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Abstract. Let N = pq be an RSA modulus with unknown factoriza-
tion. The RSA cryptosystem can be attacked by using the key equation
ed−k(p−1)(q−1) = 1. Similarly, some variants of RSA, such as RSA com-
bined with singular elliptic curves, LUC and RSA with Gaussian primes
can be attacked by using the key equation ed−k

(
p2 − 1

) (
q2 − 1

)
= 1. In

this paper, we consider the more general equation eu−
(
p2 − 1

) (
q2 − 1

)
v =

w and present a new attack that finds the prime factors p and q in the
case that u, v and w satisfy some specific conditions. The attack is based
on Coppersmith’s technique and improves the former attacks.

Keywords: RSA variants, Coppersmith’s Technique, Lattice reduction

1 Introduction

In 1978, Rivest, Shamir and Adleman [19] invented the RSA cryptosystem.
Nowadays, it is the most widely used public key cryptosystem and serves for
encryption and signature. The security of RSA is based on the difficulty of fac-
toring specific large integers, called RSA moduli. An RSA modulus is in the form
N = pq where p and q are large prime numbers of the same size. The public
exponent in RSA is an integer e satisfying gcd(e, (p − 1)(q − 1)) = 1 while the
private exponent is the integer d satisfying ed ≡ 1 (mod (p−1)(q−1)). Since its
invention, the RSA cryptosystem has been intensively studied for vulnerabilities.
Many attacks on RSA exploit the RSA key equation ed − k(p − 1)(q − 1) = 1.
A few attacks are based on the continued fraction algorithm such as Wiener’s
attack [22] and most of the attacks are based on lattice reduction techniques,
introduced by Coppersmith [8] (see [3,2,10,15]). Combining both techniques,
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Blömer and May [1] presented an attack using the generalized key equation
ex+ y = k(p− 1)(q − 1) for suitably small integers x, k and y.

Many variants of RSA have been proposed for improving the security or
reducing the encryption or the decryption time (see [4,21,18]). The variants of
RSA in [20,13,9,7] make use of a public exponent e and a private exponent d
satisfying the equation

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1. (1)

In [5], Bunder et al. proposed an attack on these variants by using the continued
fraction algorithm approach. Setting e = Nβ , they showed that one can solve
the equation 1 and find the prime factors p and q if d = Nδ and δ < 1

2 (3 − β).
This was recently improved to δ < 2 −

√
β by Peng et al. [17] and by Zheng et

al. [23] by using lattice reduction techniques and Coppersmith’s method.
In this paper we consider the generalized equation

eu−
(
p2 − 1

) (
q2 − 1

)
v = w. (2)

This equation can be transformed into the modular equation

v(p+ q)2 − (N + 1)2v − w ≡ 0 (mod e). (3)

We set e = Nβ , u = Nδ, w = Nγ and using lattice reduction techniques and
Coppermith’s method, we show that one can solve the equation (3) and find the
prime factors p and q under the condition

δ <
7

3
− γ − 2

3

√
1 + 3β − 3γ − ε, (4)

where ε is a small positive constant. Observe that the key equation (1) is a
special case of the equation (3) where w = 1 and γ = 0. In this special case, the
condition (4) becomes

δ <
7

3
− 2

3

√
1 + 3β − ε,

which is slightly worst than the condition δ < 2−
√
β derived by the method of

Peng et al. [17]. Apart this special case, our method supersedes the method of
Peng et al. since their method works only for w = 1 while our method works for
any w = Nγ under the condition (4).

In [6], Bunder et al. studied the equation (2) using a combination of the
continued fraction algorithm and Coppersmith’s method. They showed that this
equation can be solved whenever

uv < 2N − 4
√

2N
3
4 and |w| < (p− q)N 1

4 v.

The first condition implies the following one

δ <
3− β

2
,
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which is worst than our condition with γ = 0. As a consequence, our new method
can be seen as an extension of the method of Bunder et al. [6].

The rest of the paper is organized as follows. In Section 2, we briefly describe
the RSA variants that use exponents satisfying ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
).

We also recall some facts on Coppersmith’s method and lattice basis reduction.
In Section 3, we present our attack. In section 4, we present a comparison with
existing attacks. We conclude the paper in Section 5.

2 Preliminaries

In this section, we briefly present some variants of the RSA cryptosystem that
use the key equation ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
). We also present Copper-

smith’s method and lattice basis reduction.

2.1 LUC cryptosystem

LUC cryptosystem, introduced by Smith and Lennon [20] in 1993 is based on
Lucas functions. A related cryptosystem was propose by Castagnos [7] in 2007.
Both cryptosystems use an RSA modulus N = pq, a public exponent e, and a
private exponent satisfying a key equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1 which

can be generalized by the equation eu−
(
p2 − 1

) (
q2 − 1

)
v = w.

2.2 RSA type schemes based on singular cubic curves

In 1995, Kuwakado, Koyama, and Tsuruoka [13] proposed a new cryptosystem
based on the singular cubic with equation

y2 = x3 + bx2 mod N.

where N = pq is an RSA modulus. In this cryptosystem, the encryption and the
decryption keys satisfy an equation of the form ed − k

(
p2 − 1

) (
q2 − 1

)
= 1. A

generalization of this equation is eu−
(
p2 − 1

) (
q2 − 1

)
v = w.

2.3 RSA with Gaussian primes

A variant of RSA was introduced in 2002 by Elkamchouchi, Elshenawy and
Shaban [9]. It is an extension of the RSA cryptosystem to the domain of Guassian
integers. Gaussian integers are complex number of the form z = a+ bi where a
and b are integers and i2 = −1. The norm of a Gaussian integer is |a + bi| =√
a2 + b2. In the RSA variant with Gaussian integers, the modulus is N = PQ,

a product of two Gaussian integer primes P and Q and the public and private
exponents satisfy ed − k

(
|P |2 − 1

) (
|Q|2 − 1

)
= 1. If P = p and Q = q are

integer primes, then ed − k
(
p2 − 1

) (
q2 − 1

)
= 1. This can be generalized as

eu−
(
p2 − 1

) (
q2 − 1

)
v = w.
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2.4 Coppersmith’s method

In 1996, Coppersmith [8] proposed two methods related to finding small modular
roots of univariate polynomials and small integer roots of bivariate polynomials.
Since then, many techniques have been proposed for more variables (see [16]).
Let

h(x, y, z) =
∑
i,j,k

ai,j,kx
iyjzk ∈ Z[x, y, z],

be a polynomial with ω monomials. Its Euclidean norm is

‖h(x, y, z)‖ =

√∑
i,j,k

a2i,j,k.

The following result was proposed by Howgrave-Graham [11] to find the small
modular roots of a polynomial.

Theorem 1. Let e be a positive integer and h(x, y, z) ∈ Z[x, y, z] be a polyno-
mial with at most ω monomials. Suppose that

‖h(xX, yY, zZ)‖ < em√
ω

and h (x0, y0, z0) ≡ 0 (mod em),

where |x0| < X, |y0| < Y , |z0| < Z. Then h (x0, y0, z0) = 0 holds over the
integers.

Coppersmith’s method enables to find several polynomials that can be used in
Howgrave-Graham’s Theorem 1. This is possible by applying a lattice reduction
technique such as the LLL algorithm [14] to a lattice with a given basis. In
general, the LLL algorithm produces a reduced basis with relatively small norms
such as in the following result (see [15]).

Theorem 2 (LLL). Let L be a lattice spanned by a basis (u1, . . . , uω). Then
the LLL algorithm outputs a new basis (b1, . . . , bω) satisfying

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω − 1,

where det(L) is the determinant of the lattice.

We assume that if h1, h2, h3 ∈ Z[x, y, z] are three polynomials produced by
Coppersmith’s method, then the ideal generated by the polynomial equations
h1(x, y, z) = 0, h2(x, y, z) = 0, h3(x, y, z) = 0 has dimension zero. Then, a
system of polynomials sharing the root can be solved by using Gröbner basis
computation or resultant techniques.

3 The attack

Theorem 3. Let N = pq be an RSA modulus and e = Nβ be a public exponent.
Suppose that e satisfies the equation eu −

(
p2 − 1

) (
q2 − 1

)
v = w with u < Nδ

and |w| < Nγ . If

δ <
7

3
− γ − 2

3

√
1 + 3β − 3γ − ε,
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then one can factor N in polynomial time.

Proof. Let N = pq be an RSA modulus. Let e be a public exponent satisfying
eu−

(
p2 − 1

) (
q2 − 1

)
v = w with |w| < eu. Suppose that e = Nβ , u < N δ and

|w| < Nγ . Then

v =
eu− w

(p2 − 1) (q2 − 1)
<

eu+ |w|
(p2 − 1) (q2 − 1)

< 2Nβ+δ−2,

where we used
(
p2 − 1

) (
q2 − 1

)
≈ N2. It follows that the solution (u, v, w) of

the equation eu −
(
p2 − 1

) (
q2 − 1

)
v = w satisfies u < N δ, v < 2Nβ+δ−2 and

|w| < Nγ . We set

X = 2Nβ+δ−2, Y = 3N
1
2 , Z = Nγ . (5)

This means that the solution (u, v, w) satisfies u < N δ, v < X and |w| < Z.

Moreover, since p and q are of the same size, then we have p+ q < 3N
1
2 = Y .

Transforming the equation eu −
(
p2 − 1

) (
q2 − 1

)
v = w, we get a modular

one, namely −v
(
(N + 1)2 − (p+ q)2

)
− w ≡ 0 (mod e). This can be rewritten

as

v(p+ q)2 − (N + 1)2v − w ≡ 0 (mod e).

Consider the polynomial

f(x, y, z) = xy2 + a1x+ z,

where a1 = −(N + 1)2. Then (x, y, z) = (v, p+ q,−w) is a solution of the poly-
nomial modular equation f(x, y, z) ≡ 0 (mod e). To find the small solutions of
the equation f(x, y, z) ≡ 0 (mod e), we apply Coppersmith’s method combined
with the extended strategy of Jochemsz and May [12] for finding small modular
roots.
Let m and t be positive integers to be specified later. For 0 ≤ k ≤ m, define the
set

Mk =
⋃

0≤j≤t

{xi1y2i2+jzi3
∣∣∣ xi1y2i2zi3 is a monomial of fm(x, y, z)

and
xi1y2i2zi3

(xy2)
k

is a monomial of fm−k}.

A straightforward calculation shows that fm(x, y, z) is

fm(x, y, z) =

m∑
i1=0

i1∑
i2=0

(
m

i1

)(
i1
i2

)
ai1−i21 xi1y2i2zm−i1 .

Hence, xi1y2i2zi3 is a monomial of fm(x, y, z) if

i1 = 0, . . . ,m, i2 = 0, . . . , i1, i3 = m− i1.
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Similarly, xi1y2i2zi3 is a monomial of fm−k(x, y, z) if

i1 = 0, . . . ,m− k, i2 = 0, . . . , i1, i3 = m− k − i1.

From this, we deduce that for 0 ≤ k ≤ m, if xi1y2i2zi3 is a monomial of

fm(x, y, z), then xi1y2i2zi3

(xy2)k
is a monomial of fm−k(x, y, z) if

i1 = k, . . . ,m, i2 = k, . . . , i1, i3 = m− i1.

This leads to a characterization of the set Mk. For 0 ≤ k ≤ m, we obtain

xi1yi2zi3 ∈Mk if i1 = k, . . . ,m, i2 = 2k, . . . , 2i1 + t, i3 = m− i1.

Replacing k by k + 1, we get

xi1yi2zi3 ∈Mk+1 if

i1 = k + 1, . . . ,m, i2 = 2k + 2, . . . , 2i1 + t, i3 = m− i1.

For 0 ≤ k ≤ m, define the polynomials

gk,i1,i2,i3(x, y, z) =
xi1yi2zi3

(xy2)
k
f(x, y, y)kem−k with xi1yi2zi3 ∈Mk

∖
Mk+1.

Since for t ≥ 1, we have

xi1yi2zi3 ∈Mk

∖
Mk+1

if i1 = k, . . . ,m, i2 = 2k, 2k + 1, i3 = m− i1,
or i1 = k, i2 = 2k + 2, . . . , 2i1 + t, i3 = m− i1,

then the polynomials gk,i1,i2,i3(x, y, z) reduce to the polynomialsGk,i1,i2,i3(x, y, z)
and Hk,i1,i2,i3(x, y, z) where

Gk,i1,i2,i3(x, y, z) = xi1−kyi2−2kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, . . . ,m, i2 = 2k, 2k + 1, i3 = m− i1,
Hk,i1,i2,i3(x, y, z) = yi2−2kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, i2 = 2k + 2, . . . , 2i1 + t, i3 = m− i1.

Observe that for the target solution (x, y, z) = (v, p + q,−w), the former poly-
nomials satisfy

Gk,i1,i2,i3(x, y, z) ≡ Hk,i1,i2,i3(x, y, z) ≡ 0 (mod em).

Let L denote the lattice spanned by the coefficient vectors of the polynomials
Gk,i1,i2,i3(xX, yY, zZ) and Hk,i1,i2,i3(xX, yY, zZ) where X, Y and Z are positive
integers to be defined later. The ordering of rows is such that any polynomial
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Gk,i1,i2,i3(xX, yY, zZ) is prior to any polynomial Hk,i1,i2,i3(xX, yY, zZ). Inside
each type of polynomial, the ordering of the tuples (k, i1, i2, i3) follows rule

(k, i1, i2, i3) ≺ (k′, i′1, i
′
2, i
′
3) if


k < k′,

k = k′, i1 < i′1
k = k′, i1 = i′1, i2 < i′2,

k = k′, i1 = i′1, i2 = i′2, i3 < i′3.

Similarly, the monomials xi1yi1zi1 in the columns are ordered following the rule

xi1yi1zi1 ≺ xi
′
1yi
′
2zi
′
3 if


i1 < i′1
i1 = i′1, i2 < i′2,

i1 = i′1, i2 = i′2, i3 < i′3.

This leads to a left triangular matrix. As an example, for m = 2 and t = 3, the
matrix is presented in the following triangular table where the non-zero terms
are denoted ∗.
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Since the matrix is triangular, then only the diagonal terms contribute to the
determinant. On the other hand, only e, X, Y and Z contribute to the determi-
nant and we get the form

det(L) = eneXnXY nY ZnZ . (6)

Using the construction of the polynomialsGk,i1,i2,i3(x, y, z) andHk,i1,i2,i3(x, y, z),
the exponents ne, nX , nY , nZ , and the dimension ω of the lattice are as follows

ne =

m∑
k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

(m− k) +

m∑
k=0

k∑
i1=k

2i1+t∑
i2=2k+2

m−i1∑
i3=m−i1

(m− k)

=
1

6
m(m+ 1)(4m+ 3t+ 5),

nX =

m∑
k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

i1 +

m∑
k=0

k∑
i1=k

2i1+t∑
i2=2k+2

m−i1∑
i3=m−i1

i1

=
1

6
m(m+ 1)(4m+ 3t+ 5),

nY =

m∑
k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

i2 +

m∑
k=0

k∑
i1=k

2i1+t∑
i2=2k+2

m−i1∑
i3=m−i1

i2

=
1

6
(m+ 1)

(
4m2 + 6mt+ 3t2 + 5m+ 3t

)
,

nZ =

m∑
k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

i3 +

m∑
k=0

k∑
i1=k

2i1+t∑
i2=2k+2

m−i1∑
i3=m−i1

i3

=
1

6
m(m+ 1)(2m+ 3t+ 1).

ω =

m∑
k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

1 +

m∑
k=0

k∑
i1=k

2i1+t∑
i2=2k+2

m−i1∑
i3=m−i1

1

= (m+ 1)(m+ t+ 1).

(7)

For t = τm and sufficiently large m, we can approximate the exponents ne, nX ,
nY , nZ by their leading term and get

ne =
1

6
(3τ + 4)m3 + o(m3),

nX =
1

6
(3τ + 4)m3 + o(m3),

nY =
1

6
(3τ2 + 6τ + 4)m3 + o(m3),

nZ =
1

6
(3τ + 2)m3 + o(m3),

ω = (τ + 1)m2 + o(m2).

(8)
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Applying the LLL algorithm to the lattice L, we get a reduced basis where the
three first vectors hi(Xx, Y y, Zz), i = 1, 2, 3 satisfy the conditions ‖h1(Xx, Y y, Zz)‖ ≤
‖h2(Xx, Y y, Zz)‖ ≤ ‖h3(Xx, Y y, Zz)‖, and

‖h3(Xx, Y y, Zz)‖ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

For comparison, Theorem 1 can be applied if

‖h3(Xx, Y y, Zz)‖ < em√
ω
.

To this end, we set

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em√
ω
,

or equivalently

det(L) <
2−

ω(ω−1)
4

(
√
ω)
ω−2 e

m(ω−2).

Hence, using (6), we get

ene−mωXnXY nY ZnZ <
2−

ω(ω−1)
4

(
√
ω)
ω−2 e

−2m, (9)

where the right side term is a small constant depending only on e and m. Plug-
ging the values of ne, nX , nY , nZ and ω from (8) as well as the values e = Nβ ,

X = 2Nβ+δ−2, Y = 3N
1
2 , Z = Nγ in each term of (9), we get

ene−mω = N(− 1
2 τ−

1
3 )βm3+o(m3),

XnX = N( 1
2 τ+

2
3 )(β+δ−2)m3+o(m3) · 2( 1

2 τ+
2
3 )m3+o(m3)

= N( 1
2 τ+

2
3 )(β+δ−2)m3+o(m3)+ε1 ,

Y nY = N
1
2 ( 1

2 τ
2+τ+ 2

3 )m3+o(m3) · 3( 1
2 τ

2+ 1
2 τ+

1
6 )m3+o(m3)

= N
1
2 ( 1

2 τ
2+τ+ 2

3 )m3+o(m3)+ε2 ,

ZnZ = N( 1
2 τ+

1
3 )γm3+o(m3),

2−
ω(ω−1)

4

(
√
ω)
ω−2 e

−2m = N−2βm−ε3 ,

where ε1, ε2 and ε3 are small positive constants depending on m, and N . It
follows that the inequality (9) can be rewritten in terms of the exponents as(
−1

2
τ − 1

3

)
β +

(
1

2
τ +

2

3

)
(β + δ − 2)

+
1

2

(
1

2
τ2 + τ +

2

3

)
+

(
1

2
τ +

1

3

)
γ <

−2βm− ε3 − ε1 − ε2
m3

.
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Setting −2βm−ε3−ε3−ε1ε2m3 = −ε4 and rearranging, we get

3τ2 + 6(δ + γ − 1)τ + 4β + 8δ + 4γ − 12 < −12ε4. (10)

The left side of (10) is optimal for τ0 = 1− δ − γ. Plugging τ0 in (10), we get

−3δ2 + (14− 6γ)δ − γ2 + 4β + 10γ − 15 < −12ε4.

This inequality is valid if

δ <
7

3
− γ − 2

3

√
1 + 3β − 3γ − ε, (11)

where ε is a small positive constant depending on m and N . This terminates the
proof. ut

4 Comparison with existing results

In [6], Bunder et al. combined the continued fraction algorithm and Copper-
smith’s method to study the equation eu−

(
p2 − 1

) (
q2 − 1

)
v = w. They showed

that it is possible to solve it if

uv < 2N − 4
√

2N
3
4 and |w| < (p− q)N 1

4 v.

In terms of e = Nβ , u = Nδ and |w| = Nγ , the first condition implies the
following one

δ <
3− β

2
.

For γ = 0, that is w = 1, the bound of Theorem 3 becomes

δ <
7

3
− 2

3

√
1 + 3β − ε.

Neglecting the ε term, the difference between the former bound and the bound
of [6] is

δ1 =
7

3
− 2

3

√
1 + 3β − 3− β

2
=

5

6
+
b

2
− 2

3

√
1 + 3β.

A straightforward calculation shows that δ1 ≥ 0. This shows that the bound of
Theorem 3 is better than the bound of [6].

In [17], Peng et al. proposed a lattice based method to solve the equation
ed−k

(
p2 − 1

) (
q2 − 1

)
= 1 under the condition δ < 2−

√
β and β > 1. This is a

special case of the general equation eu−
(
p2 − 1

) (
q2 − 1

)
v = w. In this special

case, we have w = Nγ = 1 and γ = 0, and the difference between the bound of
Theorem 3 and the bound of [17] is

δ2 = 2−
√
β −

(
7

3
− 2

3

√
1 + 3β

)
=

2

3

√
1 + 3β − 1

3
−
√
β.

Again, a straightforward calculation shows that δ2 ≥ 0. This means that the
condition of Theorem 3 is not better than Peng al.’s bound. Nevertheless, our
method is more general and can solve a variety of equations with w 6= 1.
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5 Conclusion

In this paper, we have studied the equation eu−
(
p2 − 1

) (
q2 − 1

)
v = w which is

a generalization of the equation ed−k
(
p2 − 1

) (
q2 − 1

)
= 1. The latter equation

is the key equation of some variants of the RSA cryptosystem with modulus
N = pq, public exponent e and private key d. We have showed that, under some
conditions, it is possible to solve the equation eu−

(
p2 − 1

) (
q2 − 1

)
v = w and

break the cryptosystem. The attack is based on applying Coppersmith’s method
to a multivariate modular equation and can be seen as an extension of former
attacks on such cryptosystems.
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