Implicit factorization of unbalanced RSA moduli

Abstract : Let N1 = p1q1 and N2 = p2q2 be two RSA moduli, not necessarily of the same bit-size. In 2009, May and Ritzenhofen proposed a method to factor N1 and N2 given the implicit information that p1 and p2 share an amount of least significant bits. In this paper, we propose a generalization of their attack as follows: suppose that some unknown multiples a1p1 and a2p2 of the prime factors p1 and p2 share an amount of their Most Significant Bits (MSBs) or an amount of their Least Significant Bits (LSBs). Using a method based on the continued fraction algorithm, we propose a method that leads to the factorization of N1 and N2. Using simultaneous diophantine approximations and lattice reduction , we extend the method to factor k ≥ 3 RSA moduli Ni = piqi, i = 1,. .. , k given the implicit information that there exist unknown multiples a1p1,. .. , ak pk sharing an amount of their MSBs or their LSBs. Also, this paper extends many previous works where similar results were obtained when the pi's share their MSBs or their LSBs.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal-normandie-univ.archives-ouvertes.fr/hal-02320967
Contributeur : Abderrahmane Nitaj <>
Soumis le : dimanche 20 octobre 2019 - 00:02:35
Dernière modification le : jeudi 24 octobre 2019 - 01:41:55

Fichier

rsa24.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Abderrahmane Nitaj, Muhammad Rezal Kamel Ariffin. Implicit factorization of unbalanced RSA moduli. Journal of Applied Mathematics and Computing, Springer, 2015, ⟨10.1007/s12190-014-0806-1⟩. ⟨hal-02320967⟩

Partager

Métriques

Consultations de la notice

8

Téléchargements de fichiers

13