Factoring RSA moduli with weak prime factors

Abstract : In this paper, we study the problem of factoring an RSA modulus N = pq in polynomial time, when p is a weak prime, that is, p can be expressed as ap = u0 + M1u1 +. .. + M k u k for some k integers M1,. .. , M k and k + 2 suitably small parameters a, u0,. .. u k. We further compute a lower bound for the set of weak moduli, that is, moduli made of at least one weak prime, in the interval [2^(2n) , 2 ^(2(n+1)) ] and show that this number is much larger than the set of RSA prime factors satisfying Coppersmith's conditions, effectively extending the likelihood for factoring RSA moduli. We also prolong our findings to moduli composed of two weak primes.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02320968
Contributeur : Abderrahmane Nitaj <>
Soumis le : dimanche 20 octobre 2019 - 00:17:33
Dernière modification le : jeudi 24 octobre 2019 - 01:41:56

Fichier

rsa28final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Abderrahmane Nitaj, Tajjeeddine Rachidi. Factoring RSA moduli with weak prime factors. First International Conference of Codes, Cryptology, and Information Security, 2015, Rabat, Morocco. pp. 361-374, ⟨10.1007/978-3-319-18681-8_29⟩. ⟨hal-02320968⟩

Partager

Métriques

Consultations de la notice

6

Téléchargements de fichiers

12