Cryptanalysis of RSA-type cryptosystems based on Lucas sequences, Gaussian integers and elliptic curves

Abstract : In 1995, Kuwakado, Koyama and Tsuruoka presented a new RSA-type scheme based on singular cubic curves y^2 ≡ x^3 + bx^2 (mod N) where N = pq is an RSA modulus. Then, in 2002, Elkamchouchi, Elshenawy and Shaban introduced an extension of the RSA scheme to the field of Gaussian integers using a modulus N = P Q where P and Q are Gaussian primes such that p = |P | and q = |Q| are ordinary primes. Later, in 2007, Castagnos proposed a scheme over quadratic field quotients with an RSA modulus N = pq based on Lucas sequences. In the three schemes, the public exponent e is an integer satisfying the key equation ed − k (p^2 − 1)(q^2 − 1 )= 1. In this paper, we apply the continued fraction method to launch an attack on the three schemes when the private exponent d is sufficiently small. Our experiments demonstrate that for a 1024-bit modulus, our method works for values of d of up to 520 bits. We also examine the effect of dropping the usual assumption that p and q have the same bit size.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02320970
Contributeur : Abderrahmane Nitaj <>
Soumis le : dimanche 20 octobre 2019 - 00:49:51
Dernière modification le : jeudi 24 octobre 2019 - 01:41:57

Fichier

RSATypes.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Martin Bunder, Abderrahmane Nitaj, Willy Susilo, Joseph Tonien. Cryptanalysis of RSA-type cryptosystems based on Lucas sequences, Gaussian integers and elliptic curves. Journal of information security and applications, 2018, ⟨10.1016/j.jisa.2018.04.006⟩. ⟨hal-02320970⟩

Partager

Métriques

Consultations de la notice

7

Téléchargements de fichiers

10