Ea,d by
the rule

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
y2y1 − ax2x1

1− dx1y1x2y2

)
.

For this law, the identity is still (0, 1) and the negative of a point (x, y) is (−x, y).
The operations on twisted Edwards curves are more efficient than for most

of the other forms of elliptic curves and the discrete logarithm problem is hard
to solve. This makes twisted Edwards curves suitable for cryptographic applica-
tions.

In this paper, we study various properties of the twisted Edwards curves. We
first give a study of the twisted Edwards curves on the finite field Z/pZ where
p ≥ 5 is a prime number, and generalize it to the rings Z/prZ and Z/prqsZ.
Then, using the arithmetic properties of the twisted Edwards curves on the ring
Z/prqsZ, we propose a new public key scheme and study its efficiency and its
security. The new scheme generalizes two former schemes, namely the KMOV
cryptosystem [12] with a modulus of the form n = pq and an elliptic curve with
equation y2 ≡ x3 + b (mod n) and its extension to a prime power RSA modulus
n = prqs with a similar equation [5]. The new scheme uses a prime power RSA
modulus n = prqs and a twisted Edwards curve with equation

−dx2 + y2 ≡ 1 + dx2y2 (mod n).

The use of a prime power RSA in cryptography has been proposed for some cryp-
tographic applications (see [20,10,16]). The security of such moduli was studied
in [7] where it is recommended to use moduli of the form prqs where p, q are
large prime numbers with the same size and r, s are small exponents satisfying
the conditions of Table 1.

Modulus size in bits Form of the modulus
2048 pq, p2q
3072 pq, p2q
3584 pq, p2q
4096 pq, p2q, p3q
8192 pq, p2q, p3q, p3q2

Table 1. Optimal number of prime factors for a specific modulus size [7].

The rest of the paper is organized as follows. In Section 2, we study various
arithmetical properties of a twisted Edwards curve on the finite field Z/pZ. In
Section 3, we extend the former properties to the ring Z/prZ. Similarly, we
extend the properties to Z/prqsZ in Section 4. In section 5, we present our new
scheme. We study its efficiency and security in Section 6. We conclude the paper
in Section 6.
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2 Twisted Edwards Curves over the Field Z/pZ

In this section, we present various results on the Edwards curves over a finite
field Fp = Z/pZ where p ≥ 5 is a prime number and give an explicit estimation
for the number of points on a twisted Edwards curve when p ≡ 3 (mod 4) and
p ≡ 11 (mod 12).

Let a be an integer. The Legendre symbol of a modulo p, denoted by
(

.
p

)
,

is defined as

(
a

p

)
=


0 if a ≡ 0 mod p,
1 if a is a quadratic residue modulo p,
−1 if a is a non-quadratic residue modulo p.

The following classical result concerns the Legendre symbol for −1 (see [6],
Chapter 7).
Lemma 1. Let p be an odd prime. Then(

−1
p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4),(

2
p

)
= 2

p−1
2 =

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8),(

3
p

)
= 3

p−1
2 =

{
1 if p ≡ ±1 (mod 12),
−1 if p ≡ ±5 (mod 12),

A special case for the theory of Edwards curves is when the field K is the
finite field Fp. Let a and d be integers such that d is not a square in Z/pZ. The
following result states the addition law on the twisted Edwards curve Ea,d,p with
the equation Ea,d,p : ax2 + y2 ≡ 1 + dx2y2 (mod p).
Theorem 1. Let p > 2 be a prime number and a and d be integer such that a
is a square and d is not a square in Z/pZ. Let (x1, y1) and (x2, y2) be two points
on Ea,d,p. Then the addition law

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
y2y1 − ax2x1

1− dx1y1x2y2

)
,

is always defined on the twisted Edwards curve Ea,d,p.

Proof. The proof of the theorem is presented in Appendix A

Observe that the condition that a is a square is necessary for the possibility
of the addition. Indeed, let p = 23, a = 19 and d = 14. Then a and d are
not squares in Z/pZ. The points (x1, y1) = (1, 9) and (x2, y2) = (4, 12) are on
the curve Ea,d,p with 1 + dx1x2y1y2 ≡ 0 (mod p) which implies that the sum
(x1, y1) + (x2, y2) is not defined on Ea,d,p. In the following results, we suppose
that a and d are arbitrary integers satisfying ad(a− d) 6≡ 0 (mod p)
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Lemma 2. Let p ≥ 5 be a prime number and a, d be integers such that ad(a−
d) 6= 0. Then the twisted Edwards curve Ea,d,p with equation ax2 + y2 ≡ 1 +
dx2y2 (mod p) is birationally equivalent to the short Weierstrass form Wa,d,p

with equation

v2 ≡ u3 − 1
3
(
a2 + 14ad+ d2)u− 2

27(a+ d)
(
a2 − 34ad+ d2) (mod p),

with the transformation modulo p

(x, y)→ (u, v) =


O if (x, y) = (0, 1)( 2

3 (a+ d), 0
)

if (x, y) = (0,−1)(
5a−d+(a−5d)y

3(1−y) , 2(a−d)(1+y)
(1−y)x

)
if (x, y) 6= (0, 1).

Proof. The proof of the theorem is presented in Appendix B

The following result gives the inverse transformation of Lemma 2.

Lemma 3. Let p ≥ 5 be a prime number and a and d be integers such that
ad(a− d) 6= 0. The short Weierstrass form Wa,d,p with the equation

v2 ≡ u3 − 1
3
(
a2 + 14ad+ d2)u− 2

27(a+ d)
(
a2 − 34ad+ d2) (mod p),

is birationally equivalent to the twisted Edwards curve Ea,d,p with the transfor-
mation

(u, v)→ (x, y) =


(0, 1) if (u, v) = O
(0,−1) if (u, v) =

( 2
3 (a+ d), 0

)(
2(3u−2a−2d)

3v , 3u−5a+d
3u+a−5d

)
if u 6= − 1

3 (a− 5d) and v 6= 0.

If ad is a square in Z/pZ, then the points (u, v) =
(
− 1

3

(
a+ d± 6

√
ad
)
, 0
)
∈

Wa,d,p are not mapped into Ea,d,p.
If d is a square in Z/pZ, then the points (u, v) =

(
− 1

3 (a− 5d),±2
√
d(a− d)

)
∈

Wa,d,p are not mapped into Ea,d,p.

Proof. The proof of the theorem is presented in Appendix C

Combining Lemma 2 and Lemma 3, we easily get the following result regard-
ing the number of points of the twisted Edwards curve Ea,d,p in terms of the
number of points of the Weierstrass curve Wa,d,p.

Lemma 4. Let p ≥ 5 be a prime number and a and d be integers such that
ad(a− d) 6= 0. Then

#Ea,d,p =


#Wa,d,p if d and ad are not squares in Z/pZ,
#Wa,d,p − 4 if ad and d are squares in Z/pZ,
#Wa,d,p − 2 if ad or d is a square in Z/pZ.
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Proof. First, suppose that d and ad are not squares in Z/pZ. Then by Lemma 2
and Lemma 3, the curves Ea,d,p and Wa,d,p are isomorphic. This implies that
#Ea,d,p = #Wa,d,p.

Second, suppose that both ad and d are squares in Z/pZ. Then by Lemma 3,
the points (u, v) =

(
− 1

3

(
a+ d± 6

√
ad
)
, 0
)
∈ Wa,d,p as well as the points

(u, v) =
(
− 1

3 (a− 5d),±2
√
d(a− d)

)
∈ Wa,d,p are not mapped in Ea,d,p. Then

#Ea,d,p = #Wa,d,p − 4.
Next, suppose that ad is a square in Z/pZ but d is not a square. Then by

Lemma 3, the two points (u, v) =
(
− 1

3

(
a+ d± 6

√
ad
)
, 0
)
∈ Wa,d,p are not

mapped in Ea,d,p. Hence #Ea,d,p = #Wa,d,p − 2.
Finally, suppose that d is a square in Z/pZ but ad is not a square. Then by

Lemma 3, the two points (u, v) =
(
− 1

3 (a− 5d),±2
√
d(a− d)

)
∈ Wa,d,p are not

mapped in Ea,d,p. This gives #Ea,d,p = #Wa,d,p − 2. ut

The following result deals with two integers a and d such that a
d ≡ −1 (mod p).

Lemma 5. Let p be a prime number such that p ≡ 3 (mod 4). If a
d ≡ −1

(mod p), then one of the integers a or d is a square in Z/pZ and the other is a
non square.

Proof. Suppose that p ≡ 3 (mod 4). Then by Lemma 1, −1 is not a square in
Z/pZ. Hence, if a

d ≡ −1 (mod p), then a ≡ −d (mod p) and(
a

p

)
=
(
−d
p

)
=
(
−1
p

)(
d

p

)
= −

(
d

p

)
.

It follows that a and d are of different shapes. ut

The following result concerns two integers a and d such that a
d ≡ −7 ± 4

√
3

(mod p).
Lemma 6. Let p be a prime number such that p ≡ 11 (mod 12). If a

d ≡ −7 ±
4
√

3 (mod p), then one of the integers a or d is a square in Z/pZ and the other
is a non square.

Proof. Suppose that p ≡ 11 (mod 12). Then by Lemma 1,
√

3 exists in Z/pZ
and can be computed as

√
3 ≡ 3

p+1
4 (mod p). Next suppose that a

d ≡ −7± 4
√

3
(mod p). Then

a ≡
(
−7± 4

√
3
)
d ≡ −

(
2∓
√

3
)2
d (mod p).

Since p ≡ 3 (mod 4), then by Lemma 1, −1 is not a square in Z/pZ. Hence(
a

p

)
=
(
−
(
2∓
√

3
)2
d

p

)
= −

(
d

p

)
,

and a and d are of different shapes. ut
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The following result deals with the integers a and d such that a
d ≡ 17 ± 12

√
2

(mod p).

Lemma 7. Let p be a prime number such that p ≡ 7 (mod 8). If a
d ≡ 17±12

√
2

(mod p), then a and d are both squares or non squares in Z/pZ.

Proof. Suppose that p ≡ 7 (mod 8). Then
√

2 exists in Z/pZ and can be com-
puted as

√
2 ≡ 2

p+1
4 (mod p). Now, suppose that a

d ≡ 17±12
√

2 (mod p). Then

a ≡
(

17± 12
√

2
)
d ≡

(
3± 2

√
2
)2
d

It follows that (
a

p

)
=
((

3± 2
√

2
)2
d

p

)
=
(
d

p

)
,

and a and d are of the same shape. ut

Let p ≥ 5 be a prime number and Ep(a4, a6) be an elliptic curve with the
equation

y2 ≡ x3 + a4x+ a6 (mod p),

where 4a3
4 + 27a2

6 6≡ 0 (mod p). In some cases, it is easy to find the number of
points of the curve Ep(a4, a6). The following result gives an explicit value for
the number of points on the curve Ep(a4, a6) (see [21,11,19] for more details).

Lemma 8. Let Ep(a4, a6) be an elliptic curve over Fp with the equation the y2 ≡
x3+a4x+a6 (mod p). The number of points on Ep(a4, a6) is #Ep(a4, a6) = p+1
if

a4 = 0, a6 6= 0, p ≡ 2 (mod 3) or a4 6= 0, a6 = 0, p ≡ 3 (mod 4).

Combining Lemma 2, Lemma 3 and Lemma 8, we get three families of twisted
Edwards curve Ea,d,p such that #Ea,d,p = p+ 1.

Lemma 9. Let p ≥ 5 be a prime number. Let Ea,d,p be a twisted Edwards curve
over Z/pZ. Then for a

d (mod p) ∈
{
−1,−7± 4

√
3
}
, the number of points on

Ea,d,p is #Ed,p = p+ 1 if one of the following condition is fulfilled

1. p ≡ 3 (mod 4), a
d ≡ −1 (mod p), and a is a square,

2. p ≡ 11 (mod 12), a
d ≡ −7± 4

√
3 (mod p), and a is a square.

Proof. For p ≥ 5, let Ea,d,p be a twisted Edwards curve. Then, by Lemma 2,
Ea,d,p is birationally equivalent to a short Weierstrass equation with equation
y2 ≡ x3 + a4x+ a6 (mod p) where

a4 = −1
3
(
a2 + 14ad+ d2) , a6 = − 2

27(a+ d)
(
a2 − 34ad+ d2) .
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First, suppose that a
d ≡ −1 (mod p). Then a6 ≡ 0 (mod p). If a is a square and

p ≡ 3 (mod 4), then by Lemma 5, d is not a square. Hence, by Lemma 4 and
Lemma 8, we get #Ea,d,p = #Wa,d,p = p+ 1.

Next, suppose that a
d ≡ −7 ± 4

√
3 (mod p). Then a4 ≡ 0 (mod p) and by

Lemma 1, a condition that
√

3 exists modulo p is that p ≡ ±1 (mod 12). If
moreover p ≡ 2 (mod 3), then p ≡ 11 (mod 12). Under this condition, we have√

3 ≡ 3
p+1

4 (mod p). If a is a square in Z/pZ, then by Lemma 6, d is not a square
and by Lemma 4 and Lemma 8, we have #Ea,d,p = #Wa,d,p = p+ 1. ut

As a consequence of Lemma 9, we have the following result.

Lemma 10. Let Ea,d,p be a twisted Edwards curve. If p is prime with p ≡ 3
(mod 4) and a

d ≡ −1 (mod p), then for any point (x, y) ∈ Ea,d,p, we have

(p+ 1)(x, y) =
{

(0, 1) if a is a square in Z/pZ,
(0, 1)or undefined if a is not a square in Z/pZ.

Proof. Suppose that a
d ≡ −1 (mod p) and a is a square in Z/pZ, then by

Lemma 5, d is not a square and by Lemma 1, the addition is always defined.
Since by Lemma 9 we have #Ea,d,p = p + 1, then (p + 1)(x, y) = (0, 1) for any
point (x, y) ∈ Ea,d,p. If a is not a square, then d is a square and (p + 1)(x, y)
could not be defined on Ea,d,p. When (p + 1)(x, y) is defined, then since Ea,d,p

is mapped to Wa,d,p and #Wa,d,p = p+ 1, then (p+ 1)(x, y) = (0, 1). ut

The following result deals with the situation where a
d ≡ −7± 4

√
3 (mod p).

Lemma 11. Let Ea,d,p be a twisted Edwards curve with a
d ≡ −7±4

√
3 (mod p).

If p is prime with p ≡ 11 (mod 12), then for any point (x, y) ∈ Ea,d,p, we have

(p+ 1)(x, y) =
{

(0, 1) if a is a square in Z/pZ,
(0, 1)or undefined if a is not a square.

Proof. Suppose that a
d ≡ −7 ± 4

√
3 (mod p) and a is a square in Z/pZ, then

by Lemma 6, d is not a square and by Lemma 1, the addition is always defined.
Since by Lemma 4 we have #Ea,d,p = p + 1, then (p + 1)(x, y) = (0, 1) for any
point (x, y) ∈ Ea,d,p. If a is not a square, then d is a square and (p + 1)(x, y)
could not be defined on Ea,d,p. When (p + 1)(x, y) is defined, then since Ea,d,p

is mapped to Wa,d,p and #Wa,d,p = p+ 1, then (p+ 1)(x, y) = (0, 1). ut

3 Twisted Edwards Curves over the Ring Z/prZ

In this section, we define the notion of Edwards curves over the ring Z/prZ
where p ≥ 5 is a prime number and r ≥ 2. We give an explicit estimation for the
number of points on a twisted Edwards curve when p ≡ 3 (mod 4) and p ≡ 11
(mod 12).
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Let r ≥ 2 be an integer and p a prime number. Let a and d be integers.
We consider the twisted Edwards curve Ea,d,pr over the ring Z/prZ with the
equation

Ea,d,pr : ax2 + y2 ≡ 1 + dx2y2 (mod pr).

Corollary 1. Let p > 2 be a prime number and d be a positive integer such
that d is not a square in Z/pZ. Let (x1, y1) and (x2, y2) be two points on Ea,d,pr .
If a is a square in Z/pZ, then the addition law

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
y2y1 − ax2x1

1− dx1y1x2y2

)
,

is always defined on Ea,d,pr .

Proof. Suppose that p > 2 is a prime number. Let a be a square and d a non-
square in Z/pZ. Let (x1, y1) and (x2, y2) be two points on the curve Ea,d,pr . Set
δ ≡ dx1y1x2y2 (mod pr). Suppose that δ ≡ ±1 (mod p). Then by Theorem 1, d
is a square in Z/pZ. This is a contradiction. ut

Observe that if a is not a square in Z/pZ, the addition on Ea,d,pr is not always
defined as in the following example. Consider pr = 112, a = 7, d = 6. Then a
and d are not squares and (2, 37) is a point on E7,6,112 . Nevertheless, 2(2, 37) is
not possible since gcd(1 + dx2

1y
2
1 , p

r) = p. Hence
(
1 + dx2

1y
2
1
)−1 (mod pr) does

not exist.
Let #Ea,d,pr denote the number of points (x, y) of the twisted Edwards curve

Ea,d,pr . We have the following result

Theorem 2. Let p ≥ 3 be a prime number and d an integer such that d is not
a square in Z/pZ. Then

#Ea,d,pr = pr−1#Ea,d,p.

Proof. Consider the polynomial f(x, y) = ax2 + y2 − 1 − dx2y2. Then Ea,d,p is
the set of zeros of f(x, y). The derivative of f(x, y) is

df(x, y) =
(
∂f

∂x
(x, y), ∂f

∂y
(x, y)

)
= 2

(
x
(
a− dy2) , y (1− dx2)) .

Hence, the singular points (x, y) of Ea,d,p (K) are the points satisfying the system
of equations  x

(
a− dy2) ≡ 0 (mod p),

y
(
1− dx2) ≡ 0 (mod p),

ax2 + y2 − 1− dx2y2 ≡ 0 (mod p).
Since d is not a square in Z/pZ, then the second equation implies that y = 0.
Plugging in the first equation, we get x = 0 which contradicts the third equation.
This implies that Ea,d,p has no singular points. Thus, using the generalized
Hensel Lemma (see [5]), to the polynomial f(x, y), we deduce that #Ea,d,pr =
pr−1#Ea,d,p. ut
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Combining Theorem 2 and Lemma 9, we get the following result.

Corollary 2. Let p ≥ 5 be a prime number. Let Ea,d,pr be a twisted Edwards
curve over the ring Z/prZ with ad(a − d) 6≡ 0 (mod p). Then the number of
points on Ea,d,p is #Ea,d,pr = pr−1(p + 1) if one of the following condition is
fulfilled

1. p ≡ 3 (mod 4), a
d ≡ −1 (mod p), and a is a square,

2. p ≡ 11 (mod 12), a
d ≡ −7± 4

√
3 (mod p), and a is a square.

Next, combining Theorem 2 and Lemma 10, we get the following result.

Corollary 3. Let Ea,d,pr be a twisted Edwards curve. If p is a prime number
with p ≡ 3 (mod 4) and a

d ≡ −1 (mod pr), then for any point (x, y) ∈ Ea,d,pr ,
we have

pr−1(p+ 1)(x, y) =
{

(0, 1) if a is a square in Z/pZ,
(0, 1)or undefined if a is not a square in Z/pZ.

Finally, combining Theorem 2 and Lemma 11, we get the following result.

Corollary 4. Let Ea,d,pr be a twisted Edwards curve with a
d ≡ −7±4

√
3 (mod pr).

If p is a prime number with p ≡ 11 (mod 12), then for any point (x, y) ∈ Ea,d,pr ,
we have

pr−1(p+ 1)(x, y) =
{

(0, 1) if a is a square in Z/pZ,
(0, 1)or undefined if a is not a square.

4 Twisted Edwards Curves over the ring Z/nZ

In this section we define the twisted Edwards curve over the ring Z/nZ where n
is an odd composite number, specifically in the form n = prqs. Let a and d be
integers. We consider the twisted Edwards curve Ea,d,n with the equation

Ea,d,n : ax2 + y2 ≡ 1 + dx2y2 (mod n).

The following result states the possibility of adding two points on Ea,d,n.

Theorem 3. Let n > 2 be an od integer and d a positive integer such that d
is not a square in all the fields Z/pZ where p is a prime factor of n. Let a be
a square in Z/nZ. Let (x1, y1) and (x2, y2) be two points on Ea,d,pr . Then the
addition law

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
y2y1 − ax2x1

1− dx1y1x2y2

)
,

is always defined on Ea,d,n.
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Proof. Let d be an integer such that d is not a square in all fields Z/pZ where
p is a prime factor of n. Let a be a square in Z/nZ. Let (x1, y1) and (x2, y2)
be two points of the twisted Edwards curve Ea,d,n. Suppose that 1± dx1y1x2y2
is not invertible modulo n. Then there exists a prime factor p of n such that
1±dx1y1x2y2 ≡ 0 (mod p). Hence, by applying Lemma 1, d is a square in Z/pZ,
which is a contradiction. ut

Observe that the condition that d is not a square in all the fields Z/pZ where
p is a prime factor of n is necessary condition. A typical counter-example holds
for n = 7 · 13 · 19, a = 4 and d = 183. We can check that (x1, y1) = (70, 335) and
(x2, y2) = (108, 525) are two points on the curve Ea,d,n but the sum (x1, y1) +
(x2, y2) is not defined. Indeed we have

gcd(1 + dx1y1x2y2 (mod n), n) = gcd(1352, 7 · 13 · 19) = 13,

and the inverse (1 + dx1y1x2y2)−1 (mod n) does not exist. In this example, d is
a square in the fields Z/7Z and Z/13Z but not in the field Z/19Z.

Combining the Chinese Remainder Theorem and Corollary 3, we get the
following result that gives an explicit value for #Ea,d,n when n = prqs and p, q
are distinct prime factors.
Corollary 5. Let p ≥ 5 and q ≥ 5 be two distinct prime numbers. For n = prqs,
let Ea,d,n be a twisted Edwards curve over the ring Z/nZ with ad(a − d) 6≡ 0
(mod p) and ad(a − d) 6≡ 0 (mod q). Then the number of points on Ea,d,n is
#Ea,d,n = pr−1qs−1(p+ 1)(q + 1) if one of the following condition is fulfilled

1. p ≡ 3 (mod 4), q ≡ 3 (mod 4), a
d ≡ −1 (mod n), and a is a square in

Z/nZ,
2. p ≡ 11 (mod 12), q ≡ 11 (mod 12), a

d ≡ −7 ± 4
√

3 (mod n), and a is a
square in Z/nZ.

Similarly, using the Chinese Remainder Theorem and Corollary 3, we get the
following result.
Corollary 6. Let p ≥ 5 and q ≥ 5 be prime numbers. For n = prqs, let Ea,d,n

be a twisted Edwards curve. If p ≡ 3 (mod 4), q ≡ 3 (mod 4) and a
d ≡ −1

(mod n), then for any point (x, y) ∈ Ea,d,n, we have

pr−1qs−1(p+1)(q+1)(x, y) =
{

(0, 1) if a is a square in Z/nZ,
(0, 1)or undefined if a is not a square in Z/nZ.

Finally, using the Chinese Remainder Theorem and Corollary 4, we get the
following result.
Corollary 7. Let p ≥ 5 and q ≥ 5 be prime numbers. For n = prqs, let Ea,d,n

be a twisted Edwards curve with a
d ≡ −7 ± 4

√
3 (mod n). If p ≡ 11 (mod 12)

and q ≡ 11 (mod 12), then for any point (x, y) ∈ Ea,d,n, we have

pr−1qs−1(p+1)(q+1)(x, y) =
{

(0, 1) if a is a square in Z/nZ,
(0, 1)or undefined if a is not a square in Z/nZ.
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5 The New Scheme

In [12], Koyama et al. introduced a variant of the RSA cryptosystem based on an
RSA modulus n = pq and an elliptic curve with equation y2 ≡ x3 + b (mod n).
This was recently extended by Boudabra and Nitaj [5] using a prime power
modulus n = prqs.

In this section, we give another extension of the KMOV system by using a
twisted Edwards curve with an equation ax2 + y2 ≡ 1 + dx2y2 (mod n) where
n = prqs is a prime power modulus.

5.1 The new system

Key generation.

1. Choose two large primes p and q such that
(a) p ≡ 3 (mod 4),
(b) p+ 1 = 4u where u is a prime number,
(c) q ≡ 3 (mod 4),
(d) q + 1 = 4v where v is a prime number,

2. Compute the modulus n = prqs. The exponents r and s should be chosen
according to Table 1

3. Choose an integer e coprime to pr−1 (p+ 1) qs−1 (q + 1). The pair (n, e) rep-
resents the public key.

4. Compute the secret key k satisfying ke ≡ 1 (mod pr−1 (p+ 1) qs−1 (q + 1)).
In other words k is the inverse of e (mod pr−1 (p+ 1) qs−1 (q + 1)).

Encryption scheme. To encrypt a message M , we proceed as follows.

1. Transform M as M = (xM , yM ) ∈ (Z/nZ)2 with xM 6= 0 and yM 6= ±1.
2. Compute

d ≡ y2
M − 1

(y2
M + 1)x2

M

(mod n).

3. Compute C = (xC , yC) = e(xM , yM ) on the twisted Edwards curve E−d,d,n

with the equation −dx2 + y2 ≡ 1 + dx2y2 (mod n).
4. The ciphertext is C = (xC , yC).

Decryption scheme. To decrypt, we proceed as follows.

1. Compute

d ≡ y2
C − 1

(y2
C + 1)x2

C

(mod n).

2. Using the private key k, computeM = (xM , yM ) = k(xC , yC) on the twisted
Edwards curve E−d,d,n with the equation −dx2 + y2 ≡ 1 + dx2y2 (mod n).

3. The plaintext is M = (xC , yC).
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5.2 Correctness of the cryptosystem.

Since ke ≡ 1 (mod pr−1(p+ 1)qs−1(q + 1)), then there exists an integer λ such
that ke = 1 + λpr−1 (p+ 1) qs−1 (q + 1). Thus

k(xC , yC) = ke(xM , yM )
=
(
1 + λpr−1(p+ 1)qs−1(q + 1)

)
(xM , yM )

= (xM , yM ) + λpr−1(p+ 1)qs−1(q + 1)(xM , yM )
= (xM , yM ).

Notice that if d is a square, then a is not a square and the scalar multiplication
C = (xC , yC) = e(xM , yM ) can be not possible. As we will see, this scenario is
negligible with an overwhelming probability.

5.3 A numerical example

As an example, consider the following prime numbers, the modulus and the
public key

p = 1654301903279,
q = 3471055860911,
n = p2q = 9499289901726403159477938905275387151,
e = 9829.

The message is M = (xM , yM ) with

xM = 8984939678606826113554578314107108314,
yM = 1216075007499613461088673405898076188,

Then, we get the coefficient d of the twisted Edwards curve

d ≡ y2
M − 1

(y2
M + 1)x2

M

≡ 9443990400308670878704729113362891679 (mod n),

k ≡ e−1 ≡ 3626140574962791478917541101758042989 (mod n).

For the encryption, we compute the ciphertext (xC , yC) = e(xM , yM ), and get

xC = 6662581353370847822246329606179278781,
yC = 3036967194425528298134904269360797204.

To decrypt, we use the private key k and compute (xM , yM ) = k(xC , yC). Indeed,
the computation gives

xM = 8984939678606826113554578314107108314,
yM = 1216075007499613461088673405898076188.

This shows that the decryption is correct.
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6 Efficiency and Security Analysis

In this section, we discuss the efficiency and the security of our proposed cryp-
tosystem by studying the possibility of factoring of the modulus, impossible
inversion, finding the order of the twisted Edwards curve E−d,d,n, solving the
discrete logarithm problem on E−d,d,n and solving the key equation

ek − u
(
pr−1(p+ 1)qs−1(q + 1)

)
= 1.

6.1 Efficiency

There are many forms for representing points on an Edwards curve such as
affine form, projective form and inverted form (see [3] for various representations
and additions). For such forms, the addition law is suitably efficient for use in
cryptography. For example, in the projective form, the twisted Edwards curve is
represented by an equation with three variables

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2, (X : Y : Z) ∈ P2,

where P2 is the projective space. In [2], it is shown that adding two points
takes 10M + 1S + 1A + 1D operations with 10 multiplications, 1 squaring, 1
multiplication by a, and 1 multiplication by d. Doubling a point is also efficient
as it takes only 3M + 4S+ 1A. As a consequence, the operations involved in our
new schemes can be efficiently performed using a suitable representation of the
twisted Edwards curve with affine equation −dx2 + y2 ≡ 1 + dx2y2 (mod n).

6.2 Factoring the modulus

It is widely believed that factoring a modulus of the form n = prqs directly
by existing algorithms is infeasible when p, q are large prime numbers and r, s
satisfy the conditions of Table 1. The most powerful method are the Number
Field Sieve [14] and the Elliptic Curve Method [13]. When p and q are large
enough, such methods are ineffective.

6.3 Impossible inversion

In our scheme, the parameter d is computed using the original message (xM , yM )
as

d ≡ y2
M − 1

(y2
M + 1)x2

M

(mod n).

It might be a square in Z/nZ, and so we could face a non defined inversion in
the ring Z/nZ when gcd(n, 1+dx1y1x2y2 (mod n)) 6= 1 for some points (x1, y1),
(x2, y2) on the twisted Edwards curve E−d,d,n. This will lead to the factorisation
of n as in the elliptic curve method for factorization [13]. This scenario is unlikely
to happen for the following reasons.
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– The elliptic curve method is inefficient when the prime factors p, q are suf-
ficiently large and r, s are chosen according to Table 1.

– In Z/nZ, the number of terms of the form 1 ± dx1y1x2y2 (mod n) satisfy-
ing gcd(n, 1 ± dx1y1x2y2 (mod n)) 6= 1 is at most n − φ(n) where φ(n) =
pr−1qs−1(p − 1)(q − 1) is the Euler totient function. Hence, the probabil-
ity that d is a square in Z/nZ and 1± dx1y1x2y2 (mod n) is not invertible
modulo n is upper bounded by

n− φ(n)
n

= prqs − pr−1qs−1(p− 1)(q − 1)
prqs

= p+ q − 1
pq

. (1)

Moreover, if p and q are of the same bit-size, then p ≈ q, and we get the
approximation n = prqs ≈ pr+s ≈ qr+s, from which we deduce

p ≈ q ≈ n
1

r+s .

Hence, the probability (1) becomes

n− φ(n)
n

≈ 2n
1

r+s

n
2

r+s

= 2
n

1
r+s

.

This is a negligible probability when n is sufficiently large.

6.4 Finding the order of E−d,d,n

Our new scheme uses a prime power RSA modulus of the form n = prqs where p
and q are prime numbers satisfying p ≡ q ≡ 3 (mod 4). By Corollary 7, for such
primes, the order of the twisted elliptic curve E−d,d,n is pr−1qs−1(p+ 1)(q + 1).
It follows that finding the order of E−d,d,n leads to factoring n. This can be done
by computing

g = gcd
(
n, pr−1qs−1(p+ 1)(q + 1)

)
= pr−1qs−1,

and
h = pr−1qs−1(p+ 1)(q + 1)

pr−1qs−1 = (p+ 1)(q + 1).

Then combining the equations h = (p+1)(q+1) and prqs = n, one can find p and
q. On the hand, it is obvious that factoring n leads immediately to finding the
order of E−d,d,n. As a consequence, finding the order of E−d,d,n is equivalent to
factoring the modulus n. This situation is similar to the RSA modulusN = pq for
which finding the Euler totient function φ(N) = (p−1)(q−1) is computationally
equivalent to factoring N .

6.5 Solving the discrete logarithm problem on E−d,d,n

The security of the elliptic curve cryptography is based on the difficulty of solving
the elliptic curve discrete logarithm: given two points P andQ on an elliptic curve
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such that Q = tP , find t. In our scheme, the public equation is C = (xC , yC) =
eM = e(xM , yM ) where the unknown is the point M = (xM , yM ) on the twisted
Edwards curve E−d,d,n. This is not vulnerable to the discrete logarithm attacks.

On the other hand, assume that an attacker knows a point P on E−d,d,n

and a value u such that C = uP . Then M satisfies M = vP for some un-
known v. This gives C = eM = evP and the problem transforms to finding ev
(mod pr−1qs−1(p+ 1)(q+ 1)). This is not possible under the hardness of elliptic
discrete logarithm.

6.6 Solving the key equation

In our scheme, the publik key is e and the private key is k. They are related by
the key equation is

ek − upr−1qs−1(p+ 1)(q + 1) = 1,

in the unknown parameters k, u, p, q. This equation is similar to the key equa-
tions in some variants of RSA and could be solved by the continued fraction
algorithm or by Coppersmith’s method when k is suitably small (see [8,4,15,18]).
To avoid small key attacks, it is preferable to use sufficiently large private key.

7 Conclusion

We have studied the arithmetical properties of the twisted Edwards curves on the
finite field Z/pZ and generalized them to the rings Z/prZ and Z/prqsZ. Using
these properties, we have proposed a new public key scheme which can be seen as
a generalization of two former public key schemes: the KMOV cryptosystem [12]
with an RSA modulus and its generalization to a prime power RSA modulus [5].
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A Proof of Theorem 1

Let p > 2 be a prime number. Suppose that d is a non-square in Z/pZ and a
a square with a ≡ b2 (mod p). Let (x1, y1), (x2, y2) be two points on the curve
Ea,d,p. Suppose that dx1y1x2y2 ≡ δ ≡ ±1 (mod p). Then x1y1x2y2 6= 0 (mod p)
and

ax2
1 + y2

1 ≡ dx2
1y

2
1 + 1

≡ dx2
1y

2
1 + d2x2

1y
2
1x

2
2y

2
2 (mod p)

≡ dx2
1y

2
1
(
1 + dx2

2y
2
2
)

(mod p)
≡ dx2

1y
2
1
(
ax2

2 + y2
2
)

(mod p).
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Hence, since δ2 ≡ 1 (mod p) and ax2
1 + y2

1 ≡ dx2
1y

2
1
(
ax2

2 + y2
2
)

(mod p), we get

(bx1 + δy1)2 = b2x2
1 + y2

1 + 2bδx1y1

≡ dx2
1y

2
1
(
ax2

2 + y2
2
)

+ 2bdx2
1y

2
1x2y2 (mod p)

≡ dx2
1y

2
1
(
b2x2

2 + y2
2 + 2bx2y2

)
(mod p)

≡ dx2
1y

2
1(bx2 + y2)2 (mod p).

If bx2 + y2 6≡ 0 (mod p), then, since x1y1 6= 0 (mod p), we have gcd(x1y1(bx2 +
y2), p) = 1, and

d ≡ (bx1 + δy1)2

x2
1y

2
1(bx2 + y2)2 (mod p),

is a square which is a contradiction. Similarly, we have

(bx1 − δy1)2 ≡ dx2
1y

2
1(bx2 − y2)2 (mod p).

If bx2 − y2 6≡ 0 (mod p), then gcd(x1y1(bx2 − y2), p) = 1, and

d ≡ (bx1 − δy1)2

x2
1y

2
1(bx2 − y2)2 (mod p),

is a square which is a contradiction. It follows that bx2 + y2 ≡ 0 (mod p) and
bx2 − y2 ≡ 0 (mod p), from which we deduce x2 ≡ 0 (mod p) and y2 ≡ 0
(mod p). This is also a contradiction. As a consequence, we have always δ 6≡ ±1
(mod p) and the denominators in the addition law never vanish. This terminates
the proof.

B Proof of Lemma 2

Let (x, y) be a point on the curve ax2 +y2 ≡ 1+dx2y2 (mod p) with ad(a−d) 6=
0. If x 6= 0, then y 6= ±1 and

1− y2

x2 ≡ a− dy2 (mod p).

Since d 6= a and y 6= ±1, then multiplying both sides by 4(1+y)
(1−y)3(a−d) , we get

4(1 + y)2

(1− y)2(a− d)x2 ≡
4
(
a− dy2) (1 + y)

(1− y)3(a− d) (mod p).

Setting Y ≡ 2(1+y)
(1−y)x (mod p) and transforming the right side, we get

1
a− d

Y 2 ≡ (1 + y)3

(1− y)3 + ((a+ 3d)y + 3a+ d)(1 + y)
(1− y)2(a− d) (mod p).

SettingX ≡ 1+y
1−y (mod p) and plugging it in the right side of the former equality,

we get
1

a− d
Y 2 ≡ X3 + 2(a+ d)

a− d
X2 +X (mod p).
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Multiplying by (a− d)3, we get

(a− d)2Y 2 ≡ (a− d)3X3 + 2(a+ d)(a− d)2X2 + (a− d)3X (mod p).

Setting U ≡ (a − d)X (mod p) and V ≡ (a − d)Y (mod p), this transforms to
V 2 = U3 + 2(a+ d)U2 + (a− d)2U (mod p) which can be rewritten as

V 2 ≡
(
U + 2(a+ d)

3

)3
− 4(a+ d)2

3 U − 8(a+ d)3

27 + (a− d)2U (mod p),

that is

V 2 ≡
(
U + 2(a+ d)

3

)3
− a2 + 14ad+ d2

3 U − 8(a+ d)3

27 (mod p).

Let u ≡ U + 2(a+d)
3 (mod p) and v ≡ V (mod p). Then using u and v, we get

v2 ≡ u3 − 1
3
(
a2 + 14ad+ d2)u− 2

27(a+ d)
(
a2 − 34ad+ d2) (mod p). (2)

Summarizing the transformations, we get for x 6= 0,

u ≡ 5a− d+ (a− 5d)y
3(1− y) (mod p), v ≡ 2(a− d)(1 + y)

(1− y)x (mod p). (3)

Now, if x = 0, then y2 = 1 and y = ±1. If y = 1, then the transformations (3) are
not valid and the point (0, 1) is transformed to the point at infinity O. If y = −1,
then u ≡ 2

3 (a + d) (mod p). Plugging this in the equation (2), we get v = 0.
Hence, the point (0,−1) on Ea,d,p is transformed to the point

( 2
3 (a+ d), 0

)
on

the equation (2). This terminates the proof.

C Proof of Lemma 3

Since O and (0, 1) are the neutral elements in Wa,d,p and Ea,d,p respectively,
then they correspond to each other. For u 6= 5d−a

3 and v 6= 0, we can invert (3)
to get

(x, y) =
(

2(3u− 2a− 2d)
3v ,

3u− 5a+ d

3u+ a− 5d

)
. (4)

Observe that (4) is not defined for v = 0 and for 3u+ a− 5d ≡ 0 (mod p).
First, for v = 0, suppose that (u, 0) ∈Wa,d,p. Then u satisfies the equation(
u− 2(a+ d)

3

)(
u+ a+ d+ 6

√
ad

3

)(
u+ a+ d− 6

√
ad

3

)
≡ 0 (mod p).(5)

The first root of (5) is u = 2
3 (a + d). Plugging this in the second coordinate

of (4), we get y = −1. Plugging y = −1 in the equation ax2 + y2 = 1 + dx2y2
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of Ea,d,p, we get ax2 = dx2. Since a 6= d, then x = 0. Therefore the point
( 2

3 (a+ d), 0) ∈Wa,d,p is mapped to (0,−1) ∈ Ea,d,p.
In the case ad is a square in Z/pZ, then the second and third roots of (5) are

u = − 1
3

(
a+ d± 6

√
ad
)
. Then the second coordinate of (4) is

y = 3u− 5a+ d

3u+ a− 5d = ±
√
a

d
.

Plugging y = ∓
√

a
d in the equation of Ea,d,p, we get ax2 + a

d = 1 + ax2 and
a
d = 1. Since a 6= d, then this is impossible. Therefore the points (u, v) =(
− 1

3

(
a+ d± 6

√
ad
)
, 0
)
∈Wa,d,p are not mapped in Ea,d,p.

Second, for 3u + a − 5d ≡ 0 (mod 0) we have u ≡ − 1
3 (a − 5d) (mod p).

Suppose that there exists v such that (u, v) =
(
− 1

3 (a− 5d), v
)
∈Wa,d,p. Then v

satisfies
v2 ≡ 4d(a− d)2 (mod p).

Hence, if d is a square in Z/pZ, then v ≡ ±2
√
d(a − d) (mod p). Plugging

(u, v) =
(
− 1

3 (a− 5d),±2
√
d(a− d)

)
in the first coordinate of (4), we get x =

∓
√

d
d . Plugging this in the equation of Wa,d,p, we get a

d + y2 = 1 + y2 and
a
d = 1, which is impossible since a 6= d. Consequently, the points (u, v) =(
− 1

3 (a− 5d),±2
√
d(a− d)

)
∈ Wa,d,p are not mapped on the twisted Edwards

curve Ea,d,p.
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